
Citation: Aravind, K.; Maddikunta,

P.K.R. Dingo Optimization Based

Cluster Based Routing in Internet

of Things. Sensors 2022, 22, 8064.

https://doi.org/10.3390/s22208064

Academic Editor: Konstantinos

Kalpakis

Received: 19 September 2022

Accepted: 17 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Dingo Optimization Based Cluster Based Routing in Internet
of Things
Kalavagunta Aravind and Praveen Kumar Reddy Maddikunta *

School of Information Technology and Engineering, Vellore Institute of Technology and Engineering,
Vellore 632014, India; aravind.k2019@vitstudent.ac.in
* Correspondence: praveenkumarreddy@vit.ac.in

Abstract: The Wireless Sensor Network (WSN) is a collection of distinct, geographically distributed,
Internet-connected sensors, which is capable of processing, analyzing, storing, and exchanging
collected information. However, the Internet of Things (IoT) devices in the network are equipped
with limited resources and minimal computing capability, resulting in energy conservation problems.
Although clustering is an efficient method for energy saving in network nodes, the existing clustering
algorithms are not effective due to the short lifespan of a network, an unbalanced load among the
network nodes, and increased end-to-end delays. Hence, this paper proposes a novel cluster-based
approach for IoT using a Self-Adaptive Dingo Optimizer with Brownian Motion (SDO-BM) technique
to choose the optimal cluster head (CH) considering the various constraints such as energy, distance,
delay, overhead, trust, Quality of Service (QoS), and security (high risk, low risk, and medium risk).
If the chosen optimal CH is defective, then fault tolerance and energy hole mitigation techniques are
used to stabilize the network. Eventually, analysis is done to ensure the progression of the SADO-BM
model. The proposed model provides optimal results compared to existing models.

Keywords: IoT; healthcare; fault tolerance; energy hole; SADO-BM scheme

1. Introduction

The Internet of things (IoT) has become an necessary principle of human life. It is one
of the modern era’s growing technologies that has drawn interest from both academics
and industry [1]. All IoT devices communicate information via the Internet. IoT refers to a
collection of various Internet-connected gadgets that may communicate with one another
without the need for human involvement. Several IoT applications are available, such as
smart homes, smart cities, smart agriculture, and smart healthcare. In the Wireless Sensor
Network (WSN), numerous independent, geographically dispersed devices can wirelessly
detect changes and send the information to the nearby base-station [2]. A sensor node is a
device that can detect, process, and send sensor data from one node to another node. Based
on the application requirements, such as the quantity of sensor nodes, node deployment,
and power consumption, the WSN faces design issues. In networks with limited resources,
energy conservation is a top priority; as a result, optimal routing plays a major role in
providing energy optimization. Routing can be carried out in several ways like choosing
optimal network organization, finding optimal route discovery, and protocol operation in
accordance with the deployment of the network’s nodes [3].

The combination of IoT along with cloud-oriented applications provides better results
compared with traditional cloud applications in terms of efficiency [4]. The cloud-based IoT
offers various medical services like continuous live monitoring, providing notifications, and
accessing health records at minimal time [5,6]. The embedded senors capture the patient’s
health parameters, identify the patient’s health condition, and send the notifications to the
health care providers [7,8]. However, the IoT devices which are employed in smart health
applications have limited processing and battery storage. As the IoT sensors capture the
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data continuously, this leads to faster draining of the device’s battery, which results in poor
network performance [9]. Thus, there is a need to improve the network performance and
increase the life time of the network energy optimization in IoT. Many researchers have
proposed several techniques for optimizing the battery life of IoT devices, and clustering
is considered as one of the efficient techniques in optimizing the energy. Table 1 lists the
abbreviations used in this study.

Table 1. Nomenclature.

Abbreviation Description

ANFIS Adaptive Neuro-Fuzzy Inference System

DoS Denial Of Service

EMGR Energy-Efficient Multicast Geographic Routing Protocol

EER Energy-Efficient Routing

EEG Energy-Efficient Geographic

FGSA Fractional Gravitational Search Algorithm

GPS Global Positioning System

GWO Grey Wolf Optimizer

IoT Internet Of Things

MOFGSA Multi-Objective FGSA

MCCs Multi-Hop Communication Cells

MSE Mean Square Error

PDR Packet Delivery Ratio

SFG Sunflower Based GWO

SNs Sensor Nodes

SelGOR Selective Authentication-Based Geographic Opportunistic Routing

SSI Statistic State Information

SCCs Single-Hop Communication Cells

SA-JSO Self-Adaptive Jellyfish Search Optimizer

SFO Sun Flower Optimization

QoS Quality Of Service

WSN Wireless Sensor Network

Clustering helps in resolving some of the typical problems in the IoT environment such
as increasing the energy efficiency, improving the scalability, minimizing the dependability,
and increasing the network lifetime. The group of sensor nodes in a network are formed
into a cluster, and the optimal node in a cluster is considered as cluster head (CH). The CH
is chosen based on various parameters like residual energy, distance, delay, overhead, QoS,
and trust. All the live nodes in a cluster transfer the information to their respective CH.
The CH is responsible for transferring the aggregated data to the sink node. During this
process, the CH loses its energy. In this regard, the selection of optimal CH has to be done
in an iterative manner. In WSN, the Low-Energy Adaptive Clustering Hierarchy (LEACH)
protocol is a common clustering protocol. However, LEACH suffers unequal distribution
of clusters, owing to the random placements of nodes in the network; therefore, cluster
members (CMs) are unable to send the data to the sink due to the failure of CH node by
the hotspot problem. The Hybrid Energy-Efficient Distributed Clustering (HEED) protocol
suffers from an overhead problem, which leads to data redundancy. Some of the latest
algorithms face several challenges such as:
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1. High end-to-end delay.
2. More consumption of energy.
3. Minimum residual energy.
4. Minimum network life time.
5. Fewer alive nodes.
6. Poor node failure management.

In order to overcome all these challenges, the present work focuses on the follow-
ing contributions:

• Deploying SADO-BM for optimally electing the CH in the IoT network.
• Optimal alive nodes; increasing the residual energy; optimal convergent rate; provid-

ing optimal delay and distance; increasing the network life time.
• Exploiting fault tolerance and the energy hole mitigation process if the optimal CH is

found to be a defective one.

The remainder of this paper is organized as follows. Section 2 presents a summary
of related works. Section 3 describes the general idea on IoT in healthcare appliances.
Sections 4 and 5 present the objectives and development of SADO-BM. Section 6 describes
the fault tolerance and energy hole mitigation. The results and conclusions are given in
Sections 7 and 8.

2. Literature Review
2.1. Related Works

In 2021, Banyal et al. [10] developed a novel technique to segment the network topol-
ogy as per the node’s features. This model was achieved via “intelligent transmission”. The
recommended scheme of the hierarchical learning-based sectionalized routing (HiLSeR)
was employed for routing the packets. For “topology sectionalization and routing decision
making, hierarchical learning, a multi-dimensional data conduct oriented soft clustering
paradigm”, was employed. While carrying out tests, the effectiveness of the projected
model was assessed over other schemes. To demonstrate the improved effectiveness, varied
constraints such as “Energy Unit per Message, Dead node Percentage, Overhead Ratio,
Average Latency, and Success Ratio” were calculated.

In 2019, Shreshth et al. [11] suggested a new scheme called Health-Fog that incor-
porated “ensemble deep learning in Edge computing” and employed it as a practical
appliance of automated disease study. Health-Fog conveyed medicinal care via IoT and
efficiently handled patients’ data that arrived as user requests. Additionally, FogBus was
employed to test the performance of the suggested scheme regarding power utilization,
accuracy, implementation time, latency, and bandwidth and jitter.

In 2020, Bharathi et. al. [12] offered an Energy Efficient Particle Swarm Optimization
(EEPSO) technique geared toward capable CH assortment amid wide-ranging IoT devices.
The IoT device employed to find medicinal data was clustered and a CH was elected using
EEPSOC. The elected CH forwarded the data to cloud servers. Consequently, the CH was
liable to convey data of IoT to the cloud using fog devices. Subsequently, an Artificial
Neural Network (ANN) classifier was deployed to diagnose the medicinal data in the
cloud to recognize the severity of the disease.

In 2020, Naghibi et al. [13] modeled a method to divide the network into definite cells
in a geographical manner and used two mobile sinks to collect the information noticed
by cell nodes. As per the communication amid cells and mobile sinks, the cells were
detached into two modules: “Single-Hop Communication Cells (SCCs) and Multi-Hop
Communication Cells (MCCs)”. When the sinks are stationary, SCCs broadcast information
to the sinks straight away; nevertheless, MCCs adopted the Energy Efficient Geographic
Routing Protocol based on Mobile Sink (EGRPM) scheme to broadcast information to sinks.

In 2018, Hao et al. [14] presented a novel Energy-Efficient Localization (EEL)–oriented
geographic routing model that used locality data and the remaining energy of SNs for
forwarding the data packets to sink nodes. At regular intervals, EEL updated the locality
info of Sensor Nodes (SNs) in an Underwater Wireless Sensor Network (UWSN) and
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efficiently adapted to the vibrant network topological variations. EEL iterated via a set
of forwarding nodes of candidates by considering Normalized Advancement (NADV),
which determined the priority level of transmission. The simulated results showed that
EEL efficiently located SNs while considerably improving the Packet Delivery Ratio (PDR)
and reducing the energy utilization in the routing procedure.

In 2020, Hadikhani et al. [15] developed a distributed scheme which rapidly deter-
mined and updated the boundary of a hole. Per hole, the packets were directed in a flee
path about the hole that improved and extended the network life span. The results of tenta-
tive simulations were evaluated over successful and renowned routing techniques in WSN.
This evaluation has shown that the anticipated scheme reduced dead nodes. In addition,
the network life span was enhanced regarding time and node count.

In 2020, Ghaderi et al. [16] proposed a protocol dependent on the fuzzy technique.
Here, the sensor areas were divided into effective hexagonal grid cells, and after that,
the cells were laid based on geographic location. Then, in every sampling round, CH
sensors in every grid cell were elected depending upon the fuzzy model. After that, the CH
reading was conveyed to sink in a multi-hop path per the fuzzy model. Simulated results
demonstrate that fuzzy offered better effectiveness over other techniques.

In 2019, Vahabi et al. [17] proposed an amalgamation of hierarchical and geographic
techniques with mobile sinks to decrease energy utilization and increase the network life
span. With this technique, the remaining energy was amplified, thus significantly increasing
the network life span. Results of the investigations showed that the suggested scheme
increased the network life span over other schemes.

2.2. Review

Table 2 reviews the extant IoT protocols. Primarily, [10] used the HilSeR scheme to
contain high network energy, utmost alive nodes, lesser latency, and lesser traffic volume;
nevertheless, the PDR was low. The bagging classifier used in [11] offered higher accurate-
ness and negligible implementation time. On the other hand, cost-optimal implementation
was not measured. ANN used in [12] offered improved specificity with improved accuracy;
however, compressive sensing was not studied. The authors of [13] used the EGRPM
to contain a superior life span and lesser delay; however, there was a higher overhead.
Energy-Efficient Localization (EEL) routing used in [14] provided higher PDR and lesser
error; however, there was more energy consumption. In addition, Efficient Load Balanced
Routing (ELBAR) used in [15] presented a better lifespan with less energy utilization, but it
failed to spotlight numerous holes. Fuzzy Geographic Routing Protocol Based On Com-
pressive Data Gathering (FGAF CDG) used in [16] incurred negligible distance amid hops
and low energy utilization; nonetheless, it required evaluation on communication costs.
Lastly, IoGHR used in [17] offered higher life span with high residual energy; however,
several mobile sinks should be deployed in future study.

Table 2. Review of conventional IoT protocol.

Ref. No Proposed Model Pros Cons

1 HiLSeR
• High throughput
• Enhances PDR

• Low PDR
• High end-to-end delay

2 Bagging Classifier
• High accuracy
• Minimal execution time

• Cost-optimal execution
is not considered.

3 ANN
• High specificity
• Enhanced accuracy

• Compressive sensing
should be more
concerned.

4 EGRPM
• Maximizes life span
• Minimizes delay

• No consideration on
overhead.
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Table 2. Cont.

Ref. No Proposed Model Pros Cons

5 EEL routing
• Low error
• High PDR

• More consumption of
energy.

6 ELBAR

• Improved lifespan of the
network

• Average energy
utilization

• Need spotlight on
numerous holes.

7 Fuzzy
• Less distance amid hops
• Low energy utilization

• Require evaluation on
communication costs.

8 IoGHR
• More residual energy
• Higher life span

• Several mobile sinks
should be deployed.

3. Idea on IoT in Healthcare Appliance towards Cluster-Based Routing

This work focuses on the clustering model in IoT for medicinal appliances. Usually,
there are two types of Electronic Health Record (EHR) users: “(a) patients or EHR owners,
and (b) EHR users who are not owners, but can be a health insurance company, physicians,
researcher, family members or friends of patients, pharmacists or doctors”. Patients (EHR
owners) are endorsed to upload the encrypted EHR to IoT by allowing the user’s access to
specified EHR parts. The data are then stored in IoT servers. The EHR owners depict the
accessing levels to each user in the ACL. The owner may also proffer total access to EHR,
primarily to the patients’ closer associates or relations. Figure 1 shows the representation of
the proposed model.

Step 1: First, the EHR owners are registered in the IoT server.
Step 2: After registering, they upload the records into the server.
Step 3: If a customer (for example, a friend of the patient, a doctor, or pharmacist)

requires accessing the EHR of patients, the EHR administrator confirms their access level
to transfer the record.

This work deploys SADO-BM for selecting CH by considering “energy, distance, delay,
overhead, trust, QoS, and security (high risk, low risk, and medium risk)”. If the selected
CH has any defects, fault tolerance and energy hole mitigation are then performed.

Those are the steps followed during data transmission; however, which data to be
transferred through which route is also a major question as it needs quick response as much
as possible due to emergency cases. For proper routing, a strategy is needed across the
network. Therefore, most of the routing algorithms follow routing with different constraints.
In this way, the proposed model ensures secure data routing that includes the constraints
like Energy, Delay, Distance, Trust Model, QoS, and Security.

By considering this as the optimization issue, the problem is solved by a new SADO-
BM algorithm. Moreover, fault tolerance and energy hole mitigation are carried out in case
of defects in CH.
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Figure 1. Representation of the proposed model.

4. Objectives and Description

The intention of the SADO-BM based scheme for electing the optimal CH is presented
in Equation (1).

Obj = min
[

(we1 ∗ En) + (we2 ∗ Dis) + (we3 ∗ Dl) + (we4 ∗OH)
+(we5 ∗ (1− Tr)) + (we6(1−QOS) + we7(1− se))

]
(1)

In Equation (13), we1—we7 are weight factors calculated using a tent map.

4.1. Energy

It is very important to decide the life span of the network. The battery cannot be
re-energized because there is no power source, and transferring data to BS requires more
energy. In Equation (2), En(Pl) implies the energy of lth hop, and di indicates the hop count
for multi-hop routing. “The energy consumed during communication En(Pl) is in the form
of energy required for transmitting packets EnTX , receiving the packet EnRX , at idle state
En1 and energy cost EnST”.

Energy =
1
di

di

∑
l=1

En(ρl) (2)

En = EnTX + EnRX + En1 + EnST (3)

The energy used for transmitting packets (EnTX), electronic energy (Enete), energy for
data compilation (Enagg), and threshold energy (en0) are represented in Equations (4)–(7),
respectively; here, “ETX(M : en) implies the energy essential to communicate m bytes over
enth distance”.

EnTX(M : en) =
{

Enete ∗M + En f r ∗M ∗ en2, if en < en0
Enete ∗M + Enpr ∗M ∗ en2, if en ≥ en0

(4)
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Here,
Enete = EnTX + Enagg (5)

Enagg = En f ren2 (6)

en0 =

√
En f r

Enpr
(7)

In Equation (7), Enpr implies “power amplifier energy and En f r implies energy vital to
deploy free-space system”.

4.2. Delay

Delay is a noteworthy QoS factor to forwarding data. “It is known as the hope
ratio necessary for the total number of routing nodes in the network” and is presented in
Equation (8), in which d implies the distance traveled.

Dl =
d

speed
(8)

4.3. Distance

The distance (dis) among nodes is an imperative factor that portrays the network’s
life span. It is represented in Equation (9), in which v implies the speed of SN, and t
implies time.

Dis = v× t (9)

4.4. Trust Model

Every network hop comprises a superior trust degree to assess the trust amid the
relevant nodes and hops near to it. There are are kinds of trust: “(i) Direct trust; (ii) Indirect
trust” as presented in Equation (10).

Tru =
{

TruD + TruI
}

(10)

(i) Direct Trust (TruD): “The direct trust is known as local trust and it presents the
trust value as an agent to determine the familiarities with the target agent”. It is modeled
in Equation (11), wherein, Bv1,v2(t) is the appropriately broadcasted packet count via SN v2
to v1 at t. Moreover, Cv1,v2(t) is the packet count broadcasted by SN v2 to v1 at t.

TruD(t) =
Bv1,v2(t)
Cv1,v2(t)

(11)

(ii) Indirect Trust (Trul): “It is determined from the knowledge obtained through other
hops. The knowledge of other hops helps in decide each transaction”. It is modeled in
Equation (12), in which q is the adjacent node count.

TruI(t) =
1
q

q

∑
n=1

TruD(t) (12)

4.5. QoS

The QoS is the method for controlling the network sources to diminish packet loss,
latency, and network jitters. The QoS is precisely modeled in Equation (13), in which, R
pertains to node safety.

QoS = mean(R) (13)

4.6. Security

This feature includes three modes that are described as follows:



Sensors 2022, 22, 8064 8 of 18

Security mode: The security mode operation selects the CH which meets the require-
ment of security. In Equation (14), sr and ss refer to the security requirements related to
Cluster Head Selection (CHS) and security rank. If ss ≤ sr, it can be said to be the required
CH. Additionally, choosing the cluster head among diverse nodes requires a cautious
approach that can be termed as a secure mode.

Risky mode: In this mode, an extant CH is chosen to obtain optimal CH in order to cap-
ture all risks. Thus, this mode is termed as the “insistent mode during the CHS procedure”.

γ-risky mode: The CH with high risks is preferred in γ-risky mode. Moreover, γ-risk
is termed as Urisk and it includes two values, namely, γ = 0 and γ = 1. In addition, “if
the chosen CH achieves the state ss > sr the risk should be less than 50%. If the condition
is 0 < ζs − gr ≤ 1 , the selection process would be implemented, and if the state is
1 < ζs − gr ≤ 2, there would be a delay in the selection process. However, the CHS process
would not be completed, and the corresponding function should be continued for the state
2 < ζs − gr ≤ 5”.

se = urisk =


0 if ζs − ζr ≤ 0

1− e
(sx−ζr)

2 if 0 < ζs − ζr ≤ 1

1− e
3(ζs−ζr)

2 if 1 < ζs − ζr ≤ 2
1 if 2 < ζs − ζr ≤ 5

(14)

4.7. Overhead

In IoT, the broadcast of packets lead to overhead and as a result, it is necessary for
communication. Message monitoring and header length should be lessened, since they
cause connectivity cost. The growing number of routing packets swapping all through the
simulation is called overhead and it is implied as OH .

5. Developed SADO-BM for Optimal CHS

Solution encoding: As mentioned earlier, CHs are optimally chosen via the SADO-BM
model. The representation for solutions is shown in Figure 2, which reveals the count
of CHs.

Figure 2. Solution encoding.

Proposed SADO-BM Model

DOX [18] is a well-known optimization model with enhanced convergence. Nev-
ertheless, to advance the searching excellence, some improvisation is essential. Self-
improvisation is superior for optimization issues. The numerical portrayal of SADO-BM is
described here.
Step 1: Initialize the N populace pop of searching agents. Moreover, initialize the utmost
iteration maxitr. The present iteration itr is fixed as 0.
Step 2: The initial searching agents are DiN .
Step 3: The value of b,A,B are initialized. The encircling act of DOX is presented in
Equation (15), in which Dd refers to the distance between the dingo and prey; Pp is the
Positioning of a prey vector; P denotes the Positioning of a dingo vector; and A is the
coefficient vector. As per SADO-BM, if random integer, r > P , the update occurs as in
Equation (16); otherwise, the update occurs as in Equation (17), where BM refers to Brow-
nian motion. Conventionally, b is modeled as shown in Equation (18); however, as per
SADO-BM, b is modeled as shown in Equation (19). Moreover, as per SADO-BM, a1 and a2
in Equations (20) and (21) are computed using the logistic map.

Dd =
∣∣APp(x)− P(i)

∣∣ (15)
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P(i + 1) = Pp(i)− B · Dd (16)

P(i + 1) = Pp(i)− B · Dd + BM (17)

b = 3−
[

itr · ∗
(

3
maxitr

)]
(18)

b = 3 cos
(

π

3
∗ itr

maxitr

)
(19)

A = 2 · a1 (20)

B = 2 · b · a2 − b (21)

Step 4: While itr < maxitr do
Step 5: The fitness is calculated using Equation (1).
Step 6: The best searching agent is fixed as dα. This is presented in Equation (22).

Dα = |A1 · Pα −−− P| (22)

P1 = |Pα −−− B · Dβ| (23)

Step 7: The searching agent with 2nd best searching ability is noted by Dβ, which is pre-
sented in Equation (24).

Dβ = |A2 · Pβ −−− P| (24)

P2 = |Pβ −−− B · Dβ| (25)

Step 8: The searching results afterwards are fixed as D0, which is presented in Equation (26).

D0 = |A3 · P0 −−− P| (26)

P3 = |P0 −−− B · D0| (27)

Step 9: Iteration 1.
Step 10: Repeat.
Step 11: For i = 1:DN do
Step 12: Renovate the position of newest searching agent.
Step 13: End for
Step 14: The fitness is calculated by means of Equation (1).
Step 15: Compute the intensity of every dingo value of Iα, Iβ, Iδ.
Step 16: Compute b, A, B.
Step 17: itr = itr +1.
Step 18: Ensure if the stopping principle has arrived.
Step 19: Return Dα.

6. Fault Tolerance and Energy Hole Mitigation
6.1. Fault Tolerance

The ability of a network to continue operating even when certain sensor nodes fail
is known as fault tolerance. This method promises the usual operation of the network
regardless of CH malfunction. Therefore, if a CH is defective, its cluster members (cm)
become adhered to a different CH. It is divided into two groups: fault detection and
fault recovery.

Fault detection: In fact cm, they recognize CH malfunction if they do not receive any
ACK note from the CH for the transmitted data packet.

Fault recovery: During the recovery process, each cluster member cmi elects a novel
CH with higher cost values. The proposed computation for cost is shown in Equation (28),
where yi and yk denote CH and count of CH, respectively; nccr refers to cm count in present
round; andnbpr implies count of backward CHs in preceding rounds. The term dist is
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computed in Equation (31), wherein IEdist and IAdist imply inter cluster (distance among
BS and CH) and intra cluster (distance among CH and SN), respectively. In addition, ec(yi,yk)
and ec(yk,sink) are computed as shown in Equations (29) and (30), in which SNi denotes a
sensor node; ne(SNi,yi) and ec(yi,sink) imply the energy essential for transmission from the
node SNi to yi and from yi to sink reSNi, respectively; and reyi denotes the remaining energy
SNi of yi.

When a sensor node is within the communication range of numerous CHs, it will
therefore receive a number of messages. In this case, the sensor node chooses a CH from
among its many options. We create a cost function to determine the cost value cost(yi,yk) of
the CH yi for the node yk in order to optimize this choice. It is worth noting that a node’s
selection of its specific CH from a range of available alternatives has a significant impact on
the performance of WSNs. Thus, the cost function assists a node in choosing its CH among
several options while considering a number of characteristics, ensuring energy efficiency
and balancing.

Cos(yi, yk) =
1

eq∗yi,yk)∗ eq∗yk,sin k)∗ncc(yk) ∗ nbpv(yk) ∗ dist
(28)

ec(SNi, yi) =
ne(SNi,yi)

reSNi
(29)

ec(SNi, yi) =
ne(SNi,yi)

reSNi
(30)

dist = IEdist + IAdist (31)

6.2. Energy Hole Mitigation

An energy hole is a typical problem in sensor networks that, due to a reduced lifetime,
tends to interrupt communication with the end-user. Based upon the distance of transmit-
ting node to the sink, the sleep scheduling for every node is fixed based on Enreq that is
computed by Equation (32), in which D denotes the packet length of data and d refers to
the Euclidean distance among nodes; Enamp implies power amplifier energy; and Entx and
Enda imply energy needed for transmission and aggregation of D, respectively.

Enareq = ((Entx + Enda) ∗ D) + (Enamp × D ∗ da∗) (32)

7. Results and Discussion
7.1. Simulation Procedure

The proposed model for secured CHS in IoT using SADO-BM was done in MATLAB
2020a. Here, the performance of the SADO-BM scheme was proven over Cat Swarm
Optimization (CSO) [19], FF Firefly (FF) [2], Shark Smell Optimization (SSO) [20], Poor
Rich Optimization (PRO) [21], Hunger Games Optimizer (HGS) [22], Bald Eagle Search
(BES) [23], Black Widow Optimization (BWO) [24], Fuzzy + Harris Hawks Optimization
(HHO) [25], Adaptive Neuro-Fuzzy Inference System (ANFIS) + Self-Adaptive Jellyfish
Search Optimizer (SA-JSO) [26], and Dingo Optimizer (DOX) [18] on wide-ranging metrics
like delay, throughput, and so on. In addition, Table 3 presents the simulation parameters;
this work considered 100, 250, 750, and 1000 nodes with 500, 1000, 1500, and 2000 rounds.

Table 3. Simulation parameters.

Channel Type Wireless

Antenna Omni Antenna

Dimension X 100 m

Dimension Y 100 m

Total Simulation time 10 s

Number of nodes 100, 250, 750, 1000
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7.2. Dataset Description

The dataset for analysis was downloaded from the Hepatitis Data Set [27]. BILIRUBIN is
a continuous attribute (which means that the number of its values in the ASDOHEPA.DAT file
is negative); values are quoted because, when speaking about the continuous attribute, there
is no such thing as all possible values. However, they represent so-called boundary values;
according to these, the attribute can be discretized. At the same time, because of the continuous
attribute, one can perform some other test since the continuous information is preserved.

7.3. Statistical Analysis

Tables 4 and 5 reveal the statistical study for alive nodes and residual energy using the
employed SADO-BM model over conventional models (CSO, FF, SSO, PRS, HGS, BES, BWO,
Fuzzy + HHO, ANFIS + SA-JSO, and DOX). “The met heuristic schemes are stochastic,
and to substantiate its fair evaluation, each model is analyzed quite a lot of times to accom-
plish Equation (1)”. In Table 4, the proposed SADO-BM method has attained higher alive
node counts (900.26) for the mean case for 1000 nodes. Among the schemes, conservative
SSO achieved the worst values for every scenario compared to CSO, FF, PRS, HGS, BES,
BWO, Fuzzy + HHO, ANFIS + SA-JSO, and DOX. The proposed work achieves enhanced
fault tolerance and energy hole mitigation. This is owing to the deployment of hybrid
optimization named SADO-BM, which optimally chooses the CH in the IoT network.

Table 4. Statistical Analysis for SADO-BM Over Other Models Regarding Alive Nodes.

Node = 100

Measures CSO FFO SSO PRS HGS BES BWO Fuzzy + HHO ANFIS + JSO DOX SADO-BM

Min 6.0122 10.668 5 10 5.5793 10 5.076 21.409 35 40 46

Max 100 100 100 100 100 100 100 100 100 100 100

Mean 72.208 77.797 60.88 73.045 66.902 73.57 64.445 74.08 80.829 81.88 83.259

Median 83.459 86.977 69 88 79.722 86 75.462 79.689 88 89 91

STD 29.648 24.057 38.608 29.857 34.181 29.928 36.278 26.546 20.834 19.586 18.324

Node = 250

Min 61.896 85.527 55 63 63 90 65 57.904 92.638 67.541 155

Max 250 250 250 250 250 250 250 250 250 250 250

Mean 206.28 215.85 186.31 177.09 177.24 187.81 187.93 203.12 219.95 214.17 225.83

Median 231.93 241.37 205 191 201 165 200 230.62 244.78 238.28 250

STD 48.437 41.128 62.495 72.97 73.731 52.679 62.114 51.181 38.22 42.85 33.354

Min 61.896 85.527 55 63 63 90 65 57.904 92.638 67.541 155

Node = 750

Min 284.54 301.61 275 345 400 275 250 405 355 450 469

Max 750 750 750 750 750 750 750 750 750 750 750

Mean 590.81 618.79 535.25 550.83 584.25 487.08 545.82 586.84 560.73 616.93 647.74

Median 684.4 709.91 465 630 630 320 750 490 500 630 750

STD 166.22 142.36 205.29 175.15 159.54 215.3 224.87 140.78 170.83 134.81 117.63

Node = 1000

Min 75.92 144 70 182 290 240 420 510 600 650 700

Max 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Mean 824.38 862.05 753.79 655.82 756.33 790.75 788.36 810.46 873.16 812.82 900.26

Median 1000 1000 1000 1000 610 800 885 900 1000 740 1000

STD 242.38 184.91 336.87 355.54 231.78 218.93 233.25 199.29 145.2 145.7 121.63
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Table 5. Statistical Analysis for SADO-BM over Other Models Regarding Residual Energy.

Node = 100

Measures CSO FFO SSO PRS HGS BES BWO Fuzzy + HHO ANFIS + JSO DOX SADO-BM

Min 0.008224 0.012222 0.006799 0.010732 0.007795 0.010444 0.010196 0.011195 0.010523 0.008526 0.034196

Max 0.54958 0.54958 0.54958 0.54958 0.54916 0.54958 0.54958 0.54957 0.54958 0.54958 0.54958

Mean 0.2502 0.25688 0.23647 0.2391 0.24547 0.24253 0.24846 0.24996 0.24744 0.24658 0.26377

Median 0.24285 0.25384 0.22276 0.21443 0.23522 0.22274 0.23755 0.24535 0.23405 0.23347 0.26155

STD 0.1708 0.16922 0.17355 0.17662 0.17594 0.17811 0.17703 0.17445 0.17753 0.17819 0.16741

Node = 250

Min 0.000106 0.003215 2.31 × 10−5 0.012439 1.71 × 10−5 1.82 × 10−6 6.23 × 10−6 2.22 × 10−5 0.007754 0.002181 0.030434

Max 0.55895 0.56138 0.53727 0.54957 0.53715 0.54958 0.54958 0.49525 0.54958 0.54727 0.56188

Mean 0.27383 0.28288 0.25741 0.19202 0.21328 0.23381 0.23826 0.21268 0.26926 0.24415 0.29136

Median 0.28424 0.29567 0.26709 0.13372 0.17706 0.21101 0.21647 0.18311 0.2794 0.22338 0.30624

STD 0.18503 0.18469 0.18378 0.16914 0.1841 0.18385 0.18589 0.16916 0.18443 0.18431 0.18423

Node = 750

Min 7.27 × 10−5 5.45 × 10−5 0.000106 0.010441 0.00044 0.012122 8.75 × 10−6 0.00267 1.84 × 10−5 4.08 × 10−5 0.064935

Max 0.5419 0.54774 0.48698 0.54957 0.51958 0.54958 0.54959 0.54957 0.49929 0.49447 0.54972

Mean 0.2079 0.24185 0.15963 0.19055 0.20786 0.22942 0.18809 0.22166 0.16268 0.18766 0.28055

Median 0.173 0.223 0.06766 0.1322 0.19929 0.22268 0.13227 0.21938 0.07997 0.17418 0.27058

STD 0.16152 0.15846 0.14612 0.17098 0.15697 0.16253 0.17634 0.15992 0.15356 0.15107 0.14798

Node = 1000

Min 0.22118 0.22482 0.21714 0.18466 0.23974 0.21625 0.23965 0.23965 0.23996 0.24123 0.27253

Max 0.54914 0.54923 0.54913 0.54957 0.54958 0.52618 0.54958 0.54958 0.54958 0.54958 0.54958

Mean 0.34496 0.35491 0.32444 0.3152 0.34864 0.31685 0.34025 0.33218 0.35267 0.35885 0.36471

Median 0.3205 0.32933 0.29959 0.30941 0.32386 0.29246 0.31586 0.30774 0.32863 0.33358 0.33981

STD 0.086216 0.083868 0.089364 0.10569 0.086094 0.088345 0.088345 0.090045 0.084979 0.083003 0.081136

7.4. Convergence Analysis

The convergence of the SADO-BM method over CSO, FF, SSO, PRS, HGS, BES, BWO,
and DOX) for diverse iterations is depicted in Figure 3. Essentially, the SADO-BM has
accomplished the lowest cost values with the increase in the iteration for all nodes. As
shown in Figure 3b, from the 8th to the 10th iteration, the values for cost have reduced to 4
for 250 nodes. Likewise, in Figure 3c, at the 10th iteration, the cost has condensed to 2 for
750 nodes. The other evaluated schemes like CSO, FF, SSO, PRS, HGS, BES, BWO, and DOX
revealed relatively high cost values. Therefore, with the SADO-BM–based optimization,
better results are attained for clustering.

(a) (b)

(c) (d)

Figure 3. Convergence of SADO-BM over other models for node counts (a) 100, (b) 250 (c) 750,
and (d) 1000.
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7.5. Analysis of Delay and Distance

The analysis on distance and delay using the SADO-BM method over CSO, FF,
SSO, PRS, HGS, BES, BWO, Fuzzy + HHO, ANFIS + SA-JSO, and DOX is interpreted
in Figures 4 and 5. The assessment was done for varied nodes (100, 250, 750, and 1000). In
fact, the distance between the CH and BS and the delay to transfer packets have to be the
lowest in order to achieve superior performance. If the distances increase, then automati-
cally, the delay also increases. Here, the delay is done in seconds. In Figure 4, the distance
values fluctuate for varied rounds from 0 to 2000. At first, for 100th, the distance using
SADO-BM at the 1000th round is high (10.5 × 104). For other rounds, the values of distance
are low using SADO-BM. Similarly, the delay values fluctuate for varied rounds from 0 to
2000. Nevertheless, the SADO-BM method is superior over the CSO, FF, SSO, PRS, HGS,
BES, BWO, Fuzzy + HHO, ANFIS + SA-JSO, and DOX models. These enhancements are
due to the enhanced fault tolerance and energy hole mitigation concepts.

(a) (b)

(c) (d)

Figure 4. Distance analysis of SADO-BM over other models for node counts (a) 100, (b) 250 (c) 750,
and (d) 1000.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Delay analysis of SADO-BM over other models for node counts (a) 100, (b) 250 (c) 750, and
(d) 1000.

7.6. Analysis on Alive Nodes

The study of the SADO-BM approach relating to the alive node is illustrated in Figure 6.
The development of SADO-BM was established over CSO, FF, SSO, PRS, HGS, BES, BWO,
Fuzzy + HHO, ANFIS + SA-JSO, and DOX. Here, assessment is done for 100, 250, 750, and
1000 nodes. The count of alive nodes must be high for higher performance. In Figure 6,
the counts of alive nodes are lowered with the increase in rounds. In Figure 6b, at the
0–1000th round, the alive nodes for SADO-BM are 250, while, from the 1000th to the 2000th
round, the alive nodes start lessening for SADO-BM and reach 160. Similarly, in Figure 6d,
at the 0–1000th round, the alive nodes for SADO-BM are 1000, whereas at the 1000–2000th
round, the alive nodes start lessening for SADO-BM and reach 700. However, the SADO-
BM shows higher alive nodes than CSO, FF, SSO, PRS, HGS, BES, BWO, Fuzzy + HHO,
ANFIS + SA-JSO, and DOX.

(a) (b)

(c) (d)

Figure 6. Alive node analysis of SADO-BM over other models for node counts (a) 100, (b) 250 (c) 750,
and (d) 1000.
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7.7. Analysis on Energy and Overhead

The energy and overhead using the SADO-BM technique over CSO, FF, SSO, PRS,
HGS, BES, BWO, Fuzzy + HHO, ANFIS + SA-JSO, and DOX are represented here. The
higher the leftover energy, the better the system performance. This shows that the selection
of CH is done with minimum energy. In Figure 7a, the remaining energy reduces with
an increase in the rounds. The remaining energy for SADO-BM at the 0th round is 0.55,
while for the 2000th round, the remaining energy is 0.275 for the 1000th node. Similarly,
in Figure 8, the overhead is lower at the 2000th round for all counts of nodes (100, 250, 750,
and 1000). The other compared models (CSO, FF, SSO, PRS, HGS, BES, BWO, Fuzzy + HHO,
ANFIS + SA-JSO, and DOX) present higher overhead, while the SADO-BM model shows
less overhead.These enhancements are due to the enhanced fault tolerance and energy hole
mitigation in the adopted SADO-BM theory.

(a) (b)

(c) (d)

Figure 7. Energy analysis of SADO-BM over other models for node counts (a) 100, (b) 250 (c) 750, and
(d) 1000.

(a) (b)

Figure 8. Cont.
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(c) (d)

Figure 8. Overhead analysis of SADO-BM over other models for node counts (a) 100, (b) 250 (c) 750,
and (d) 1000.

7.8. Analysis on Throughput and Trust

The analyses on throughput and trust using the SADO-BM method over CSO, FF,
SSO, PRS, HGS, BES, BWO, Fuzzy + HHO, ANFIS + SA-JSO, and DOX are established
in Figures 9 and 10, respectively. Here, the assessment is made for 100, 250, 750, and
1000 nodes. “Throughput is a measure of how many units of information a system can
process in a given amount of time. Throughput is usually measured in bits per second (bit/s
or bps), and sometimes in data packets per second (p/s or pps) or data packets per time slot”.
The throughput must be higher as it plays a lead role in data transferring. In Figure 9a,
the throughput using SADO-BM at primary stages is high, while, as rounds increase,
the throughput values are dropped slightly. Likewise, in the case of trust, the results vary
for all rounds. However, the SADO-BM has attained higher trust over CSO, FF, SSO, PRS,
HGS, BES, BWO, Fuzzy + HHO, ANFIS + SA-JSO, and DOX. This perceptibly promised
better performance of SADO-BM with enhanced fault tolerance and energy hole mitigation.

(a) (b)

(c) (d)

Figure 9. Throughput analysis of SADO-BM over other models for node counts (a) 100, (b) 250 (c) 750,
and (d) 1000.
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(a) (b)

(c) (d)

Figure 10. Trust analysis of SADO-BM over other models for node counts (a) 100, (b) 250 (c) 750, and
(d) 1000.

8. Conclusions

This work introduced a cluster-based approach in the Internet of Things (IoT). This
work deployed Self-Adaptive Dingo Optimizer with Brownian Motion (SADO-BM) for
clustering by considering “energy, distance, delay, overhead, trust, Quality of service
(QoS), and security (high risk, low risk, and medium risk)”. Then, if the optimal Cluster
Head (CH) contained any defects, fault tolerance as well as energy hole mitigation were
performed. From the outcomes, the distance values fluctuated for varied rounds from
0 to 2000. Firstly, for the 100th node, the distance using SADO-BM at the 1000th round
was high (10.5 × 104). For other rounds, the values of distance were low using SADO-BM.
Similarly, the delay values fluctuated for varied rounds from 0 to 2000. Nevertheless,
the SADO-BM method was superior over Cat Swarm Optimization (CSO), Firefly (FF),
Shark Smell Optimization (SSO), Poor Rich Optimization (PRO), Hunger Games Optimizer
(HGS), Bald Eagle Search (BES), Black Widow Optimization (BWO), Fuzzy + Harris Hawks
Optimization (HHO), Adaptive Neuro-Fuzzy Inference System (ANFIS) + Self-Adaptive
Jellyfish Search Optimizer (SA-JSO), and Dingo Optimizer (DOX). The cluster-based routing
in IoT has certain benefits over wired systems, including ease of use, lower delivery costs,
reduced risk of failures, and increased mobility. In the future, studies of this paper can be
extended to work in Social IoT and Multiple IoT scenarios.
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