
Citation: Martins, T.; Oliveira, S.V.G.

Enhanced Modbus/TCP Security

Protocol: Authentication and

Authorization Functions Supported.

Sensors 2022, 22, 8024. https://

doi.org/10.3390/s22208024

Academic Editor: Radek Fujdiak

Received: 16 September 2022

Accepted: 12 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enhanced Modbus/TCP Security Protocol: Authentication and
Authorization Functions Supported
Tiago Martins 1 and Sergio Vidal Garcia Oliveira 1,2,*

1 Departamento de Engenharia Elétrica, Universidade do Estado de Santa Catarina, Joinville 89219-710, Brazil
2 Departamento de Engenharia de Telecomunicações, Elétrica e Mecânica, Universidade Regional de Blumenau,

Blumenau 89030-000, Brazil
* Correspondence: sergio_vidal@ieee.org

Abstract: The Zero Trust concept is being adopted in information technology (IT) deployments, while
human users remain to be the main risk for operational technology (OT) deployments. This article
proposes to enhance the new Modbus/TCP Security protocol with authentication and authorization
functions that guarantee security against intentional unauthorized access. It aims to comply with the
principle of never trusting the person who is accessing the network before carrying out a security
check. Two functions are tested and used in order to build an access control method that is based
on a username and a password for human users with knowledge of industrial automation control
systems (IACS), using simple means, low motivation, and few resources. A man-in-the-middle
(MITM) component was added in order to intermediate the client and the server communication
and to validate these functions. The proposed scenario was implemented using the Node-RED
programming platform. The tests implementing the functions and the access control method through
the Node-RED software have proven their potential and their applicability.

Keywords: cybersecurity; Modbus; Zero Trust; IIoT; industry 4.0; automation; access control; RBAC;
IEC 62443

1. Introduction

The Industrial Internet of Things (IIoT) enables the development of factories, electrical
grids, and other intelligent systems, which creates market opportunities for equipment
manufacturers, internet providers, and software developers. In the coming years, sensors,
machines, objects, and IIoT devices will all be connected, generating 45% of all internet
traffic. Of these, 37% will be generated by things in the manufacturing area and 7% will be
generated by electricity-related things [1,2].

An IIoT system connects the industrial control systems with analytical, enterprise,
and autonomous systems. By optimizing the operation and enabling the control, the
collaboration, and the decision making, autonomous equipment and business processes
can evolve manufacturing into a new industrial era, which is known as the Industry 4.0 [3].

With Industry 4.0, industrial devices are increasingly connected to the internet and
corporate intranet in order to provide real-time information for their applications and users,
and, therefore, are consequently more exposed to cyber threats [4].

Operational technology (OT) systems differ from traditional information technology
(IT) systems because they use sensors and actuators in industrial environments. These
interact with the real world, in which uncontrolled changes can generate dangerous situ-
ations in the field. This potential risk elevates the importance of these systems’ security,
reliability, privacy, and resiliency above the levels that are expected in many traditional IT
environments [3].

Being one of the pillars of Industry 4.0 [5], cybersecurity is embryonic for IACS
(industrial automation and control systems). With the digital transformation, the industry
started a race to offer digital services to its customers, in which the equipment supporting

Sensors 2022, 22, 8024. https://doi.org/10.3390/s22208024 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22208024
https://doi.org/10.3390/s22208024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7790-2614
https://orcid.org/0000-0002-2862-3870
https://doi.org/10.3390/s22208024
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22208024?type=check_update&version=2

Sensors 2022, 22, 8024 2 of 20

legacy communication protocols, such as Modbus, which until then were isolated, began to
be exposed in order to offer services such as real-time monitoring, remote’s startup, and
assistance [6]. This ability to remotely control the two-way flow of information has many
advantages but makes systems vulnerable to cyber-attacks.

In the OT domain, concepts such as availability, integrity, and confidentiality (AIC)
define cybersecurity and differ from IT, as the availability is more critical than the data
confidentiality [3].

State-of-the-art research presents individuals as the main risk of compromising cy-
bersecurity in OT [7,8] because the vast majority of industrial communication protocols
were not designed to ensure the cybersecurity of the communication between devices,
making the access control mechanisms in industrial devices limited and unable to em-
ploy role-based access control (RBAC) concepts and protocols with authentication and
authorization capabilities.

Modbus is a client-server application protocol that allows communication between
millions of automation devices. Nevertheless, unfortunately, it lacks basic security mech-
anisms, which leads to several vulnerabilities. When it is correctly used, because it does
not allow for the construction of robust access control, it allows the alteration of registers,
either mistakenly or maliciously, by intruders or simple system operators. Furthermore, it
is a protocol that lacks encryption, authentication, and authorization functions. It allows
its exploitation by malicious software or unauthorized users (hackers), as it can easily
be intercepted and altered in the middle of communication (man-in-the-middle attack),
sending malicious (false command injection), malformed (false access injection), or delayed
(replay attacks) data packets that lead to a denial of service (DoS) of the system [9].

The Zero Trust concept [10] is disseminated in IT. At the same time, it is not uncom-
mon in the OT domain for people to have more access privileges than are necessary for
their work, due to the low quality of access segmentation that is available by the current
mechanisms that are applied to industrial devices [7]. In the Zero Trust Model, security
professionals must eliminate the idea of untrusted networks and trusted networks (internal
networks), as it considers all network traffic to be untrusted and upholds the following
three fundamental principles: all entities are untrusted by default, the least privilege access
is enforced, and comprehensive security monitoring is implemented [10,11].

Therefore, this work aims to improve the industrial Modbus protocol in order to enable
the creation of access control mechanisms in industrial devices that allow individuals to
remain to be the main security risk for the IACS. In order to achieve this, the validation
of the feasibility of performing effective access control for human users is needed. It is
based on a username and a password, against access attempts and casual unauthorized use,
using simple means, a low level of resources, and low motivation, for IACS that provide
human user input interfaces, such as HMI or SCADA systems, that are connected through
industrial Ethernet networks through the protocol.

The influential authors in the automation area argue that, instead of raising the cyber-
security maturity of the Modbus protocol, organizations should invest in new technologies
that provide security by design, such as OPC-UA, for the protocol replacement [12]. How-
ever, because it is widespread in the industry, the option to provide security to the protocol
is a solution that many organizations are likely to adopt [13].

Stuxnet [14], which was the first malware to successfully attack an industrial control
system (ICS) in 2010, infected Windows-based computers on any control or SCADA system;
it was used to disrupt the uranium enrichment process at the Iranian nuclear facility in
Natanz. Since Stuxnet, many works have been published in order to raise the Modbus
protocol’s cybersecurity maturity. A solution using integrity mechanisms through the SHA2
algorithm, authentication through RSA, and non-repudiation and anti-replay through the
timestamp is presented in [15]. Another proposal that is based on SCTP (stream control
transmission protocol) and HMAC (hash-based message authentication code), which is
called ModbusSec, is presented in [16]. However, both of these works do not consider the
confidentiality requirement for Modbus messages, as they are usually implemented using

Sensors 2022, 22, 8024 3 of 20

cryptography, which is expensive and presents a considerable overhead that can affect the
performance in real-time communication [15,16].

Assertions are no longer true because of the advancement of technology and the
possibility of using electronic components that provide encryption based on hardware
such as TPM (trusted platform module) [17]. The cost is no longer a problem, and its use
became viable for communication, as presented in [18], in which the author applies the TLS
(transport layer security) protocol as a solution to Modbus security problems and presents
experimental results that reveal the negligible impact for security applications in power
grids. Additionally, in [19] the Modbus-S protocol is proposed, together with the addition
of a security gateway to IACS, which was designed based on the original Modbus TCP
protocol, which uses a symmetric key algorithm in order to guarantee data confidentiality
and also ensures data uniqueness through a hash algorithm-based synchronization mecha-
nism, integrity through a digital signature algorithm, and function code abuse through a
“White List” filtering mechanism that is used to manage the function codes. These have
been confirmed by the Modbus organization itself, which in the same year adopted the TLS
protocol in place of the TCP (transmission control protocol) protocol in order to support
this new reality in the industry through the publication of the new protocol specification.

Named Modbus/TCP Security, this new variant guarantees the integrity and the
confidentiality of the session that is established between the client device and the server
through PKI (public key infrastructure) and also proposes the transmission of RBAC (role-
based access control) information using X.509v3 certificate extension [20]. The resources
and new functionality are the objects of study by [13], which seek to contextualize the
construction of the RBAC model through applying such specifications.

However, our understanding is that such an approach has limitations regarding the
identification and the authentication of the user who performs the procedures through the
interfaces that allow the iteration of human users, as they do not guarantee non-repudiation
since it is not possible to validate who owns the certificate in cases where the secure session
is established between IACS system components.

It is crucial to validate whether it is possible to enhance the Modbus/TCP Security
protocol with authentication and authorization functions in order to build access control
and enforce the least privilege for human users. In particular, once a secure and encrypted
session is established between the client and the server device, as specified by the protocol,
we need to identify and authenticate all of the users that make requests to the server
device, whether they are humans, processes, or systems. Our approach was to build an
authentication function, through user-defined functions that are provided by the Modbus
protocol, in order to identify, authenticate, and return an authenticator for the given system
user. A second user-defined function is built in order to encapsulate the original request
and to carry out the authorization control. The authentication enables the identification of
the user and the segmentation of accesses by the device. This is presented in the Enhanced
Modbus/TCP Security Protocol chapter, together with a brief explanation of the Modbus
protocol. This was followed by our proposal to implement the new functions in order to
build an access control method for human users in compliance with the first security level
of the IEC 62443-4-2 standard [21]. In order to evaluate our implementation proposal, we
will deploy it on the Node-RED programming platform [22] to finally provide the tests, the
discussion of the results, the conclusions, and the future research lines.

2. Other Related Works

Studies on the smart grid concept cover encryption, intrusion detection, prevention,
privacy, and trust. In [23], a literature review that is related to trust in smart grid is
presented. The definitions of trust guided this categorization according to the literature
and NIST’s priority areas and conceptual domains. A new trust model for substations
that detects attacks inside of the substation is also presented and tested. Using the model,
the authors test the work on two publicly available datasets using three types of tests.
External testing is where purely rogue devices (non-compromised substation devices) are

Sensors 2022, 22, 8024 4 of 20

not considered to be part of the substation network. The second is the internal test, where
all devices are considered to be part of the substation network. The final test is the internal
test with the IP–MAC block that takes the second test position but blacklists any device
that sends a malicious message.

The intrusion detection system (IDS) for smart grid is presented in [24,25]. In the
first study, an anomaly-based system called ARIES (smart grid intrusion detection system)
can efficiently protect smart grid communications by combining three detection layers
that are dedicated to recognizing potential cyber-attacks and anomalies against network
flows, Modbus/TCP packets, and operational data. The second study proposes an IDS
called MENSA (anomaly detection and classification) that adopts a new autoencoder-
generative adversarial network (GAN) architecture to detect operational anomalies and
classify Modbus/TCP and Distributed Network Protocol 3 (DNP3) cyber-attacks. The
implemented anomaly detection and classification model detected thirteen cyber-attacks
on Modbus/TCP, five cyber-attacks on DNP3, and possible anomalies that were related to
operational data (i.e., time series electricity measurements). Moreover, its efficiency was
validated and evaluated in a smart grid laboratory, a substation, a hydroelectric plant, and
a power plant.

Industrial communication is characterized by high regularity, while cyclicality creates
another dimension in order to study deviations. These resources are used by [26] in
order to present a method for detecting anomalies in cyclic communication using the
Modbus protocol.

Production systems are not ideal or not available for such an assessment due to the
possible impacts and disruptions. The authors of [27] propose a structure called the virtual
operational technology network (VOTNet), which consists of a power system, a process
network, a communication network, an automation network, and a business network for
cybersecurity assessment in the automation of security systems energy.

In [28], the authors developed and validated a test bench for conducting cybersecurity
assessments in nuclear power plants. The approach allows the simulation of several
cyber-attack scenarios against a simulated nuclear power plant (NPP) communicating
with its supervisory system (SCADA/HMI) through the Modbus/TCP protocol. It also
demonstrated how to use the environment to generate the datasets that are needed for
intrusion detection studies.

Finally, in [9], a framework is developed to prevent false command injection, false
access injection, and replay attacks in the Modbus protocol in SCADA systems. The
framework was developed with a frame filtering module in order to protect the PLC
against unauthorized access attacks and a second module was developed to detect replay
attacks in the Modbus protocol.

3. Enhanced Modbus/TCP Security Protocol

The most used and disseminated information security standard in the world is
ISO/IEC 27001:2013 [29], which is considered to be an international reference for in-
formation security management, just as ISO 9001 is the international reference for in-
formation security management quality. However, when it comes to cybersecurity for
industrial automation and control system (IACS) devices, the IEC 62443-4-2 standard must
be considered.

The standard consists of the following seven fundamental requirements: (a) The
identification and authentication control specifies that all users (humans, software processes,
and devices) must be identified and authenticated before accessing IACS. (b) The use control
specifies that once the user is identified and authenticated, the device must be enabled
to restrict the allowed actions to its authorized use, to protect itself from unauthorized
actions, and to verify that the necessary privileges have been granted before allowing
a user to perform the actions. (c) The system integrity seeks to prevent unauthorized
manipulation or alteration of the device before and during its operation. (d) The data
confidentiality guarantees the confidentiality of data that are transmitted through the

Sensors 2022, 22, 8024 5 of 20

communication channels and stored in the device’s memory, preventing the dissemination
of unauthorized information. (e) The restricted data flow seeks to segment IACS through
zones and conduits in order to limit unnecessary data flows. (f) The timely response to
events specifies requirements in order to ensure the response to security breaches, enabling
the notification of competent authorities and evidence of the breach so that corrective and
timely actions can be taken when incidents occur. (g) The resource availability specifies
requirements in order to ensure the device availability and, consequently, IACS against
degradation or denial of essential services. Each fundamental requirement has several
conditions that must be met depending on which of the four specified security levels is
desired for the given IACS device [21].

The access control must be built on a solid foundation in order to ensure device
resource availability to all of its trusted users. It ensures integrity and confidentiality
through the device’s root of trust (RoT) with the secure storage of identity, cryptographic
keys, and firmware validation during its boot process and with the cryptography of the
data that are transmitted or stored by it. This control should be based on the concept of
authentication, authorization, and accounting (AAA) [30]. Once the user is both identified
and authenticated, an authorizer mechanism must control the access rights of each user
to the component, enabling the asset owners and the system integrators to define the
privileges of each role that is to be assigned to each user (human, software process, or
device), which is authorized in the drive.

The Modbus/TCP protocol can be found in [31,32]. A TCP Modbus frame (Figure 1)
consists of an MBAP (MODBUS application protocol) and a PDU (protocol data unit)
and is known as an ADU (application data unit). The MBAP is a header with the same
structure with seven bytes for all of the frames, while the PDU is the function requests and
responses. It is limited to 253 bytes, where the first byte is designed to function code (FC),
and the others are the data. There are two kinds of function codes, which are as follows:
public function codes, which are specified by the protocol, and user-defined function codes,
which are specific functions that are developed by users and manufacturers to support
product features.

Sensors 2022, 22, 8024 5 of 20

enabled to restrict the allowed actions to its authorized use, to protect itself from unau-
thorized actions, and to verify that the necessary privileges have been granted before al-
lowing a user to perform the actions. (c) The system integrity seeks to prevent unauthor-
ized manipulation or alteration of the device before and during its operation. (d) The data
confidentiality guarantees the confidentiality of data that are transmitted through the
communication channels and stored in the device’s memory, preventing the dissemina-
tion of unauthorized information. (e) The restricted data flow seeks to segment IACS
through zones and conduits in order to limit unnecessary data flows. (f) The timely re-
sponse to events specifies requirements in order to ensure the response to security
breaches, enabling the notification of competent authorities and evidence of the breach so
that corrective and timely actions can be taken when incidents occur. (g) The resource
availability specifies requirements in order to ensure the device availability and, conse-
quently, IACS against degradation or denial of essential services. Each fundamental re-
quirement has several conditions that must be met depending on which of the four spec-
ified security levels is desired for the given IACS device. [21].

The access control must be built on a solid foundation in order to ensure device re-
source availability to all of its trusted users. It ensures integrity and confidentiality
through the device’s root of trust (RoT) with the secure storage of identity, cryptographic
keys, and firmware validation during its boot process and with the cryptography of the
data that are transmitted or stored by it. This control should be based on the concept of
authentication, authorization, and accounting (AAA) [30]. Once the user is both identified
and authenticated, an authorizer mechanism must control the access rights of each user
to the component, enabling the asset owners and the system integrators to define the priv-
ileges of each role that is to be assigned to each user (human, software process, or device),
which is authorized in the drive.

The Modbus/TCP protocol can be found in [31,32]. A TCP Modbus frame (Figure 1)
consists of an MBAP (MODBUS application protocol) and a PDU (protocol data unit) and
is known as an ADU (application data unit). The MBAP is a header with the same struc-
ture with seven bytes for all of the frames, while the PDU is the function requests and
responses. It is limited to 253 bytes, where the first byte is designed to function code (FC),
and the others are the data. There are two kinds of function codes, which are as follows:
public function codes, which are specified by the protocol, and user-defined function
codes, which are specific functions that are developed by users and manufacturers to sup-
port product features.

Figure 1. Modbus application data unit structure.

This work proposed to develop and adopt two new user-defined functions (authen-
tication and authorization) in order to provide both capabilities and to deploy access con-
trols in order to enhance the Modbus/TCP Security protocol.

3.1. Authentication User-Defined Function
The PDU structure of the new authentication function is presented in Figure 2. It re-

ceives the function code 0x69 and has a subsequent byte that is used to determine the type
of the function, which can be any of the following functions.

Figure 1. Modbus application data unit structure.

This work proposed to develop and adopt two new user-defined functions (authenti-
cation and authorization) in order to provide both capabilities and to deploy access controls
in order to enhance the Modbus/TCP Security protocol.

3.1. Authentication User-Defined Function

The PDU structure of the new authentication function is presented in Figure 2. It
receives the function code 0x69 and has a subsequent byte that is used to determine the
type of the function, which can be any of the following functions.

Sensors 2022, 22, 8024 6 of 20Sensors 2022, 22, 8024 6 of 20

Figure 2. PDUs of the new authentication user-defined function.

3.1.1. Authentication
The byte 0x01 determines that the function will be used by a common authentication

request (Figure 2a). It is followed by 28 bytes of the username and 32 bytes of the pass-
word, in which each character (ASCII table code) occupies one byte of the function data.

3.1.2. Update
The byte 0x02 determines that the function will be of the update and the authentica-

tion type (Figure 2b). In addition to the username and the password, the request will in-
form a new password of 32 characters in order to update the current password before
authenticating the user.

Figure 2c presents the PDU struct of successful responses for both types of requests.
It is the function code byte as standard by Modbus, followed by a token code of 32 bytes,
which is used in order to identify the authenticated user. This token code must be unique
in order to guarantee the integrity of the username, for example, a SHA256 of a robust
random number generation [33,34].

In case of failure during the authentication process with the new function, the server
will respond to the request that was made by the client with an error message (Figure 2d).
The user-defined exception code, for example, an invalid password exception, will receive
the code 0x28 to inform the client that the hash code is not authenticated.

3.2. Authorization User-Defined Function
The newly developed function encapsulates the PDU of the original Modbus request

that was made by the client in its header.
The token is received by the authentication process, enabling the authorizer to iden-

tify which username made the respective request.
Its PDU structure is present in Figure 3, which is known as the authorization func-

tion. For the availability, it receives the function code 0x6A. In addition to the function
code, it has a byte to inform its version for future updates, followed by the header size,
which helps to identify the original function’s beginning, the token’s size to facilitate the
process of extracting the token, the user’s own token of 32 bytes, and finally ending with
the PDU of the original request, which is limited to 216 bytes.

Function code 1 Byte 0x69
Function type 1 Byte 0x01
Username 28 Bytes Until 28 ASCII hex code
Password 32 Bytes Until 32 ASCII hex code

Function code 1 Byte 0x69
Function type 1 Byte 0x02
Username 28 Bytes Until 28 ASCII hex code
Password 32 Bytes Until 32 ASCII hex code
New password 32 Bytes Until 32 ASCII hex code

Function code 1 Byte 0x69
Token code 32 Bytes Until 32 ASCII hex code

Error code 1 Byte 0xE9
Exception code 1 Byte 0x00 to 0xFF

(a) Authentication Request

(b) Authentication and Update Request

(c) Successful Response

(d) Error Response

Figure 2. PDUs of the new authentication user-defined function.

3.1.1. Authentication

The byte 0x01 determines that the function will be used by a common authentication
request (Figure 2a). It is followed by 28 bytes of the username and 32 bytes of the password,
in which each character (ASCII table code) occupies one byte of the function data.

3.1.2. Update

The byte 0x02 determines that the function will be of the update and the authenti-
cation type (Figure 2b). In addition to the username and the password, the request will
inform a new password of 32 characters in order to update the current password before
authenticating the user.

Figure 2c presents the PDU struct of successful responses for both types of requests.
It is the function code byte as standard by Modbus, followed by a token code of 32 bytes,
which is used in order to identify the authenticated user. This token code must be unique
in order to guarantee the integrity of the username, for example, a SHA256 of a robust
random number generation [33,34].

In case of failure during the authentication process with the new function, the server
will respond to the request that was made by the client with an error message (Figure 2d).
The user-defined exception code, for example, an invalid password exception, will receive
the code 0x28 to inform the client that the hash code is not authenticated.

3.2. Authorization User-Defined Function

The newly developed function encapsulates the PDU of the original Modbus request
that was made by the client in its header.

The token is received by the authentication process, enabling the authorizer to identify
which username made the respective request.

Its PDU structure is present in Figure 3, which is known as the authorization function.
For the availability, it receives the function code 0x6A. In addition to the function code,
it has a byte to inform its version for future updates, followed by the header size, which
helps to identify the original function’s beginning, the token’s size to facilitate the process
of extracting the token, the user’s own token of 32 bytes, and finally ending with the PDU
of the original request, which is limited to 216 bytes.

Sensors 2022, 22, 8024 7 of 20

Sensors 2022, 22, 8024 7 of 20

The struct of a successful response is present in Figure 3b. The first byte is the owner
function code, followed by the original function code and the response. As the authoriza-
tion function encapsulates the original PDU, if an exception occurs for the original func-
tion, or if the user does not have access permission for the given register, the function will
return this exception encapsulated in a successful response frame that is performed by the
new authorization function (Figure 3c). In case of failure during the authorization process
with the new function (Figure 3d), the server will respond to the request with an exception
message, for example, no access exception, code 0x29, in order to inform the client that
token code is not authenticated.

Figure 3. PDUs of the new authorization user-defined function.

4. Implementation
An IACS is represented in Figure 4, and the solid green line represents an industrial

ethernet network (OT domain). As can be seen, it has a connection to the intranet in the
IT domain (the solid red line) and the internet (the dashed blue line) through a firewall
and IIoT edge devices. The components that allow human users to interact with the sys-
tem are also represented.

Item one represents a human–machine interface, which is a graphical user interface
that allows interaction between a human operator and components of IACS. It generally
displays specific information about the system to the operator and can be used to change
the operational or the engineering setpoints and the parameters in the system. Items two
and three represent the supervisory software that are installed on computers that allow
high-level visibility and interaction of the human users with the system. The first is di-
rectly connected to the industrial network, while the second is connected to the corporate
network, which is usually located in the control and command centers of the production
process. Item four represents the direct connection of a notebook to an IACS device, which
usually happens when it is necessary to use specific software for the parameterization of
the device. Finally, item five represents the remote connection to the supervisors and the
devices—a common scenario when specialists need punctual intervention on IACS by
specialists for corrective maintenance, with the objective of explaining and validating the

Function code 1 Byte 0x6A
Function version 1 Byte 0x01
Header size 1 Byte 0x00 to 0xFF
Token size 1 Byte 0x00 to 0xFF
Authorized token 32 Bytes Until 32 ASCII hex code
Original PDU Function code 1 Byte 0x01 to 0x7F
Original PDU Data 216 Bytes Until 216 bytes (0x00 to 0xFF)

Function code 1 Byte 0x6A
Original function code 1 Byte 0x00 to 0x80
Original response 251 Bytes Until 251 bytes (0x00 to 0xFF)

Function code 1 Byte 0x6A
Original PDU Error code 1 Byte 0x81 to 0xFF
Original PDU Exception code 1 Byte 0x00 to 0xFF

Error code 1 Byte 0xEA
Exception code 1 Byte 0x00 to 0xFF

(a) Authorization Function Request

(b) Successful Response

(c) Original PDU Error Response

(d) Error Response

Figure 3. PDUs of the new authorization user-defined function.

The struct of a successful response is present in Figure 3b. The first byte is the owner
function code, followed by the original function code and the response. As the authorization
function encapsulates the original PDU, if an exception occurs for the original function, or
if the user does not have access permission for the given register, the function will return
this exception encapsulated in a successful response frame that is performed by the new
authorization function (Figure 3c). In case of failure during the authorization process with
the new function (Figure 3d), the server will respond to the request with an exception
message, for example, no access exception, code 0x29, in order to inform the client that
token code is not authenticated.

4. Implementation

An IACS is represented in Figure 4, and the solid green line represents an industrial
ethernet network (OT domain). As can be seen, it has a connection to the intranet in the IT
domain (the solid red line) and the internet (the dashed blue line) through a firewall and
IIoT edge devices. The components that allow human users to interact with the system are
also represented.

Item one represents a human–machine interface, which is a graphical user interface
that allows interaction between a human operator and components of IACS. It generally
displays specific information about the system to the operator and can be used to change
the operational or the engineering setpoints and the parameters in the system. Items two
and three represent the supervisory software that are installed on computers that allow
high-level visibility and interaction of the human users with the system. The first is directly
connected to the industrial network, while the second is connected to the corporate network,
which is usually located in the control and command centers of the production process.
Item four represents the direct connection of a notebook to an IACS device, which usually
happens when it is necessary to use specific software for the parameterization of the device.
Finally, item five represents the remote connection to the supervisors and the devices—a
common scenario when specialists need punctual intervention on IACS by specialists for
corrective maintenance, with the objective of explaining and validating the applicability of
the functions that are developed for the construction of systems that control the access of
human users to the reading and writing of Modbus registers in IACS components.

Sensors 2022, 22, 8024 8 of 20

Sensors 2022, 22, 8024 8 of 20

applicability of the functions that are developed for the construction of systems that con-
trol the access of human users to the reading and writing of Modbus registers in IACS
components.

Figure 4. Example of an industrial automation and control system.

Firstly, it is considered to be a minimalist system that contains only one Modbus
server (PLC), receiving requests for writing and reading registers from a Modbus client
(HMI). The communication between the two devices is carried out through the TCP pro-
tocol on port 502 (Modbus/TCP Standard). In this first scenario (Figure 5), there is no con-
trol over the client’s requests, therefore, the Modbus server will successfully respond to
all of the public requests that are made by the Modbus client for valid registers on the
server.

Figure 5. Standard Modbus client-server scenario.

The proposed scenario to validate these functions considers the addition of a new
component to the system (Figure 6). The man-in-the-middle (MITM) component will be
responsible for intermediating the communication between the client and the server and
intercepting requests to carry out the authentication process and to access control to the
Modbus server. In this new scenario, instead of connecting directly to the Modbus server,
the Modbus client is connected to MITM on TCP port 802. This is possible with the use of
a third component with computational resources, such as single-board computers (SBC),
and it is valid to improve brownfield devices with serial communication or earlier ver-

Figure 4. Example of an industrial automation and control system.

Firstly, it is considered to be a minimalist system that contains only one Modbus server
(PLC), receiving requests for writing and reading registers from a Modbus client (HMI).
The communication between the two devices is carried out through the TCP protocol on
port 502 (Modbus/TCP Standard). In this first scenario (Figure 5), there is no control over
the client’s requests, therefore, the Modbus server will successfully respond to all of the
public requests that are made by the Modbus client for valid registers on the server.

Sensors 2022, 22, 8024 8 of 20

applicability of the functions that are developed for the construction of systems that con-
trol the access of human users to the reading and writing of Modbus registers in IACS
components.

Figure 4. Example of an industrial automation and control system.

Firstly, it is considered to be a minimalist system that contains only one Modbus
server (PLC), receiving requests for writing and reading registers from a Modbus client
(HMI). The communication between the two devices is carried out through the TCP pro-
tocol on port 502 (Modbus/TCP Standard). In this first scenario (Figure 5), there is no con-
trol over the client’s requests, therefore, the Modbus server will successfully respond to
all of the public requests that are made by the Modbus client for valid registers on the
server.

Figure 5. Standard Modbus client-server scenario.

The proposed scenario to validate these functions considers the addition of a new
component to the system (Figure 6). The man-in-the-middle (MITM) component will be
responsible for intermediating the communication between the client and the server and
intercepting requests to carry out the authentication process and to access control to the
Modbus server. In this new scenario, instead of connecting directly to the Modbus server,
the Modbus client is connected to MITM on TCP port 802. This is possible with the use of
a third component with computational resources, such as single-board computers (SBC),
and it is valid to improve brownfield devices with serial communication or earlier ver-

Figure 5. Standard Modbus client-server scenario.

The proposed scenario to validate these functions considers the addition of a new
component to the system (Figure 6). The man-in-the-middle (MITM) component will be
responsible for intermediating the communication between the client and the server and
intercepting requests to carry out the authentication process and to access control to the
Modbus server. In this new scenario, instead of connecting directly to the Modbus server,
the Modbus client is connected to MITM on TCP port 802. This is possible with the use of a
third component with computational resources, such as single-board computers (SBC), and
it is valid to improve brownfield devices with serial communication or earlier versions of
the Modbus protocol. However, the idea is to embed the authentication and authorization
capabilities directly into the PLC in order to be compliant with IEC 62443-4.2 and to prevent
these controls from being bypassed.

Sensors 2022, 22, 8024 9 of 20

Sensors 2022, 22, 8024 9 of 20

sions of the Modbus protocol. However, the idea is to embed the authentication and au-
thorization capabilities directly into the PLC in order to be compliant with IEC 62443-4.2
and to prevent these controls from being bypassed.

Figure 6. Laboratory’s scenario, MITM agent.

Although we are exemplifying both of the scenarios with real devices, the proposed
scenario was simulated using the Node-RED programming platform in this work. It is a
flow-based programming tool that integrates the OpenJS Foundation. Initially developed
by IBM’s emerging technology services team, it is a low-code, visual representation pro-
gramming model that describes the behavior of an application as a network of nodes,
where each node has a very well-defined purpose. It receives data, processes it, and then
returns it to the network. It is responsible for the data flow between the nodes [22].

Figure 7 shows the Modbus server flow. With a single node, the first flow that was
deployed for this experimentation turned a Modbus STD server simulator available. It is
a node that simulates a Modbus server. In order to configure the server, it is necessary to
determine how many coils, holdings, and discrete inputs will be available to the system
and to set an address and a port for the network communication. For the access control
implementation maintaining the Modbus/TCP standard specification, the IPv4 localhost
and the TCP port 502 were chosen.

Figure 7. Node-RED Modbus server flow simulates the PLC.

Figure 8 shows the flow with auxiliary functions that enable and disable the access
control and configure and obtain the authorized users’ credentials in order to make re-
quests in the system. The disable and enable nodes are of the inject type and make it pos-
sible to initialize the payload value in the flow. Both connect to the on/off access control
node of the function type, which allows the execution of the previously programmed func-
tions through the JavaScript language. This node enables or disables the system’s access
control, and its output is connected to the access control status and the token update
nodes, which are both of the debug types that are responsible for displaying the properties
of the selected message in the debug window. In addition, the enable node is connected
to the C:/users.xml node, which is a read file type that is responsible for reading the files
from the running system. This node will search for the file in which the user’s credentials
are stored, passing through the XML node, which is responsible for converting the file in
XML format into a JavaScript object. This object is passed through the get credentials node
as a message payload in order to be transmitted by the network. Then, the credentials that
are stored in this JavaScript object are defined as global variables that are accessible by
any nodes or flows in the system. A similar process is performed by the set users node,
which allows new users and credentials to be updated and stored for the system.

Figure 6. Laboratory’s scenario, MITM agent.

Although we are exemplifying both of the scenarios with real devices, the proposed
scenario was simulated using the Node-RED programming platform in this work. It is
a flow-based programming tool that integrates the OpenJS Foundation. Initially devel-
oped by IBM’s emerging technology services team, it is a low-code, visual representation
programming model that describes the behavior of an application as a network of nodes,
where each node has a very well-defined purpose. It receives data, processes it, and then
returns it to the network. It is responsible for the data flow between the nodes [22].

Figure 7 shows the Modbus server flow. With a single node, the first flow that was
deployed for this experimentation turned a Modbus STD server simulator available. It is
a node that simulates a Modbus server. In order to configure the server, it is necessary to
determine how many coils, holdings, and discrete inputs will be available to the system
and to set an address and a port for the network communication. For the access control
implementation maintaining the Modbus/TCP standard specification, the IPv4 localhost
and the TCP port 502 were chosen.

Sensors 2022, 22, 8024 9 of 20

sions of the Modbus protocol. However, the idea is to embed the authentication and au-
thorization capabilities directly into the PLC in order to be compliant with IEC 62443-4.2
and to prevent these controls from being bypassed.

Figure 6. Laboratory’s scenario, MITM agent.

Although we are exemplifying both of the scenarios with real devices, the proposed
scenario was simulated using the Node-RED programming platform in this work. It is a
flow-based programming tool that integrates the OpenJS Foundation. Initially developed
by IBM’s emerging technology services team, it is a low-code, visual representation pro-
gramming model that describes the behavior of an application as a network of nodes,
where each node has a very well-defined purpose. It receives data, processes it, and then
returns it to the network. It is responsible for the data flow between the nodes [22].

Figure 7 shows the Modbus server flow. With a single node, the first flow that was
deployed for this experimentation turned a Modbus STD server simulator available. It is
a node that simulates a Modbus server. In order to configure the server, it is necessary to
determine how many coils, holdings, and discrete inputs will be available to the system
and to set an address and a port for the network communication. For the access control
implementation maintaining the Modbus/TCP standard specification, the IPv4 localhost
and the TCP port 502 were chosen.

Figure 7. Node-RED Modbus server flow simulates the PLC.

Figure 8 shows the flow with auxiliary functions that enable and disable the access
control and configure and obtain the authorized users’ credentials in order to make re-
quests in the system. The disable and enable nodes are of the inject type and make it pos-
sible to initialize the payload value in the flow. Both connect to the on/off access control
node of the function type, which allows the execution of the previously programmed func-
tions through the JavaScript language. This node enables or disables the system’s access
control, and its output is connected to the access control status and the token update
nodes, which are both of the debug types that are responsible for displaying the properties
of the selected message in the debug window. In addition, the enable node is connected
to the C:/users.xml node, which is a read file type that is responsible for reading the files
from the running system. This node will search for the file in which the user’s credentials
are stored, passing through the XML node, which is responsible for converting the file in
XML format into a JavaScript object. This object is passed through the get credentials node
as a message payload in order to be transmitted by the network. Then, the credentials that
are stored in this JavaScript object are defined as global variables that are accessible by
any nodes or flows in the system. A similar process is performed by the set users node,
which allows new users and credentials to be updated and stored for the system.

Figure 7. Node-RED Modbus server flow simulates the PLC.

Figure 8 shows the flow with auxiliary functions that enable and disable the access
control and configure and obtain the authorized users’ credentials in order to make requests
in the system. The disable and enable nodes are of the inject type and make it possible to
initialize the payload value in the flow. Both connect to the on/off access control node of the
function type, which allows the execution of the previously programmed functions through
the JavaScript language. This node enables or disables the system’s access control, and its
output is connected to the access control status and the token update nodes, which are both
of the debug types that are responsible for displaying the properties of the selected message
in the debug window. In addition, the enable node is connected to the C:/users.xml node,
which is a read file type that is responsible for reading the files from the running system.
This node will search for the file in which the user’s credentials are stored, passing through
the XML node, which is responsible for converting the file in XML format into a JavaScript
object. This object is passed through the get credentials node as a message payload in order
to be transmitted by the network. Then, the credentials that are stored in this JavaScript
object are defined as global variables that are accessible by any nodes or flows in the
system. A similar process is performed by the set users node, which allows new users and
credentials to be updated and stored for the system.

The following flow, called MITM (Figure 9), is responsible for performing the authen-
tication and the user access control to the Modbus server through the newly developed
user-defined functions.

Sensors 2022, 22, 8024 10 of 20Sensors 2022, 22, 8024 10 of 20

Figure 8. Node-RED auxiliary flow.

The following flow, called MITM (Figure 9), is responsible for performing the au-
thentication and the user access control to the Modbus server through the newly devel-
oped user-defined functions.

Figure 9. Node-RED man-in-the-middle flow simulates the SBC.

The node Modbus MITM server port 802 is a TCP in node type and it receives all of
the connection requests on the 802 TCP port. It is directly connected to the following two
other nodes: the request node, which is responsible for registering all of the requests in
the flow; and the security system node, which evaluates whether the access control has
been activated through the auxiliary flow.

If it is disabled, all of the requests are forwarded to the third output of the FC? node,
which is directly connected to it. This node is of the switch type and it switches messages
according to some of its properties.

For the system under analysis, the function code of the request is evaluated when the
access control is disabled, and a non-public request arrives, so the function code is re-
placed by its respective exception code. In Modbus it is equivalent to the function code
added to the value 0x80 and forwarded to the next node, FC >= 0x80?, which parses
whether the message is a request or an exception. For cases where the received message
is an exception, it will forward to the exception MITM reply node, which is a TCP out
reply node type that is responsible for responding to requests for its respective sources.
Although, if it continues to be a request message, it is forwarded to the Modbus STD client
node, which is a TCP request node type that is responsible for making requests to the
Modbus server, waiting for the responses to finally be forwarded by them to the reply
Modbus STD server node, and to return to their respective source, regardless of whether
it is a successful or exceptional response.

Figure 8. Node-RED auxiliary flow.

Sensors 2022, 22, 8024 10 of 20

Figure 8. Node-RED auxiliary flow.

The following flow, called MITM (Figure 9), is responsible for performing the au-
thentication and the user access control to the Modbus server through the newly devel-
oped user-defined functions.

Figure 9. Node-RED man-in-the-middle flow simulates the SBC.

The node Modbus MITM server port 802 is a TCP in node type and it receives all of
the connection requests on the 802 TCP port. It is directly connected to the following two
other nodes: the request node, which is responsible for registering all of the requests in
the flow; and the security system node, which evaluates whether the access control has
been activated through the auxiliary flow.

If it is disabled, all of the requests are forwarded to the third output of the FC? node,
which is directly connected to it. This node is of the switch type and it switches messages
according to some of its properties.

For the system under analysis, the function code of the request is evaluated when the
access control is disabled, and a non-public request arrives, so the function code is re-
placed by its respective exception code. In Modbus it is equivalent to the function code
added to the value 0x80 and forwarded to the next node, FC >= 0x80?, which parses
whether the message is a request or an exception. For cases where the received message
is an exception, it will forward to the exception MITM reply node, which is a TCP out
reply node type that is responsible for responding to requests for its respective sources.
Although, if it continues to be a request message, it is forwarded to the Modbus STD client
node, which is a TCP request node type that is responsible for making requests to the
Modbus server, waiting for the responses to finally be forwarded by them to the reply
Modbus STD server node, and to return to their respective source, regardless of whether
it is a successful or exceptional response.

Figure 9. Node-RED man-in-the-middle flow simulates the SBC.

The node Modbus MITM server port 802 is a TCP in node type and it receives all of
the connection requests on the 802 TCP port. It is directly connected to the following two
other nodes: the request node, which is responsible for registering all of the requests in the
flow; and the security system node, which evaluates whether the access control has been
activated through the auxiliary flow.

If it is disabled, all of the requests are forwarded to the third output of the FC? node,
which is directly connected to it. This node is of the switch type and it switches messages
according to some of its properties.

For the system under analysis, the function code of the request is evaluated when the
access control is disabled, and a non-public request arrives, so the function code is replaced
by its respective exception code. In Modbus it is equivalent to the function code added to
the value 0x80 and forwarded to the next node, FC >= 0x80?, which parses whether the
message is a request or an exception. For cases where the received message is an exception,
it will forward to the exception MITM reply node, which is a TCP out reply node type
that is responsible for responding to requests for its respective sources. Although, if it
continues to be a request message, it is forwarded to the Modbus STD client node, which
is a TCP request node type that is responsible for making requests to the Modbus server,
waiting for the responses to finally be forwarded by them to the reply Modbus STD server
node, and to return to their respective source, regardless of whether it is a successful or
exceptional response.

However, once the access control feature has been enabled, the FC? node will have
three possible outputs, as follows: the first is used for the new user-defined function of
the authentication type, function code 0x69, the second is for the new authorization type
user-defined function, function code 0x6A, and the third is for exceptions that are generated
by the security system node, because once the access control is enabled, all of the public

Sensors 2022, 22, 8024 11 of 20

functions that are requested directly to the MITM will be blocked by it and their respective
exception messages generated by it.

The authentication requests are sent to the authentication control node. This node
is responsible for verifying the user and the password, returning the token in the case of
success (Figure 2c), or exception in the case of authentication failure (Figure 2d) through
the direct MITM reply node. The token is the SHA256 result of the concatenation between
the timestamp and the username.

The authorization requests are forwarded to the authorization control node. This node
first analyzes whether the token that is informed by the request (Figure 3a) has expired or
if it is not authenticated in the system. The exception code corresponding to the error that
is found is generated for these cases. However, if no problem is found, then it is evaluated
whether the given user is authorized to perform the given request. In negative cases, an
exception is raised, but for positive cases, the original function is decapsulated to proceed
with the request. As can be seen, this node is connected exclusively with node FC < 0x80?,
which evaluates whether the response from the authorization control node is an exception.
If so, it forwards the message (Figure 3d) to the exception MITM reply node, which returns
the exception to its respective source, but if it is not an exception, it will forward the request
to the Modbus STD client node, which is responsible for performing the original requests to
the Modbus server on the TCP port 502, but now, different from non-encapsulated public
requests, the return that is received from the Modbus server, regardless of being a success
(Figure 3b) or an exception (Figure 3c), must be re- encapsulated before returning to its
original source.

The authentication request flow is responsible for performing the user authentication
requests. As can be seen in Figure 10, there are three inject nodes, one for each user in the
system. Table 1 presents the permissions of each user.

Sensors 2022, 22, 8024 11 of 20

However, once the access control feature has been enabled, the FC? node will have
three possible outputs, as follows: the first is used for the new user-defined function of
the authentication type, function code 0x69, the second is for the new authorization type
user-defined function, function code 0x6A, and the third is for exceptions that are gener-
ated by the security system node, because once the access control is enabled, all of the
public functions that are requested directly to the MITM will be blocked by it and their
respective exception messages generated by it.

The authentication requests are sent to the authentication control node. This node is
responsible for verifying the user and the password, returning the token in the case of
success (Figure 2c), or exception in the case of authentication failure (Figure 2d) through
the direct MITM reply node. The token is the SHA256 result of the concatenation between
the timestamp and the username.

The authorization requests are forwarded to the authorization control node. This
node first analyzes whether the token that is informed by the request (Figure 3a) has ex-
pired or if it is not authenticated in the system. The exception code corresponding to the
error that is found is generated for these cases. However, if no problem is found, then it is
evaluated whether the given user is authorized to perform the given request. In negative
cases, an exception is raised, but for positive cases, the original function is decapsulated
to proceed with the request. As can be seen, this node is connected exclusively with node
FC < 0x80?, which evaluates whether the response from the authorization control node is
an exception. If so, it forwards the message (Figure 3d) to the exception MITM reply node,
which returns the exception to its respective source, but if it is not an exception, it will
forward the request to the Modbus STD client node, which is responsible for performing
the original requests to the Modbus server on the TCP port 502, but now, different from
non-encapsulated public requests, the return that is received from the Modbus server, re-
gardless of being a success (Figure 3b) or an exception (Figure 3c), must be re- encapsu-
lated before returning to its original source.

The authentication request flow is responsible for performing the user authentication
requests. As can be seen in Figure 10, there are three inject nodes, one for each user in the
system. Table 1 presents the permissions of each user.

Figure 10. Node-RED authentication request flow simulates the first part of the HMI.

When activating one of these nodes, as they are all connected to the buffer maker
node, the first process to be performed is to transform the message payload into a buffer,
then the MBAP header append node adds the data from the MBAP header of the previous
Modbus protocol in order to send the request to the MITM flow through the Modbus
MITM client node. It is the return of a given request that is sent to the FC > 0x80? Node
that will validate whether the response is an exception or not. In case of an exception, the
message is sent to the authentication fail node and, in parallel, this forces the global vari-

Figure 10. Node-RED authentication request flow simulates the first part of the HMI.

Table 1. Users’ permissions.

User Trusted Write Read

Alice Yes Yes Yes
Bob Yes No Yes
Cris No No No

When activating one of these nodes, as they are all connected to the buffer maker node,
the first process to be performed is to transform the message payload into a buffer, then the
MBAP header append node adds the data from the MBAP header of the previous Modbus
protocol in order to send the request to the MITM flow through the Modbus MITM client
node. It is the return of a given request that is sent to the FC > 0x80? Node that will validate
whether the response is an exception or not. In case of an exception, the message is sent to
the authentication fail node and, in parallel, this forces the global variable token to be null

Sensors 2022, 22, 8024 12 of 20

through the set token node. Nevertheless, if the response is successful, the authentication
success node is logged and the token variable with the value is received in the response.

In the last system flow, Modbus client (Figure 11) is responsible for reading and
writing requests to the register 0x64 from the Modbus server. The node read holding
register performs a reading request in order to register 0x64 through the Modbus read
holding register (0x03) function. The node write multiple register 0x00 writes the value 0x00,
and the write multiple register 0xFF performs the writing request of the value 0xFF to the
same register through the write multiple registers (0x10) function of the Modbus protocol.

Sensors 2022, 22, 8024 12 of 20

able token to be null through the set token node. Nevertheless, if the response is success-
ful, the authentication success node is logged and the token variable with the value is
received in the response.

Table 1. Users’ permissions.

User Trusted Write Read
Alice Yes Yes Yes
Bob Yes No Yes
Cris No No No

In the last system flow, Modbus client (Figure 11) is responsible for reading and writ-
ing requests to the register 0x64 from the Modbus server. The node read holding register
performs a reading request in order to register 0x64 through the Modbus read holding
register (0x03) function. The node write multiple register 0x00 writes the value 0x00, and
the write multiple register 0xFF performs the writing request of the value 0xFF to the same
register through the write multiple registers (0x10) function of the Modbus protocol.

Figure 11. Node-RED Modbus client flow simulates second part of the HMI.

All of the inject nodes are directly connected to the buffer maker node so that the
payload is transformed into a buffer. The to encapsulate node performs the encapsulation
of the original function in the new authorization function, according to Figure 3, when the
access control is enabled. If it does not, it sends the original function to the Modbus MITM
client node, which is responsible for sending the requests to the MITM flow. The response
to these requests is sent to the FC == 0x6A? node, which responsible for directing the type
of request, the original or the authorization, to its given subsequent nodes. The OriginalFC
< 0x80? node evaluates whether there was an exception in the response of the original
request that was made through the new authorization function (Figure 3c). The FC < 0x80?
node already has the same function; however, there are exceptions from both of the orig-
inal functions and the authorization function, in case the given user does not have writing
access, for example (Figure 3d).

5. Tests
The tests that are presented in this section aim to facilitate the understanding and to

validate the applicability of the two new user-defined functions for developing a method
that provides authentication and authorization resources to the Modbus/TCP Security
protocol. All of the values that are present on these tests are in hexadecimal. [18]

Bear in mind that this work proposes improvements in the protocol, and the encryp-
tion is essential for the operation of the proposed mechanisms, because it guarantees the
confidentiality of the transmitted credentials and tokens. This was chosen not to be ap-
plied in tests to encrypt the transmitted data once it was understood that its inapplicability
does not affect the final results of the proposed tests, as it aims to validate the use of the

Figure 11. Node-RED Modbus client flow simulates second part of the HMI.

All of the inject nodes are directly connected to the buffer maker node so that the
payload is transformed into a buffer. The to encapsulate node performs the encapsulation
of the original function in the new authorization function, according to Figure 3, when
the access control is enabled. If it does not, it sends the original function to the Modbus
MITM client node, which is responsible for sending the requests to the MITM flow. The
response to these requests is sent to the FC == 0x6A? node, which responsible for directing
the type of request, the original or the authorization, to its given subsequent nodes. The
OriginalFC < 0x80? node evaluates whether there was an exception in the response of the
original request that was made through the new authorization function (Figure 3c). The
FC < 0x80? node already has the same function; however, there are exceptions from both of
the original functions and the authorization function, in case the given user does not have
writing access, for example (Figure 3d).

5. Tests

The tests that are presented in this section aim to facilitate the understanding and to
validate the applicability of the two new user-defined functions for developing a method
that provides authentication and authorization resources to the Modbus/TCP Security
protocol. All of the values that are present on these tests are in hexadecimal [18].

Bear in mind that this work proposes improvements in the protocol, and the encryption
is essential for the operation of the proposed mechanisms, because it guarantees the
confidentiality of the transmitted credentials and tokens. This was chosen not to be applied
in tests to encrypt the transmitted data once it was understood that its inapplicability does
not affect the final results of the proposed tests, as it aims to validate the use of the two new
authentication functions and to authorize users to make requests of writing and reading in
the Modbus server registers.

As can be seen in Figure 12, the tests started with the access control deactivated. All of
the requests that reach the MITM flow will be forwarded to the Modbus server.

As the access control is disabled, the token is forced to a null value. Furthermore,
the read and write requests to the register 0x64 can be successfully performed through
the Modbus client flow. Remember that a Modbus/TCP frame is named ADU (Figure 1).
Therefore, the first request is composed of the MBAP header and the read holding register

Sensors 2022, 22, 8024 13 of 20

PDU (Figure 13a), and the subsequent frame is the successful response (Figure 13b), where
the register value 0x00 was successfully received.

Sensors 2022, 22, 8024 13 of 20

two new authentication functions and to authorize users to make requests of writing and
reading in the Modbus server registers.

As can be seen in Figure 12, the tests started with the access control deactivated. All
of the requests that reach the MITM flow will be forwarded to the Modbus server.

Figure 12. Event log of access control disabled.

As the access control is disabled, the token is forced to a null value. Furthermore, the
read and write requests to the register 0x64 can be successfully performed through the
Modbus client flow. Remember that a Modbus/TCP frame is named ADU (Figure 1).
Therefore, the first request is composed of the MBAP header and the read holding register
PDU (Figure 13a), and the subsequent frame is the successful response (Figure 13b), where
the register value 0x00 was successfully received.

Figure 13. Read holding register PDUs. [32].

Then, a writing request of the value 0xFF is carried out through the function write
multiple register (Figure 14), ending with a new reading that proves that the register’s
value changed from 0x00 to 0xFF.

Continuing with the access control deactivation, a request is made using the new
user-defined function for user authentication. The results are shown in Figure 15. Moreo-
ver, the MITM flow forwards this request to the Modbus server that does not understand
the requested function, returning an exception, according to Figure 2d.

When enabling the access control (Figure 16), the global variable token is initially set
to null, and the user credentials that were previously stored in the non-volatile memory
are loaded into the system.

Function code 1 Byte 0x03
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 1 to 125 (0x7D)

Function code 1 Byte 0x03
Byte count 1 Byte 2 x N*
Register value N* x 2 Bytes

Error code 1 Byte 0x83
Exception code 1 Byte 01 or 02 or 03 or 04

(c) Error Response

(a) Function Request

*N = Quantity of Registers
(b) Successful Response

Figure 12. Event log of access control disabled.

Sensors 2022, 22, 8024 13 of 20

two new authentication functions and to authorize users to make requests of writing and
reading in the Modbus server registers.

As can be seen in Figure 12, the tests started with the access control deactivated. All
of the requests that reach the MITM flow will be forwarded to the Modbus server.

Figure 12. Event log of access control disabled.

As the access control is disabled, the token is forced to a null value. Furthermore, the
read and write requests to the register 0x64 can be successfully performed through the
Modbus client flow. Remember that a Modbus/TCP frame is named ADU (Figure 1).
Therefore, the first request is composed of the MBAP header and the read holding register
PDU (Figure 13a), and the subsequent frame is the successful response (Figure 13b), where
the register value 0x00 was successfully received.

Figure 13. Read holding register PDUs. [32].

Then, a writing request of the value 0xFF is carried out through the function write
multiple register (Figure 14), ending with a new reading that proves that the register’s
value changed from 0x00 to 0xFF.

Continuing with the access control deactivation, a request is made using the new
user-defined function for user authentication. The results are shown in Figure 15. Moreo-
ver, the MITM flow forwards this request to the Modbus server that does not understand
the requested function, returning an exception, according to Figure 2d.

When enabling the access control (Figure 16), the global variable token is initially set
to null, and the user credentials that were previously stored in the non-volatile memory
are loaded into the system.

Function code 1 Byte 0x03
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 1 to 125 (0x7D)

Function code 1 Byte 0x03
Byte count 1 Byte 2 x N*
Register value N* x 2 Bytes

Error code 1 Byte 0x83
Exception code 1 Byte 01 or 02 or 03 or 04

(c) Error Response

(a) Function Request

*N = Quantity of Registers
(b) Successful Response

Figure 13. Read holding register PDUs [32].

Then, a writing request of the value 0xFF is carried out through the function write
multiple register (Figure 14), ending with a new reading that proves that the register’s
value changed from 0x00 to 0xFF.

Sensors 2022, 22, 8024 14 of 20

Figure 14. Write multiple register PDUs. [32].

Figure 15. Event log of new function with access control disabled.

Figure 16. Event log when enabling access control.

With the access control enabled, the initial tests of reading and writing in the register
0x64 are repeated (Figure 17) through the read holding register and the write multiple
register functions, and it is verified that the Modbus client has its access controlled and

Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 0x0000 to 0x007B
Byte count 1 Byte 2 x N*
Registers Value N* x 2 Bytes Value

Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 1 to 123 (0x7B)

Error code 1 Byte 0x90
Exception code 1 Byte 01 or 02 or 03 or 04

*N = Quantity of Registers
(a) Function Request

*N = Quantity of Registers
(b) Successful Response

(c) Error Response

Figure 14. Write multiple register PDUs [32].

Sensors 2022, 22, 8024 14 of 20

Continuing with the access control deactivation, a request is made using the new
user-defined function for user authentication. The results are shown in Figure 15. Moreover,
the MITM flow forwards this request to the Modbus server that does not understand the
requested function, returning an exception, according to Figure 2d.

Sensors 2022, 22, 8024 14 of 20

Figure 14. Write multiple register PDUs. [32].

Figure 15. Event log of new function with access control disabled.

Figure 16. Event log when enabling access control.

With the access control enabled, the initial tests of reading and writing in the register
0x64 are repeated (Figure 17) through the read holding register and the write multiple
register functions, and it is verified that the Modbus client has its access controlled and

Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 0x0000 to 0x007B
Byte count 1 Byte 2 x N*
Registers Value N* x 2 Bytes Value

Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 1 to 123 (0x7B)

Error code 1 Byte 0x90
Exception code 1 Byte 01 or 02 or 03 or 04

*N = Quantity of Registers
(a) Function Request

*N = Quantity of Registers
(b) Successful Response

(c) Error Response

Figure 15. Event log of new function with access control disabled.

When enabling the access control (Figure 16), the global variable token is initially set
to null, and the user credentials that were previously stored in the non-volatile memory are
loaded into the system.

Sensors 2022, 22, 8024 14 of 20

Figure 14. Write multiple register PDUs. [32].

Figure 15. Event log of new function with access control disabled.

Figure 16. Event log when enabling access control.

With the access control enabled, the initial tests of reading and writing in the register
0x64 are repeated (Figure 17) through the read holding register and the write multiple
register functions, and it is verified that the Modbus client has its access controlled and

Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 0x0000 to 0x007B
Byte count 1 Byte 2 x N*
Registers Value N* x 2 Bytes Value

Function code 1 Byte 0x10
Starting Address 2 Bytes 0x0000 to 0xFFFF
Quantity of Registers 2 Bytes 1 to 123 (0x7B)

Error code 1 Byte 0x90
Exception code 1 Byte 01 or 02 or 03 or 04

*N = Quantity of Registers
(a) Function Request

*N = Quantity of Registers
(b) Successful Response

(c) Error Response

Figure 16. Event log when enabling access control.

With the access control enabled, the initial tests of reading and writing in the register
0x64 are repeated (Figure 17) through the read holding register and the write multiple
register functions, and it is verified that the Modbus client has its access controlled and
denied by the MITM flow. When making requests to the Modbus server register, it receives
an illegal function exception for both requests.

Sensors 2022, 22, 8024 15 of 20

denied by the MITM flow. When making requests to the Modbus server register, it re-
ceives an illegal function exception for both requests.

Figure 17. Event log of illegal function to read and write registers.

The following tests will be performed using the new user-defined functions that were
developed and proposed in this work. Figure 18 presents the requests that were made by
the user that was labeled as Bob. Through the new user-defined function authentication
that was proposed by this study (Figure 2a), the MITM flow confirms that Bob is a trusted
user and that his credentials are valid before authenticating the user to the system. In this
process, a token is generated and registered in the given user’s token key, as presented in
Figure 16, and finally returning it in the request-response (Figure 2c).

Figure 18. Event log of Bob’s requests.

Once the authentication confirmation has been successfully received, the authentica-
tion requests flow configures the global token variable with the token value that is re-
ceived in the authentication request response, which will be used from now on in the read
and write requests that are made through the new user-defined authorization function.

Thus, this performs a new reading request from the Modbus client flow, instead of
the standard request through the read holding register function. Once the global token
variable value is different from null, the Modbus client flow performs the request using
the new proposed function (Figure 3a). This will encapsulate the original read holding
register function together with the unique token that identifies the user Bob, allowing the
MITM flow to identify the user, originating the given request, and, consequently, allowing
access control to the registers and the other resources of the Modbus server by the role of
each trusted user in the system.

As shown in Table 1, the user Bob has only the read permission. Therefore, it is evi-
dent in this test that it was possible to perform the read operation successfully (Figure 3b).
However, when performing the write operation through the encapsulation of the original

Figure 17. Event log of illegal function to read and write registers.

Sensors 2022, 22, 8024 15 of 20

The following tests will be performed using the new user-defined functions that were
developed and proposed in this work. Figure 18 presents the requests that were made by
the user that was labeled as Bob. Through the new user-defined function authentication
that was proposed by this study (Figure 2a), the MITM flow confirms that Bob is a trusted
user and that his credentials are valid before authenticating the user to the system. In this
process, a token is generated and registered in the given user’s token key, as presented in
Figure 16, and finally returning it in the request-response (Figure 2c).

Sensors 2022, 22, 8024 15 of 20

denied by the MITM flow. When making requests to the Modbus server register, it re-
ceives an illegal function exception for both requests.

Figure 17. Event log of illegal function to read and write registers.

The following tests will be performed using the new user-defined functions that were
developed and proposed in this work. Figure 18 presents the requests that were made by
the user that was labeled as Bob. Through the new user-defined function authentication
that was proposed by this study (Figure 2a), the MITM flow confirms that Bob is a trusted
user and that his credentials are valid before authenticating the user to the system. In this
process, a token is generated and registered in the given user’s token key, as presented in
Figure 16, and finally returning it in the request-response (Figure 2c).

Figure 18. Event log of Bob’s requests.

Once the authentication confirmation has been successfully received, the authentica-
tion requests flow configures the global token variable with the token value that is re-
ceived in the authentication request response, which will be used from now on in the read
and write requests that are made through the new user-defined authorization function.

Thus, this performs a new reading request from the Modbus client flow, instead of
the standard request through the read holding register function. Once the global token
variable value is different from null, the Modbus client flow performs the request using
the new proposed function (Figure 3a). This will encapsulate the original read holding
register function together with the unique token that identifies the user Bob, allowing the
MITM flow to identify the user, originating the given request, and, consequently, allowing
access control to the registers and the other resources of the Modbus server by the role of
each trusted user in the system.

As shown in Table 1, the user Bob has only the read permission. Therefore, it is evi-
dent in this test that it was possible to perform the read operation successfully (Figure 3b).
However, when performing the write operation through the encapsulation of the original

Figure 18. Event log of Bob’s requests.

Once the authentication confirmation has been successfully received, the authentica-
tion requests flow configures the global token variable with the token value that is received
in the authentication request response, which will be used from now on in the read and
write requests that are made through the new user-defined authorization function.

Thus, this performs a new reading request from the Modbus client flow, instead of
the standard request through the read holding register function. Once the global token
variable value is different from null, the Modbus client flow performs the request using the
new proposed function (Figure 3a). This will encapsulate the original read holding register
function together with the unique token that identifies the user Bob, allowing the MITM
flow to identify the user, originating the given request, and, consequently, allowing access
control to the registers and the other resources of the Modbus server by the role of each
trusted user in the system.

As shown in Table 1, the user Bob has only the read permission. Therefore, it is evident
in this test that it was possible to perform the read operation successfully (Figure 3b).
However, when performing the write operation through the encapsulation of the original
write multiple register function, the user Bob had his request denied by the MITM flow,
returning to the exception according to Figure 3c.

Figure 19 shows the exact requests that were made by Bob, but now they will be
performed by another user, Alice, who, according to Table 1, has both read and write access
to the Modbus server registers. First, the user Alice successfully authenticates to the MITM
flow, and her respective token is updated to the global token variable. Then, a read request
is performed successfully, and a written request is also performed successfully, changing
the value of the register to 0xFF. The proof of this change is validated by a second read
request that proves that the register 0x64 had its value changed to 0xFF.

Finally, Figure 20 presents the logs of a test that was carried out with the untrusted
user Cris. According to Table 1, this user is unknown by the system, so when trying to
authenticate, the MITM flow returns an exception, and consequently, the global token
variable is forced to have a null value.

Sensors 2022, 22, 8024 16 of 20

Sensors 2022, 22, 8024 16 of 20

write multiple register function, the user Bob had his request denied by the MITM flow,
returning to the exception according to Figure 3c.

Figure 19 shows the exact requests that were made by Bob, but now they will be
performed by another user, Alice, who, according to Table 1, has both read and write ac-
cess to the Modbus server registers. First, the user Alice successfully authenticates to the
MITM flow, and her respective token is updated to the global token variable. Then, a read
request is performed successfully, and a written request is also performed successfully,
changing the value of the register to 0xFF. The proof of this change is validated by a sec-
ond read request that proves that the register 0x64 had its value changed to 0xFF.

Figure 19. Event log of Alice’s requests.

Finally, Figure 20 presents the logs of a test that was carried out with the untrusted
user Cris. According to Table 1, this user is unknown by the system, so when trying to
authenticate, the MITM flow returns an exception, and consequently, the global token
variable is forced to have a null value.

Figure 20. User Cris’s authentication event log.

6. Discussion
The IEC 62443-4-2 standard qualifies the security maturity that was reached by a de-

vice through its four security levels. Through the implementation and the tests with the
developed functions that have been described here, its applicability for constructing the
access control system that allows level one of maturity is evidenced. Table 2 presents these
items that make up the fundamental requirements for the authentication (FR 1) and the
usage control (FR 2). These secure the component against casual attacks by unauthorized

Figure 19. Event log of Alice’s requests.

Sensors 2022, 22, 8024 16 of 20

write multiple register function, the user Bob had his request denied by the MITM flow,
returning to the exception according to Figure 3c.

Figure 19 shows the exact requests that were made by Bob, but now they will be
performed by another user, Alice, who, according to Table 1, has both read and write ac-
cess to the Modbus server registers. First, the user Alice successfully authenticates to the
MITM flow, and her respective token is updated to the global token variable. Then, a read
request is performed successfully, and a written request is also performed successfully,
changing the value of the register to 0xFF. The proof of this change is validated by a sec-
ond read request that proves that the register 0x64 had its value changed to 0xFF.

Figure 19. Event log of Alice’s requests.

Finally, Figure 20 presents the logs of a test that was carried out with the untrusted
user Cris. According to Table 1, this user is unknown by the system, so when trying to
authenticate, the MITM flow returns an exception, and consequently, the global token
variable is forced to have a null value.

Figure 20. User Cris’s authentication event log.

6. Discussion
The IEC 62443-4-2 standard qualifies the security maturity that was reached by a de-

vice through its four security levels. Through the implementation and the tests with the
developed functions that have been described here, its applicability for constructing the
access control system that allows level one of maturity is evidenced. Table 2 presents these
items that make up the fundamental requirements for the authentication (FR 1) and the
usage control (FR 2). These secure the component against casual attacks by unauthorized

Figure 20. User Cris’s authentication event log.

6. Discussion

The IEC 62443-4-2 standard qualifies the security maturity that was reached by a
device through its four security levels. Through the implementation and the tests with the
developed functions that have been described here, its applicability for constructing the
access control system that allows level one of maturity is evidenced. Table 2 presents these
items that make up the fundamental requirements for the authentication (FR 1) and the
usage control (FR 2). These secure the component against casual attacks by unauthorized
users with a generic knowledge of industrial systems, which use simple means, few
resources, and low motivation [21].

The Modbus/TCP Security protocol specifies an X.509 certificate attribute in order to
define the role of a particular Modbus client device. However, it is the user’s responsibility
to build the access control system in order to use such information.

In the implementation that has been presented in this work, the credentials and
the access rules are managed natively by the component, the support changes, and new
accounts, and enforce the security policies. The new functions that have been developed,
in addition to guaranteeing non-repudiation, allow the use of credentials based on a
username and a password, which, together with the use of certificates that are specified by
the protocol, could create an additional factor of authentication to the system.

Although public key infrastructure certificates are not used during testing, they are
essential for the functions to work correctly. Furthermore, they must support revocation or
have a limited expiration date in order to ensure encryption security [21].

Sensors 2022, 22, 8024 17 of 20

After identifying and authenticating each user, the usage control through the autho-
rization function protects the component against any unauthorized actions by verifying that
the necessary privileges have been granted before allowing a user to perform such actions.

Table 2. Security level one component requirements (CRs) for FR 1 and FR 2.

Item Requirement Description SL 1

FR 1 CR 1.1 Human user identification and
authentication Yes

FR 1 CR 1.3 Authenticator management Yes
FR 1 CR 1.4 Identifier management Yes
FR 1 CR 1.5 Authenticator management Yes
FR 1 CR 1.7 Strength of password-based authentication Yes
FR 1 CR 1.10 Authenticator feedback Yes
FR 1 CR 1.11 Unsuccessful login attempts Yes
FR 1 CR 1.12 System use notification NA
FR 2 CR 2.1 Authorization enforcement Yes
FR 2 CR 2.2 Wireless use control NA
FR 2 CR 2.5 Session lock Yes
FR 2 CR 2.8 Auditable events Yes
FR 2 CR 2.9 Auditable storage capacity NA
FR 2 CR 2.10 Responses to audit processing failures NA
FR 2 CR 2.11 Timestamps Yes
FR 2 CR 2.12 Non-repudiation Yes

The audit-relevant events with access control timestamps are registered, and their
storage would allow future audits to be carried out, which is a capability that was not
applied to the tests since, as well as encryption, they were not of paramount importance for
validating the developed functions.

Regarding the vulnerabilities of the proposed method, in order to guarantee access to
the equipment, it is also necessary to control the other interfaces of access to the device,
whether for human users or not, as well as to ensure the quality of the individual secrecy of
password-based authenticators, which can be shared between system operators. Therefore,
policies must be built in order to limit the authenticate lifetime, forcing operators to use
and update them, as well as their responsibility under the credential.

The implemented access control also has vulnerabilities for actors with a lot of re-
sources and knowledge in IACS. In order to mitigate such vulnerabilities, and to guarantee
the device integrity through the root of trust and a secure boot process, multifactor authen-
tication capabilities must be employed to all access interfaces. In addition, double approval
by supervisors for changing the critical parameters in the system, the non-repudiation
for all types of users, the protection of diagnostics interfaces, the automatic notification
of integrity violations, the validation of the input data ensuring that they are within a
valid range, the deterministic output taking the equipment to a safe state in case of viola-
tions, and protections against a denial of service due to a lack of device resources caused
by high processing consumption allow control to be applied through the system’s data
input and output interfaces, instead of being performed during the establishment of the
communication session between devices. This allows the identification and the validation
of each human user before providing access to the resources of the device. The protocol
improvement approach with authentication and authorization features differs from other
published works, as it can be applied directly to the Modbus server, not requiring an
additional component. It also makes it possible to extend the access control to the edge
of IACS.

Another critical point is that the essential characteristics of the Modbus protocol
were not changed. Limiting the original PDU to 216 bytes when encapsulating the new
authorization function was necessary. Despite this, as it is a user-defined function, care
must be taken to not apply them together with PDUs that extrapolate such an amount of

Sensors 2022, 22, 8024 18 of 20

data, which, in the author’s opinion, is feasible since most Modbus public functions do not
exceed such a limit.

Finally, the implementation made it possible to validate and exemplify the usability
of the functions that have been developed, and the tests demonstrate the segmentation
of access by the users existing in the system, ensuring that the users with lower access
privileges do not perform the specific operations of the users with higher privileges.

7. Conclusions

Industrial networks are no longer physically isolated and are now integrated with
corporate intranets and the internet. Due to Industry 4.0 and digital transformation, this
shift is taking place abruptly while the Zero Trust concept has replaced traditional IT
architectures, such as edge or perimeter control.

The Modbus/TCP Security protocol, which was published by the Modbus organiza-
tion, establishes the adoption of the TLS protocol in order to increase the cybersecurity
maturity of the Modbus/TCP protocol, ensuring communication channel confidentiality
and device authentication if the mutual authentication feature is implemented. With the
two new user-defined functions that have been proposed in this work, the conclusion is
that they allow the enhancement of the protocol, adding authentication and authorization
functions that, together with the proposed method, permit the creation of access control for
any users (including humans, systems, or devices).

The tests implementing the functions and the access control method through the
Node-RED software prove the potential and the applicability of the two new functions.
The construction of the access controls, along with the authentication support, ensures
the non-repudiation of human users and guarantees security against casual unauthorized
access and use attempts of actors with generic knowledge in IACS, using simple means,
low level of resources, and low motivation.

This approach allows the protocol to extend the functions that have been developed
and the method that has been used to other applications and devices that use client–
server industrial communication protocols. This work has presented the construction of
access control for a PLC. Nevertheless, an IACS is made up of other equipment, such as
power converters. These devices lack safety features and are usually installed in critical
infrastructures. Implementing a similar approach in these converters would make it
possible to control the access to the users, whether they are humans, devices, or systems, to
these devices.

Once cybersecurity in power electronics is one of the authors’ research lines, future
research will aim to improve the functions and the methodology that have been proposed
in this work in order to implement a robust role-based access control that complies with
the second level of IEC 62443-4-2; additionally for those that are embed in a power con-
verter that is applied to electrical drives, which today are increasingly connected and are,
consequently, more exposed to cyber-attacks.

Author Contributions: Writing—original draft, T.M. and S.V.G.O. All authors have read and agreed
to the published version of the manuscript.

Funding: This work received financial support from the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior–CAPES–Brazil (PROAP/AUXPE, Grant 1484/2020, Process 88881594818/2020-01).

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to thank Udesc and Furb for providing institutional
resources to this research.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 8024 19 of 20

References
1. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on enabling technologies,

protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
2. Balda, J.C.; Mantooth, A.; Blum, R.; Tenti, P. Cybersecurity and power electronics: Addressing the security vulnerabilities of the

internet of things. IEEE Power Electron. Mag. 2017, 4, 37–43. [CrossRef]
3. Schrecker, S.; Soroush, H.; Molina, J.; LeBlanc, J.; Hirsch, F.; Buchheit, M.; Witten, B. Industrial Internet of Things Volume G4: Security

Framework; Industrial Internet Consortium: Austin, TX, USA, 2016.
4. Martins, T.; Oliveira, S.V.G. Cybersecurity in the Power Electronics. IEEE Lat. Am. Trans. 2019, 17, 1300–1308. [CrossRef]
5. Rüßmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. Industry 4.0: The future of productivity and

growth in manufacturing industries. Boston Consult. Group 2015, 9, 54–89.
6. Hartmann, B.; King, W.P.; Narayanan, S. Digital manufacturing: The revolution will be virtualized. McKinsey and Company, 1

August 2015.
7. Filkins, B.; Wylie, D.; Dely, A.J. Sans 2019 State of ot/ics Cybersecurity Survey. SANSTM Institute, 12 June 2019.
8. Bassett, G.; Hylender, C.D.; Langlois, P.; Pinto, A.; Widup, S. 2020 Data Breach Investigations Report. Verizon, 2020. Available

online: https://www.verizon.com/business/resources/reports/2020-data-breach-investigations-report.pdf (accessed on 3
February 2022).

9. Satyanarayana, P.; Rajesh, L. Detection and Blocking of Replay, False Command, and False Access Injection Commands in SCADA
Systems with Modbus Protocol. Secur. Commun. Netw. 2021, 2021, 8887666. [CrossRef]

10. Kindervag, J.; Balaouras, S. No more chewy centers: Introducing the zero trust model of information security. Forrester Res.
2010, 3. Available online: https://www.forrester.com/report/No-More-Chewy-Centers-The-Zero-Trust-Model-Of-Information-
Security/RES56682 (accessed on 15 September 2022).

11. Holmes, D.; Burn, J.; Turner, S. The Definition of Modern Zero Trust. Forrester, 24 January 2022. Available online: https:
//www.forrester.com/report/the-definition-of-modern-zero-trust/RES176986?ref_search=0_1666232401780 (accessed on 15
September 2022).

12. Rinaldi, J. Modbus Security. 2018. Available online: https://www.rtautomation.com/rtas-blog/modbus-security-2/ (accessed
on 29 April 2022).

13. Figueroa-Lorenzo, S.; Añorga, J.; Arrizabalaga, S. A Role-Based Access Control Model in Modbus SCADA Systems. A Centralized
Model Approach. Sensors 2019, 19, 4455. [CrossRef] [PubMed]

14. Zetter, K. Countdown to Zero Day: Stuxnet and the Launch of the World’s First Digital Weapon; Crown: New York, NY, USA, 2014.
15. Fovino, I.N.; Carcano, A.; Masera, M.; Trombetta, A. Design and implementation of a secure modbus protocol. In Critical

Infrastructure Protection III, Proceedings of the International Conference on Critical Infrastructure Protection, Hanover, NH, USA, 23–25
March 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 83–96. [CrossRef]

16. Hayes, G.; El-Khatib, K. Securing modbus transactions using hash-based message authentication codes and stream transmission
control protocol. In Proceedings of the 2013 Third International Conference on Communications and Information Technology
(ICCIT), Beirut, Lebanon, 19–21 June 2013; pp. 179–184. [CrossRef]

17. Infineon. Optiga TPM SLB 9670 TPM2.0 Datasheet. Available online: https://www.infineon.com/dgdl/Infineon-SLB%209670
VQ2.0-DataSheet-v01_04-EN.pdf?fileId=5546d4626fc1ce0b016fc78270350cd6 (accessed on 27 April 2022).

18. Ferst, M.K.; de Figueiredo, H.F.; Denardin, G.; Lopes, J. Implementation of Secure Communication with Modbus and Transport
Layer Security protocols. In Proceedings of the 2018 13th IEEE International Conference on Industry Applications (INDUSCON),
São Paulo, Brazil, 12–14 November 2018; pp. 155–162. [CrossRef]

19. Xuan, L.; Yongzhong, L. Research and implementation of Modbus TCP security enhancement protocol. J. Phys. Conf. Ser. 2019,
1213, 25–58. [CrossRef]

20. Modbus. MODBUS/TCP Security Protocol Specification. Available online: https://modbus.org/docs/MB-TCP-Security-21_201
8-07-24.pdf (accessed on 27 January 2021).

21. IEC 62443-4-2; Security for Industrial Automation and Control Systems-Part 4-2: Technical Security Requirements for IACS
Components. 1.0 ed. International Electrotechnical Commission: Geneva, Switzerland, 2019.

22. About Node-RED. Available online: https://nodered.org/about (accessed on 22 July 2022).
23. Boakye-Boateng, K.; Ghorbani, A.A.; Lashkari, A.H. A Trust-Influenced Smart Grid: A Survey and a Proposal. J. Sens. Actuator

Netw. 2022, 11, 34. [CrossRef]
24. Radoglou Grammatikis, P.; Sarigiannidis, P.; Efstathopoulos, G.; Panaousis, E. ARIES: A Novel Multivariate Intrusion Detection

System for Smart Grid. Sensors 2020, 20, 5305. [CrossRef] [PubMed]
25. Siniosoglou, I.; Radoglou-Grammatikis, P.; Efstathopoulos, G.; Fouliras, P.; Sarigiannidis, P. A Unified Deep Learning Anomaly

Detection and Classification Approach for Smart Grid Environments. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1137–1151.
[CrossRef]

26. Smolarczyk, M.; Plamowski, S.; Pawluk, J.; Szczypiorski, K. Anomaly Detection in Cyclic Communication in OT Protocols.
Energies 2022, 15, 1517. [CrossRef]

27. Sarkar, S.; Teo, Y.; Chang, M. A cybersecurity assessment framework for virtual operational technology in power system
automation. Simul. Model. Pract. Theory 2022, 117, 102453. [CrossRef]

http://doi.org/10.1109/COMST.2015.2444095
http://doi.org/10.1109/MPEL.2017.2761422
http://doi.org/10.1109/TLA.2019.8932339
https://www.verizon.com/business/resources/reports/2020-data-breach-investigations-report.pdf
http://doi.org/10.1155/2021/8887666
https://www.forrester.com/report/No-More-Chewy-Centers-The-Zero-Trust-Model-Of-Information-Security/RES56682
https://www.forrester.com/report/No-More-Chewy-Centers-The-Zero-Trust-Model-Of-Information-Security/RES56682
https://www.forrester.com/report/the-definition-of-modern-zero-trust/RES176986?ref_search=0_1666232401780
https://www.forrester.com/report/the-definition-of-modern-zero-trust/RES176986?ref_search=0_1666232401780
https://www.rtautomation.com/rtas-blog/modbus-security-2/
http://doi.org/10.3390/s19204455
http://www.ncbi.nlm.nih.gov/pubmed/31615147
http://doi.org/10.1007/978-3-642-04798-5_6
http://doi.org/10.1109/ICCITechnology.2013.6579545
https://www.infineon.com/dgdl/Infineon-SLB%209670VQ2.0-DataSheet-v01_04-EN.pdf?fileId=5546d4626fc1ce0b016fc78270350cd6
https://www.infineon.com/dgdl/Infineon-SLB%209670VQ2.0-DataSheet-v01_04-EN.pdf?fileId=5546d4626fc1ce0b016fc78270350cd6
http://doi.org/10.1109/INDUSCON.2018.8627306
http://doi.org/10.1088/1742-6596/1213/5/052058
https://modbus.org/docs/MB-TCP-Security-21_2018-07-24.pdf
https://modbus.org/docs/MB-TCP-Security-21_2018-07-24.pdf
https://nodered.org/about
http://doi.org/10.3390/jsan11030034
http://doi.org/10.3390/s20185305
http://www.ncbi.nlm.nih.gov/pubmed/32948064
http://doi.org/10.1109/TNSM.2021.3078381
http://doi.org/10.3390/en15041517
http://doi.org/10.1016/j.simpat.2021.102453

Sensors 2022, 22, 8024 20 of 20

28. de Brito, I.B.; de Sousa, R.T., Jr. Development of an Open-Source Testbed Based on the Modbus Protocol for Cybersecurity
Analysis of Nuclear Power Plants. Appl. Sci. 2022, 12, 7942. [CrossRef]

29. ISO/IEC 27001:2013; Information Technology-Security Techniques-Information Security Management Systems-Requirements.
International Organization for Standardization: Geneva, Switzerland, 2013.

30. Metz, C. AAA protocols: Authentication, authorization, and accounting for the Internet. IEEE Internet Comput. 1999, 3, 75–79.
[CrossRef]

31. National Instruments. The Modbus Protocol In-Depth. Available online: https://www.ni.com/en-us/innovations/white-
papers/14/the-modbus-protocol-indepth.html (accessed on 29 April 2022).

32. Modbus Organization. MODBUS Application protocol specification. Hopkinton: Modbus Organization. 2012. Available online:
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf (accessed on 29 April 2022).

33. Tehranipoor, F.; Yan, W.; Chandy, J.A. Robust hardware true random number generators using DRAM remanence effects. In
Proceedings of the IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA, 3–5 May
2016; pp. 79–84. [CrossRef]

34. Lampert, B.; Wahby, R.S.; Leonard, S.; Levis, P. Robust, low-cost, auditable random number generation for embedded system
security. In SenSys ‘16: Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, Stanford, CA, USA,
November 2016; pp. 16–27. [CrossRef]

http://doi.org/10.3390/app12157942
http://doi.org/10.1109/4236.807015
https://www.ni.com/en-us/innovations/white-papers/14/the-modbus-protocol-indepth.html
https://www.ni.com/en-us/innovations/white-papers/14/the-modbus-protocol-indepth.html
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://doi.org/10.1109/HST.2016.7495561
http://doi.org/10.1145/2994551.2994568

	Introduction
	Other Related Works
	Enhanced Modbus/TCP Security Protocol
	Authentication User-Defined Function
	Authentication
	Update

	Authorization User-Defined Function

	Implementation
	Tests
	Discussion
	Conclusions
	References

