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Abstract: This paper proposes a deep leaning technique for accurate detection and reliable classifi-
cation of organic pollutants in water. The pollutants are detected by means of cyclic voltammetry
characterizations made by using low-cost disposable screen-printed electrodes. The paper demon-
strates the possibility of strongly improving the detection of such platforms by modifying them
with nanomaterials. The classification is addressed by using a deep learning approach with con-
volutional neural networks. To this end, the results of the voltammetry analysis are transformed
into equivalent RGB images by means of Gramian angular field transformations. The proposed
technique is applied to the detection and classification of hydroquinone and benzoquinone, which
are particularly challenging since these two pollutants have a similar electroactivity and thus the
voltammetry curves exhibit overlapping peaks. The modification of electrodes by carbon nanotubes
improves the sensitivity of a factor of about ×25, whereas the convolution neural network after
Gramian transformation correctly classifies 100% of the experiments.

Keywords: carbon nanotubes; convolutional neural networks; pollutant detection; screen-printed
electrodes; cyclic voltammetry

1. Introduction

Fast and reliable detection and classification of organic pollutants in water is a major
challenge in today’s society, addressing the goals of sustainable development [1]. Classical
and well-assessed techniques such as those based on chromatographic and spectropho-
tometric analysis are known to provide reliable detection and classification (e.g., [2–4]).
However, these methods require in-presence sample processing and high employment of
reagents and time. For these reasons, recently, attention has been paid to electrochemical
methods such as voltammetry (VA), with disposable screen-printed electrodes (SPEs) as
sensing platforms. Indeed, these approaches have been shown to provide good sensing
performance [5–7], while enabling the possibility of moving the analysis from the lab to
in situ [8]. Furthermore, recently improved performance by modifying SPEs with 2D
nanocarbon materials (e.g., carbon nanotubes or graphene nanoplatelets films [9–11]) was
demonstrated.

Cyclic voltammetry (CV) is undoubtedly the most widely used technique for acquir-
ing qualitative information about electrochemical behavior and characterization of target
analyte, and it is often the first experiment performed in an electroanalytical study. CV is
a powerful tool for the rapid determination of formal potentials, and detection of chemi-
cal reactions, preceding by following the electron transfer process and by evaluating the
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electron transfer kinetics [12,13]. Though CV is highly informative, its high background
current imposes some limitations on its use in the quantitative determination of various
molecules. To overcome the problem of low limit of detection, CV is usually complemented
by more sensitive techniques, such as differential pulse voltammetry (DPV), square wave
voltammetry (SWV), and amperometry [14,15].

However, when classification must be addressed, the task becomes challenging. In-
deed, the identification of the pollutant is based on the position of the peaks in the CV
voltammograms by a comparison with those of standards. Unfortunately, the SPE plat-
forms can be highly sensitive to fabrication processes (printing procedures, inks, substrates),
which can significantly affect their reproducibility; moreover, the uncertainty of the electro-
chemical measurements can be related to temperature variation, stability of the instrumen-
tation, and errors of operators, influencing the signal/noise (S/N) ratio, and the reliability
of the test results [16,17]. As a consequence, the shape of CV voltammograms is affected by
issues such as broadening, asymmetry, and tailing peak. This condition is likely to lead to
an important overlap of the peak currents, which significantly hinders the measurement
of quantitative parameters correlated to it and the peak potential [18]. If this condition
occurs in the case of the detection of different analytes with a similar footprint, their correct
classification is hard to be achieved using of the standard approach of voltammograms
post-processing. Therefore, intensive studies have been carried out in the last decades to
provide solutions to this problem. For instance, in [19], a method for the separation and the
improvement of the resolution of overlapping peaks (by decreasing the “background” noise
and increasing the S/N) in cyclic voltammetry based on a semi-differential transformation
algorithm is proposed.

Both classic machine learning [20] and deep learning [21] approaches for CV analysis
have been applied in the last few years.

A deep learning approach was followed in [22,23], where the input was represented
directly by the CV, as usual in this kind of approach. The limits of the latter are related
to the impossibility of using 2D CNN, which has demonstrated in the last year very high
performances [21]. In [24], a complete review of machine learning techniques applied to
voltammetric electrochemical sensing is presented.

This paper proposes an innovative technique to assess a reliable classification from
VA measurements, which is based on deep learning paradigms and on the curve to image
transformation by using 2D CNN. The proposed approach is adopted to classify two organic
substances in water, i.e., benzene metabolites benzoquinone (BQ) and hydroquinone (HQ).
HQ and BQ are undoubtedly two of the most important water pollutants occurring in the
environment because of anthropogenic processes (industrial production), as well as natural
products from plants and animals [25,26]. Exposure to such substances is known to lead to
serious health problems, so they are classified as harmful chemicals [27]. Moreover, their
detection and classification through sensing systems based on SPEs is still challenging.

In addition, the detection of quinones via VA techniques is known to be demanding,
due to the problem of the passivation of the electrodes, because they can be electropoly-
merized during the measurements, and a polymeric layer that prevents a regular redox
process can coat the working electrode. Consequently, the SPE platform can be used only
once (disposable) [28]. For this reason, alternative detection techniques such as electrical
spectroscopy are investigated [29–34], based on the high sensitivity in the frequency of
electrical permittivity of carbon nanomaterials [35]. This problem introduces an additional
source of uncertainties in the measured data, due to the need to replace the SPE platform
after each cycle, with a degradation of the measurement repeatability.

The deep learning approach proposed here is intended to improve electrochemical
techniques such as VA and provide accurate classification of the pollutants starting from
noisy data, coming from measurements done with different platforms at various times and
by different operators.

To this end, the CV data are first transformed into “equivalent images” by using
a Gramian angular field (GAF) technique [36]. Then, by applying a deep learning ap-
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proach [37], a convolutional neural network (CNN) is trained to classify HQ and BQ, using
ferricyanide of potassium (K3[Fe(CN)6]) as the electroactive reference molecule, obtaining
a three-class classification problem

The paper is organized as follows. In Section 2, the CV measurement technique is
reviewed, and details are provided on the data obtained by using several types of SPE
platforms. Section 3 deals with the proposed deep learning approach. In Section 4, case
studies are analyzed, and the classification result is discussed.

2. Experimental Characterization
2.1. Detection via Cyclic Voltammetry

The characterization technique adopted here is based on the use of low-cost disposable
screen-printed electrodes (SPEs), which include working electrode (WE), counter electrode
(CE), and reference electrode (RE), as shown in Figure 1a. In this paper, different electro-
chemical platforms are compared (all printed on polyethylene support), where the WE is
either made by graphite ink (hereafter denoted as “bare electrode”) or modified by single
or multiwalled carbon nanotube (S or MWCNT) films (denoted as “modified electrode”) to
understand their electrochemical performances.
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Figure 1. (a) A conceptual scheme of a screen-printed electrode; (b) example of current-potential
curves as the output of a cyclic voltammetry for different values of the analyte concentration (here
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An example of a CV electrochemical characterization (Figure 1) using hydroquinone, as
an elective compound, is carried out using several dilutions (Figure 1b) of this compound to
build the calibration curve (Figure 1c) to understand the sensitivity of the SPE. The analyte
solution (80 µL) is dropped onto the WE, whose electrical potential V (concerning the
reference electrode) is linearly cycled n times between a maximum and a minimum value.
The resulting electrical current I, flowing through the working and counter electrodes, is
measured, leading to the final I-V curves with a characteristic duck-shaped plot profile (see
Figure 1b).

Studying the current (I) vs. potential (V) voltammogram allows the detection of a
specific analyte in solution since its electrochemical properties determine the specific redox
potentials profile of the compound, used to identify it in a mixture of real samples. In
Figure 1b, an example is given referring to the detection of HQ in fortified water (adding a
known amount of HQ in a fixed volume of water) with a characteristic potential profile
(two reduction peaks and one in oxidation).
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In addition to the classification of the analyte, the I-V curves obtained at different
concentration levels also allow “calibrating” the sensor, as shown in Figure 1c. Specifically,
the peaks of the current for each cycle corresponding to the oxidation can be related to the
pollutant concentration value, giving the response in Figure 1c. For instance, in this case,
the calibration curve is quite linear in the range of interest (fitting parameters provided in
inset).

The Randles–Sevcik equation [14] can be used to extrapolate important analytical
parameters from the peak current value, e.g., the electrode surface (A) and the diffusion
coefficient (D0):

Ip = (0.4463)nFAC

√
nFvD0

RT
(1)

where v is the scan rate (Volt/s), n is the number of electrons involved in the process, F is
the Faraday constant (1/mol), T is the temperature (K), and R is the universal gas constant
(J/K mol).

The limits of CV characterization, discussed in the introduction, can lead to poor
sensitivity (especially at low concentration rates) and/or unacceptable selectivity. An
example is provided in Figure 2, which reports the measured peak potentials and the
corresponding current values related to the peaks of the cyclic voltammograms obtained
with HQ at the concentration of 5 mM with different platforms: bare SPEs (green), MWCNT
SPEs (blue), and SWCNT SPEs (red). It can be highlighted that changing the platforms
(based on SPE) leads to a huge variation in the measured potential and current peaks. In
addition, even with the same platform (i.e., same colors in Figure 2), a sensible spread
of the value (low reproducibility in terms of RSD) is observed from one measurement to
another. Similar behavior is also obtained for the other pollutant (BQ).
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Figure 2. Peak potential and currents measured on several cyclic voltammograms executed on the
hydroquinone pollutant (5 mM), with different platforms: Bare SPEs (green), MWCNT SPEs (blue),
and SWCNT SPEs (red).

This high variability of the data, together with similar behavior of the CV responses
to the two pollutants, makes it extremely difficult for their resolution with these kinds of
techniques.

A way to face the first issue is based on the modification of SPE using carbon nanoma-
terials, as briefly reviewed in the following subsection. The second issue will be addressed
using the machine learning approach discussed in Section 3.

2.2. Carbon Nanotube Modified Platform

To improve the CV response of the SPE, the WE was modified by CNT films by drop-
casting. Single-walled CNTs (Heji Inc., Hong Kong) and multiwalled CNTs (Nanointegris
Technology Inc., Boisbriand, QC, Canada) were used. CNT thin films were produced
using the filtration method. Briefly, 0.2 mg of CNT powder was dispersed for 1 h in a
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1% aqueous solution of sodium dodecyl sulfate in a 200 W ultrasonic bath at 44 kHz. To
remove CNT agglomerates, the suspension was centrifuged at 8000 g for 20 min, and then
filtered through a cellulose-ester membrane (Millipore, 0.22 µm pore size). As a result,
SWCNTs and MWCNTs form thin—0.2 and 1 µm—films on the top of filter paper. To
remove surfactant, CNT films on the filter paper were washed at 80 ◦C and then dried in
air overnight.

To transfer on the SPEs, CNT films on the filter paper were put into water. The water
was substituted with acetone to dissolve the filter paper, and then the acetone was replaced
with ethanol. After its removal, the wet films were transferred to the WE and dried finally
ready to be used.

The images obtained with scanning electron microscopy (SEM, see Figure 3) demon-
strate a larger density of SWCNT than MWCNT film.
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Figure 3. Scanning electron microscope (SEM) images of the produced (a) SWCNT and (b) MWCNT.

It is assumed that the large density of SWNT film prevented a complete removal of
the surfactant from its surface. Raman spectra of CNTs (see Figure 4) show a low (0.08)
and a high (0.86) ratio of D-mode to G-mode intensities for SWCNT and MWCNT films,
respectively.

This indicates a low density of defect in the crystalline structure of SWCNTs compared
to that of MWCNTs.
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2.3. Characterization of Hydroquinone and Benzoquinone and Dataset Generation

The characterization of HQ and BQ was carried out by using both bare and modified
SPEs. Potassium ferri/ferrocyanide [Fe(CN)6]4−/3− (hereafter PF) was also analyzed as a
reference electroactive species. All reagents from commercial sources were of analytical
grade. Potassium ferri/ferrocyanide, p-benzoquinone, and hydroquinone were purchased
from Sigma-Aldrich (Steinheim, Germany). The buffer solution used is a 0.05 M phosphate
buffer saline (PBS), 0.1 M KCl, pH = 7.4.

CV was performed using a Palmesens4™ portable potentiostat system (Palmsens,
Houten, The Netherlands) as an analytical tool and in-house produced screen-printed
electrodes (SPEs) as a transducer.

An experiment of a simultaneous determination of the above three species (BQ, HQ,
and PF) by using CV was carried out, referring to the concentration of 10 mM, and the use
of bare electrodes. The results are shown in Figure 5, which reports the combined cycles
(Figure 5a) and the separate ones (Figure 5b–d). These results evidence the challenge of
correctly classifying the compounds.
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(b–d) PF, HQ, and BQ were analyzed separately.

The generated dataset refers to the CV characterization of HQ, BQ, and PF in water
solution, with three different platforms: bare, SWCNT, and MWCNT modified SPEs. Three
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cycles were measured for each combination of compounds/platform/concentration, thus
obtaining a dataset with a total of 291 experimental CV curves.

Examples of CV cycles are provided in Figure 6 for HQ, characterized by bare and
CNT-modified SPEs. Table 1 quantifies the main performance parameters, such as the
limit of detection (LOD) and reproducibility (RDS%). These results highlight improved
performance obtained, once the SPEs are modified by carbon nanotubes, as modification
results in a much lower LOD (more than one order of magnitude for MWCNT) and better
reproducibility (lowering RDS% by a factor of two).
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(from 0.1 µM to 1 mM).

Table 1. Limit of detection (lod) and reproducibility (rds%) for cv determination of hq in water, with
different platforms.

Parameter/Electrode Bare SWCNT MWCNT

LOD (µM) 334.5 80.3 13.7
Reproducibility (RSD%) 17 8 9

3. Classification via Machine Learning
3.1. Gramian Angular Fields Transformations

The first step of the proposed approach consists of mapping any I-V cycle obtained
by CV into an equivalent red-green-blue (RGB) image. To this end, the Gramian angular
fields (GAF) transformation was used [35], which is here briefly recalled. Starting from a
time series X = {x1, x2, . . . , xn} of n real-valued observations, the vector X is normalized
in such a way that all its values fall into the interval [−1,1]:

x̃i =
(xi −max(X) + (xi −min(X)))

max(X)−min(X)
(2)

The re-scaled vector X̃ is represented in polar coordinates by associating the value to
the angular cosine, ∅i, and the time instant to the radius, r{

∅i = arcos(x̃i), −1 ≤ x̃i ≤ +1, x̃i ∈ X̃
r = ti

N , i ∈ N
(3)

Here, ti is the time stamp and N is a constant factor to regularize the span of the polar
coordinate system.

This transformation has two important properties: (i) it is bijective as cos(∅) is mono-
tonic when ∅ ∈ [0, π]; (ii) as opposed to Cartesian coordinates, polar coordinates preserve
absolute temporal relations.



Sensors 2022, 22, 8032 8 of 16

The Gramian summation angular field (GASF) and Gramian difference angular field
(GADF) are defined as follows: {

GASF =
[
cos
(
∅i +∅j

)]
GADF =

[
sin
(
∅i −∅j

)] (4)

By using the above transformations, each I-V cycle was mapped into an image, as
shown in Figure 7. Specifically, the GASF related to the potential was transformed in the
red (R) color plane, and the GADF and GASF related to the current into the green (G) and
blue (B) planes, respectively. Examples of generated RGB images are provided in Figure 8,
referring to the detection of BQ in water solution.
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3.2. Deep Learning Model

Once all the 291 cycles have been mapped into 291 RGB images, a suitable deep neural
network (DNN) can be trained to classify them [27].

In this paper, we adopted a convolutional neural network (CNN), a category of DNN
inspired by biological processes [38,39] as the model of connectivity between neurons
recalls the organization of the animal visual cortex. Individual cortical neurons respond
to stimuli only in a narrow visual field region known as the receptive field. The receptive
fields of different neurons partially overlap to cover the entire visible area.

CNN uses relatively little preprocessing compared to other image classification al-
gorithms. This means that the network learns to optimize filters (or kernels) through
machine learning, whereas in traditional algorithms, these filters are designed manually.
This independence from prior knowledge and human intervention in feature extraction is a
great advantage when using such an approach.

Table 2 reports the characteristics of the relatively simple CNN designed for our
purpose. The CNN contains five blocks with a 2D convolution (kernel size 3 × 3), a max-
pooling (stride of 2), and two fully connected layers, with a hidden layer of size 64, a
dropout of 0.5, and an output layer of size 3. Specifically, Table 2 reports the number of
parameters layer by layer, with a total amount of 51,799. The dropout is typically used to
reduce overfitting on the training set.

This model was finally chosen after a preliminary experimental phase assuming as a
goal the minimization of the complexity of the network.

The selected network has a straightforward structure with a sequence of convolutional
and max-pooling layers, a flattened layer, and two dense and fully connected layers for the
classification, with a dropout to limit overfitting on the training set.
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Table 2. Characteristics of the designed cnn.

Layer (Type) Output Shape Size Param #

input (None, 224, 224, 3)

conv2d (Conv2D) (None, 222, 222, 48) 3 1.344

max_pooling2d (MaxPooling2D) (None, 111, 111, 48) 2 0

conv2d (Conv2D) (None, 109, 109, 48) 3 20.784

max_pooling2d (MaxPooling2D) (None, 54, 54, 48) 2 0

conv2d (Conv2D) (None, 52, 52, 32) 3 13.856

max_pooling2d (MaxPooling2D) (None, 26, 26, 32) 2 0

conv2d (Conv2D) (None, 24, 24, 32) 3 9.248

max_pooling2d (MaxPooling2D) (None, 12, 12, 32) 2 0

conv2d (Conv2D) (None, 10, 10, 16) 3 4.624

max_pooling2d (MaxPooling2D) (None, 5, 5, 16) 2 0

conv2d (Conv2D) (None, 3, 3, 8) 3 1.160

max_pooling2d (MaxPooling2D) (None, 1, 1, 8) 2 0

Flatten (None, 8) 0

Dense (None, 64) 576

Dropout (0.5) (None, 64) 0

Dense (None, 3) 195

Batch Normalization (None, 3) 12

Activation Softmax (None, 3) 0

Total param # 51,799

3.3. Dataset

As described in Section 3, the dataset generated by the CV experiments contains a
total of 291 experimental points, referring to the characterization of PF, HQ, and BQ in
water by means of three different platforms: bare SPEs, SWCNT, and MWCNT modified
SPEs. Table 3 provides the complete description of the dataset.

Table 3. Available dataset after cv characterization.

Benzoquinone

Sensors

Bare MWCNT SWCNT

Number of voltammetry cycles 2 3 3

Concentrations (mM)

80 80

50 50 50

25 25 25

12.5 12.5 12.5

5 5 5.1

2.5 2.5 5

1

Total images:

Number of images 12 18 18 48
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Table 3. Cont.

Hydroquinone

Sensors

Bare MWCNT SWCNT

Number of voltammetry cycles 3 3 3

Concentrations (mM)

100 100 100

50 50 50

25 25 25

12.5 12.5 12.5

5 5 5

2.5 2.5 2.5

1 1 1

0.5 0.5 0.5

0.25 0.25 0.25

Total images:

Number of images 27 27 27 81

Potassium ferricyanide

Sensors

Bare MWCNT SWCNT

Number of voltammetry cycles 6 6 6

Concentrations (mM)

100 100 100

50 50 50

25 25 25

12.5 12.5 12.5

5 5 5

2.5 2.5 2.5

1 1 1

0.5 0.5 0.5

0.25 0.25 0.25

Total images:

Number of images 54 54 54 162

The 291 available experiments were randomly assigned to the training, validation, and
test sets in a ratio of 75% (227 images), 10% (29 images) and 15% (35 images), respectively.

To augment the statistical significance of the experiments, this subdivision was randomly
repeated five times (5-fold cross-validation), obtaining a different train/validation/test set
each time. For each of these subdivisions, a model was trained and evaluated.

4. Results and Discussion

The result of applying the GAF transformation to the dataset is an impressive stabiliza-
tion of the pattern associated with any single test (detection of a given substance at a given
concentration). This is a consequence of a dramatic reduction of the uncertainty related to
using different platforms at different times for the given test. To show it, let us refer to the
test case analyzed in Figure 2, i.e., the CV response associated with the detection of HQ at a
concentration of 5 mM.

Once all the I-V curves related to this case are transformed into equivalent RGB images
by using GAF, we can compute for each pixel and each color the average and standard
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deviation values associated with experiments available for the above test case. These values
are shown in Table 4 for each color: the ratio STD/average ranges from 0.23 to 10.5%.

Table 4. Average and standard deviation values for the rgb image obtained by gaf transformation.

R G B

Average 2.4596 2.7999 2.4832
STD 0.1590 0.2940 0.0057

The subsequent deep learning processing was performed by using an Intel Core i7-
7700 CPU@3.60GHz, 256GB of RAM with a GPU Titan Xp. As a deep learning framework,
we used Keras version 2.4.0 with TensorFlow version 2.4.0 as the back end [40,41].

During the training of the network, the following hyperparameters were used:

• Epochs: 400
• Patience: 100
• Optimizer: Stochastic Gradient Descent
• Learning rate: 0.0001
• Momentum: 0.9
• Loss: categorical cross-entropy
• Metrics: accuracy
• Batch size: 16

At the end of each epoch, the loss was evaluated on the validation set to save the
model with the best performance, avoiding overfitting. An early stopping policy was
implemented with a patience of 100 to stop the learning phase if the loss does not improve
for some time. Figures 9 and 10 report examples of the accuracy and loss curve during the
training phase on the first fold, evaluated on the training and the validation set at the end
of each epoch.
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In these curves, it is possible to observe that the loss on the validation set is lower than
the loss on the training set; at the same time, it is possible to observe that the accuracy on
the validation set is greater than the accuracy on the training set. This can happen in the
presence of a dropout layer, where during training, a percentage of the features is set to zero
(with a 50% of probability because we adopted a dropout of 0.5). During the validation, all
features are used; consequently, the model is more robust, leading to higher accuracy.

In the loss curve (Figure 10), a plateau is reached at epoch 1100; after this epoch the loss
evaluated on the validation set does not decrease for at least 100 epochs, so determining the
stop of the training phase. The model saved at epoch 1100 became the best model found
and was then used during the test phase.

The entire training phase on a Dell laptop with Core i7 as a processor, 32GB of RAM,
and an NVIDIA 3060 GPU with 6 GB of dedicated memory employed around 1 h to reach
the convergence ad epoch 1200.

Global performances were evaluated in terms of accuracy (5) and confusion matrix
(CM).

Accuracy =
Correctly Classi f ied Samples

Total Samples
(5)

A CM summarizes the results of the testing phase on different classes. The CMij
element represents the percentage of elements labeled as class i and predicted as class j.
The ideal case is represented by a diagonal matrix, which means that all samples for each
class were correctly classified. Furthermore, the global accuracy can be evaluated as the
ratio between the CM trace (sum of the correctly classified) and the sum of all CM values.

The results of the 5-fold repetitions of the CNN training are reported in Figure 11 in
terms of mean values.
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It can be noticed that the confusion matrix is fully diagonal, hence indicating that the
proposed network generates an accuracy of 100% in all five repetitions of the experiments.
Consequently, Figure 11 does not report the standard deviation along the experiments,
given that its values are equal to zero.

Figure 12 reports the global overview of the system after its training: the input is the
entire curve, this curve is transformed via GAF in an RGB image, and the trained CNN
classifies the image into one of three classes (BQ, HQ, or FP).
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The entire process on a standard machine such as a laptop with Core i7 of 11th
generation takes less than 1 s for the entire classification process, as reported in Figure 12.
This time is adequate for an online detection of these substances.

5. Conclusions

The paper proposes a further step toward the realization of a low-cost AI-based
embedded sensor for the detection and classification of organic pollutants in water. The
proposed solution is based on suitable screen-printed electrodes connected to measurement
micro-platforms capable of performing cyclic voltammetry tests and embedded with an
innovative deep-learning algorithm for classification and detection. In detail, the paper
is mainly focused on the optimization of the classification task that is executed with
convolutional neural networks. The main novelty of the paper is the innovative use of
Gramian angular fields transformations to transform in suitable RGB image data coming
from voltammetry tests. To demonstrate the goodness of the solution, two challenging
pollutants, i.e., hydroquinone and benzoquinone, that have very similar electroactivity
and consequently very similar voltametric footprint, were considered. In addition, results
coming from different types of screen-printed electrodes were considered. In this way,
the obtained results are not related to a specific sensor but are a feature of the proposed
platform.

Obtained results show that this preliminary conditioning of the measurement infor-
mation allows us to deeply improve the performance of the convolutional neural networks
allowing us to reach a classification accuracy of 100%.
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Future work will be carried out in two directions: (a) to embed the classification
capability in the measurement micro-platform and (b) to increase the number of pollutants
and screen-printed electrodes to give more generalization capabilities to the developed
platform.
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