Monitoring Epoxy Coated Steel under Combined Mechanical Loads and Corrosion Using Fiber Bragg Grating Sensors
Abstract
:1. Introduction
2. Theoretic Analysis
2.1. Sensing Principles
2.2. Calibration of FBG Sensors
2.3. Measuring the Depth of Pitted Corrosion
2.4. Measuring the Width of Pitted Corrosion
3. Experimental Program
3.1. Materials and Dimensions
3.2. Loading-Only Tests
3.2.1. Test Set-Up
3.2.2. Determination of the Static Loading Levels
3.3. Corrosion-Only Tests
3.4. Combined Loading–Corrosion Tests
4. Experimental Results
4.1. Loading-Only Tests
4.2. Corrosion-Only Tests
4.3. Combined Loading–Corrosion Tests
5. Discussions
5.1. Corrosion Depth Severity Ratio
5.2. Corrosion width Severity Ratio
6. Conclusions
- The wavelength changes among different samples were compared. It was found that delamination of the epoxy coating would significantly accelerate corrosion in epoxy coated steel and increase the contribution of external loads on impacting corrosion.
- The comparison between the wavelength changes under corrosion-only and combined loading–corrosion tests and the corrosion depth analysis indicated that temporary external loading can significantly accelerate corrosion up to 12 times compared to no external loading, especially in the condition when the coating was delaminated.
- With combined external temporary loading and corrosion, the variation of restoration of corrosion width ratio went back to a value closer to 1.0, indicating the influence of the compacting effect of loose corrosion products under external loading.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popoola, L.T.; Grema, A.S.; Latinwo, G.K.; Gutti, B.; Balogun, A.S. Corrosion problems during oil and gas production and its mitigation. Int. J. Ind. Chem. 2013, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-N.; Li, D.-S.; Song, G.-B. Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 2004, 26, 1647–1657. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, S.; Li, W.; Cui, Y.; Yang, T. Synthesis of graphene oxide-based sulfonated oligoanilines coatings for synergistically enhanced corrosion protection in 3.5% NaCl solution. ACS Appl. Mater. Interfaces 2017, 9, 4034–4043. [Google Scholar] [CrossRef]
- Mahvash, F.; Eissa, S.; Bordjiba, T.; Tavares, A.C.; Szkopek, T.; Siaj, M. Corrosion resistance of monolayer hexagonal boron nitride on copper. Sci. Rep. 2017, 7, 42139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaysburd, A.; Emmons, P. How to make today’s repairs durable for tomorrow—Corrosion protection in concrete repair. Constr. Build. Mater. 2000, 14, 189–197. [Google Scholar] [CrossRef]
- Fedrizzi, L.; Azzolini, F.; Bonora, P.L. The use of migrating corrosion inhibitors to repair motorways’ concrete structures contaminated by chlorides. Cem. Concr. Res. 2005, 35, 551–561. [Google Scholar] [CrossRef]
- Nmai, C.K. Multi-functional organic corrosion inhibitor. Cem. Concr. Compos. 2004, 26, 199–207. [Google Scholar] [CrossRef]
- Vaysburd, A.M.; Emmons, P.H. Corrosion inhibitors and other protective systems in concrete repair: Concepts or misconcepts. Cem. Concr. Compos. 2004, 26, 255–263. [Google Scholar] [CrossRef]
- Venkatesan, P.; Palaniswamy, N.; Rajagopal, K. Corrosion performance of coated reinforcing bars embedded in concrete and exposed to natural marine environment. Prog. Org. Coat. 2006, 56, 8–12. [Google Scholar] [CrossRef]
- Talo, A.; Passiniemi, P.; Forsen, O.; Yläsaari, S. Polyaniline/epoxy coatings with good anti-corrosion properties. Synth. Met. 1997, 85, 1333–1334. [Google Scholar] [CrossRef]
- Talo, A.; Forsen, O.; Yläsaari, S. Corrosion protective polyaniline epoxy blend coatings on mild steel. Synth. Met. 1999, 102, 1394–1395. [Google Scholar] [CrossRef]
- Zhou, F.L.; Gong, R.H.; Porat, I. Mass production of nanofibre assemblies by electrostatic spinning. Polym. Int. 2009, 58, 331–342. [Google Scholar] [CrossRef]
- Akinyemi, O.; Nwaokocha, C.; Adesanya, A. Evaluation of corrosion cost of crude oil processing industry. J. Eng. Sci. Technol. 2012, 7, 517–528. [Google Scholar]
- Zhang, N.; Chen, W.; Zheng, X.; Hu, W.; Gao, M. Optical sensor for steel corrosion monitoring based on etched fiber Bragg grating sputtered with iron film. IEEE Sens. J. 2015, 15, 3551–3556. [Google Scholar] [CrossRef]
- Carpinteri, A.; Lacidogna, G.; Niccolini, G. Damage analysis of reinforced concrete buildings by the acoustic emission technique. Struct. Control Health Monit. 2011, 18, 660–673. [Google Scholar] [CrossRef]
- Zaki, A.; Chai, H.K.; Aggelis, D.G.; Alver, N. Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique. Sensors 2015, 15, 19069–19101. [Google Scholar] [CrossRef]
- Tan, C.; Shee, Y.; Yap, B.; Adikan, F.M. Fiber Bragg grating based sensing system: Early corrosion detection for structural health monitoring. Sens. Actuators A Phys. 2016, 246, 123–128. [Google Scholar] [CrossRef]
- Sun, T.; Yeo, T.L.; Xie, W.G.; Zhao, W.Z.; Grattan, K.T.V.; Basheer, M.; Long, A.E.; McPolin, D. Novel Fibre Optic Sensors for Monitoring Corrosion-Related Properties of Concrete; Engineering Technics Press: Edinburgh, Scotland, 2006. [Google Scholar]
- Abbasnia, R.; Farsaei, A. Corrosion detection of reinforced concrete beams with wavelet analysis. Int. J. Civ. Eng. 2013, 11, 160–169. [Google Scholar]
- Surre, F.; Sun, T.; Grattan, K.T. Fiber optic strain monitoring for long-term evaluation of a concrete footbridge under extended test conditionss. IEEE Sens. J. 2012, 13, 1036–1043. [Google Scholar] [CrossRef]
- Maalej, M.; Ahmed, S.; Kuang, K.; Paramasivam, P. Fiber optic sensing for monitoring corrosion-induced damage. Struct. Health Monit. 2004, 3, 165–176. [Google Scholar] [CrossRef]
- López-Higuera, J.M.; Cobo, L.R.; Incera, A.Q.; Cobo, A. Fiber optic sensors in structural health monitoring. J. Light. Technol. 2011, 29, 587–608. [Google Scholar] [CrossRef]
- Abdel-Jaber, H.; Glisic, B. Monitoring of long-term prestress losses in prestressed concrete structures using fiber optic sensors. Struct. Health Monit. 2019, 18, 254–269. [Google Scholar] [CrossRef]
- Majumder, M.; Gangopadhyay, T.K.; Chakraborty, A.K.; Dasgupta, K.; Bhattacharya, D.K. Fibre Bragg gratings in structural health monitoring—Present status and applications. Sens. Actuators A Phys. 2008, 147, 150–164. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, F.; Liang, X.; Chen, G.; Xiao, H.; Azarmi, F. Steel bar corrosion monitoring with long-period fiber grating sensors coated with nano iron/silica particles and polyurethane. Struct. Health Monit. 2015, 14, 178–189. [Google Scholar] [CrossRef]
- Deng, F.; Huang, Y.; Azarmi, F.; Wang, Y. Pitted corrosion detection of thermal sprayed metallic coatings using fiber Bragg grating sensors. Coatings 2017, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Huang, Y.; Azarmi, F. Corrosion behavior evaluation of coated steel using fiber Bragg grating sensors. Coatings 2019, 9, 55. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Zhao, X.; Zhao, T.; Yang, L. Interaction between compressive load and corrosive-ion attack on reinforced concrete with accelerated potentiostatic corrosion. Constr. Build. Mater. 2016, 113, 805–814. [Google Scholar] [CrossRef] [Green Version]
- Hariche, L.; Ballim, Y.; Bouhicha, M.; Kenai, S. Effects of reinforcement configuration and sustained load on the behaviour of reinforced concrete beams affected by reinforcing steel corrosion. Cem. Concr. Compos. 2012, 34, 1202–1209. [Google Scholar] [CrossRef]
- Fang, C.; Gylltoft, K.; Lundgren, K.; Plos, M. Effect of corrosion on bond in reinforced concrete under cyclic loading. Cem. Concr. Res. 2006, 36, 548–555. [Google Scholar] [CrossRef]
- Feng, X.; Lu, X.; Zuo, Y.; Zhuang, N.; Chen, D. Electrochemical study the corrosion behaviour of carbon steel in mortars under compressive and tensile stresses. Corros. Sci. 2016, 103, 66–74. [Google Scholar] [CrossRef]
- Aveldaño, R.R.; Ortega, N.F. Behavior of concrete elements subjected to corrosion in their compressed or tensed reinforcement. Constr. Build. Mater. 2013, 38, 822–828. [Google Scholar] [CrossRef]
- Ghosh, C.; Alfred, Q.M.; Ghosh, B. Spectral characteristics of uniform fiber Bragg grating with different grating length and refractive index variation. Int. J. Innov. Res. Comput. Commun. Eng. 2015, 3, 456–462. [Google Scholar]
- Khan, I.; Ahmed, I. Sensing principle analysis of FBG based sensors. IOSR J. Electr. Electron. Eng. (IOSRJEEE) 2012, 1, 1–6. [Google Scholar] [CrossRef]
- Huang, J.; Zeng, J.; Bai, Y.; Wang, Y.; Wang, K.; Wu, X.; Cheng, Z.; Liang, D. Real-time monitoring for the CFRP/aluminium-alloy bonding structure during curing process using encapsulated fiber Bragg grating sensor. Opt. Fiber Technol. 2020, 57, 102216. [Google Scholar] [CrossRef]
- Mahjoubi, S.; Tan, X.; Bao, Y. Inverse analysis of strain distributions sensed by distributed fiber optic sensors subject to strain transfer. Mech. Syst. Signal Process. 2022, 166, 108474. [Google Scholar] [CrossRef]
- Tan, X.; Bao, Y.; Zhang, Q.; Nassif, H.; Chen, G. Strain transfer effect in distributed fiber optic sensors under an arbitrary field. Autom. Constr. 2021, 124, 103597. [Google Scholar] [CrossRef]
- Huang, Y.; Bao, Y.; Chen, G.; Zhou, Z. A constrained cylinder model of strain transfer for packaged fiber Bragg grating sensors embedded in inelastic medium. Struct. Control. Health Monit. 2019, 26, e2335. [Google Scholar] [CrossRef]
- Lu, S.-W.; Xie, H.-Q. Strengthen and real-time monitoring of RC beam using “intelligent” CFRP with embedded FBG sensors. Constr. Build. Mater. 2007, 21, 1839–1845. [Google Scholar] [CrossRef]
- Miguel, J.; Guilemany, J.; Mellor, B.; Xu, Y. Acoustic emission study on WC–Co thermal sprayed coatings. Mater. Sci. Eng. A 2003, 352, 55–63. [Google Scholar] [CrossRef]
- Popov, B.N. Corrosion Engineering: Principles and Solved Problems; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Poursaee, A. Corrosion of Steel in Concrete Structures; Elsevier: Amsterdam, The Netherlands, 2016; pp. 19–33. [Google Scholar]
- Rosa, G.; Oltra, R.; Nadal, M.-H. Evaluation of the coating—Substrate adhesion by laser-ultrasonics: Modeling and experiments. J. Appl. Phys. 2002, 91, 6744–6753. [Google Scholar] [CrossRef]
- Sargent, J. Corrosion detection in welds and heat-affected zones using ultrasonic Lamb waves. Insight-Non-Destr. Test. Cond. Monit. 2006, 48, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Lee, M.; Serratella, C.; Botten, S.; Ternowchek, S.; Ozevin, D.; Thibault, J.; Scott, R. Testing of acoustic emission technology to detect cracks and corrosion in the marine environment. J. Ship Prod. Des. 2010, 26, 106–110. [Google Scholar] [CrossRef]
- Zhu, W.; Rose, J.; Barshinger, J.; Agarwala, V. Ultrasonic guided wave NDT for hidden corrosion detection. J. Res. Nondestruct. Eval. 1998, 10, 205–225. [Google Scholar] [CrossRef]
- Huang, Y.; Deng, F.; Xu, L.; Azarmi, F. Two-dimensional pitted corrosion localization on coated steel based on fiber Bragg grating sensors. J. Civ. Struct. Health Monit. 2020, 10, 927–945. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Hu, W. Preparation and corrosion behavior of Cu-8-HQ@ HNTs/epoxy coating. Prog. Org. Coat. 2020, 139, 105434. [Google Scholar] [CrossRef]
FBG Length | 10 mm |
---|---|
Strain limit | 5000 |
Strain sensitivity | ~1.2 |
Operating temperature range | −40 to 120 |
Thermal sensitivity | ~9.9 pm/°C |
Fiber coating | Polyimide |
Fiber re-coating diameter | 145–165 |
Load Level | Load Value (N) | Expected Strain Value (µε) |
---|---|---|
1st | 30 | 18 |
2nd | 60 | 36 |
3rd | 90 | 54 |
4th | 120 | 72 |
5th | 150 | 90 |
Time (Days) | Test Operation |
---|---|
0 | Corrosion test start |
4 | 1st cycle of loading test |
10 | 2nd cycle of loading test |
16 | 3rd cycle of loading test |
22 | 4th cycle loading test |
… | … |
120 | 20th cycle of loading test |
120 | Corrosion test end |
Sample No. | Corrosion Rate for Corrosion-Only Conditions (µm/year) |
---|---|
C1 | 1.13 |
C2 | 0.52 |
C3 | 0.28 |
Samples | Corrosion-Only Average Corrosion Rate (µm/year) | Combined Loading–Corrosion Average Corrosion Rate (µm/year) | Percentage of Corrosion Rate Increase (%) |
---|---|---|---|
1 | 1.13 | 1.63 | 44.3% |
2 | 0.52 | 6.80 | 1207.7% |
3 | 0.28 | 1.72 | 514.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Zhang, D.; Huang, Y.; Shi, S.; Pan, H.; Bao, Y. Monitoring Epoxy Coated Steel under Combined Mechanical Loads and Corrosion Using Fiber Bragg Grating Sensors. Sensors 2022, 22, 8034. https://doi.org/10.3390/s22208034
Xu L, Zhang D, Huang Y, Shi S, Pan H, Bao Y. Monitoring Epoxy Coated Steel under Combined Mechanical Loads and Corrosion Using Fiber Bragg Grating Sensors. Sensors. 2022; 22(20):8034. https://doi.org/10.3390/s22208034
Chicago/Turabian StyleXu, Luyang, Dawei Zhang, Ying Huang, Shuomang Shi, Hong Pan, and Yi Bao. 2022. "Monitoring Epoxy Coated Steel under Combined Mechanical Loads and Corrosion Using Fiber Bragg Grating Sensors" Sensors 22, no. 20: 8034. https://doi.org/10.3390/s22208034
APA StyleXu, L., Zhang, D., Huang, Y., Shi, S., Pan, H., & Bao, Y. (2022). Monitoring Epoxy Coated Steel under Combined Mechanical Loads and Corrosion Using Fiber Bragg Grating Sensors. Sensors, 22(20), 8034. https://doi.org/10.3390/s22208034