A Step toward Next-Generation Advancements in the Internet of Things Technologies
Abstract
:1. Introduction
1.1. Objectives and Contribution
- ○
- In this article, we discuss an emerging paradigm named the IoT, including conceptual view, growth, distinctive features, core concepts, and basic functions.
- ○
- We propose a systematic catalog that covers the most recent advances in the traditional IoT. We systematically cover state-of-the-art and recent studies in each aspect. We analyze and compare each study along with weaknesses and strengths and the application area.
- ○
- We discuss the network science discipline and the state-of-the-art studies that remained unexplored in the previous recent surveys.
- ○
- We create a relationship between the IoT and big data management techniques at various levels such as collection, processing, analysis, and so forth. We discuss the importance of big data and its analysis concerning the IoT, complexity, key features, and the relationship with the IoT.
- ○
- Our comparison and analysis differ from previous studies since most of the studies have partially or not covered these disciplines and relevant connecting technologies in detail. We performed a comprehensive analysis of machine learning, artificial intelligence, and blockchain as a solid solution to overcome the issues in the IoT.
- ○
- This article brings to light the current literature and illustrated their contribution to different aspects of the IoT.
- ○
- We highlight various research challenges that need to be identified, discussed, and addressed in the future.
1.2. Paper Organization
2. Basics and the Background
3. Conceptual View of the IoT
4. Next-Generation Advancements in the Internet of Things (IoT) Technologies
4.1. Big Data
Recent Advances in Big Data
4.2. Data Science
4.2.1. Recent Advances in Data Science
4.2.2. The Connecting Technologies
4.3. The Network Science
The Recent Advances in Network Science
5. Future Challenges in the Emerging Technologies
5.1. Integration
5.2. Data Provenance
5.3. IoT for Data Management, Security, Privacy, and Compliance
5.4. Unified Messaging and Scalability
5.5. Programming Networks for the Support of IoT Applications
5.6. Big Data Collection and Storage
5.7. Technical and Heterogeneity
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Farhan, L.; Hameed, R.S.; Ahmed, A.S.; Fadel, A.H.; Gheth, W.; Alzubaidi, L.; Fadhel, M.A.; Al-Amidie, M. Energy Efficiency for Green Internet of Things (IoT) Networks: A Survey. Network 2021, 1, 279–314. [Google Scholar] [CrossRef]
- Almusaylim, Z.A.; Zaman, N. A review on smart home present state and challenges: Linked to context-awareness internet of things (IoT). Wirel. Networks 2018, 25, 3193–3204. [Google Scholar] [CrossRef]
- Xu, Y.; Xiong, C. Research on Big Data Technology and Application in Internet Era. In Proceedings of the 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Fuzhou, China, 12–14 June 2020; pp. 122–124. [Google Scholar]
- Harika, J.; Baleeshwar, P.; Navya, K.; Shanmugasundaram, H. A Review on Artificial Intelligence with Deep Human Reasoning. In Proceedings of the 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 9–11 May 2022; pp. 81–84. [Google Scholar]
- Cole, J.L. Network Science from an IT and US Army Perspective. Computer 2008, 41, 123–125. [Google Scholar] [CrossRef]
- Amin, F.; Lee, W.-K.; Mateen, A.; Hwang, S.O. Integration of Network science approaches and Data Science tools in the Internet of Things based Technologies. In Proceedings of the 21 IEEE Region 10 Symposium (TENSYMP), Jeju, Korea, 23–25 August 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, H.; Yu, S.; Zeadally, S.; Rawat, D.B.; Gao, Y. Introduction to the Special Section on Network Science for Internet of Things (IoT). IEEE Trans. Netw. Sci. Eng. 2020, 7, 237–238. [Google Scholar] [CrossRef]
- Piccialli, F.; Cuomo, S.; Bessis, N.; Yoshimura, Y. Data Science for the Internet of Things. IEEE Internet Things J. 2020, 7, 4342–4346. [Google Scholar] [CrossRef]
- Devi, M.; Dhaya, R.; Kanthavel, R.; Algarni, F.; Dixikha, P. Data Science for Internet of Things (IoT). In Second International Conference on Computer Networks and Communication Technologies; Springer: Cham, Switzerland, 2020; pp. 60–70. [Google Scholar]
- Silva, R.D.A.; Braga, R.T.V. Enhancing Future Classroom Environments Based on Systems of Systems and the Internet of Anything. IEEE Internet Things J. 2020, 7, 10475–10482. [Google Scholar] [CrossRef]
- Qiang, Z.; Dai, F.; Lin, H.; Dong, Y. Research on the Course System of Data Science and Engineering Major. In Proceedings of the 2019 IEEE International Conference on Computer Science and Educational Informatization (CSEI), Kunming, China, 16–19 August 2019; pp. 90–93. [Google Scholar]
- Ranjan, R.; Rana, O.; Nepal, S.; Yousif, M.; James, P.; Wen, Z.; Barr, S.; Watson, P.; Jayaraman, P.P.; Georgakopoulos, D.; et al. The Next Grand Challenges: Integrating the Internet of Things and Data Science. IEEE Cloud Comput. 2018, 5, 12–26. [Google Scholar] [CrossRef]
- Foidl, H.; Felderer, M. Data Science Challenges to Improve Quality Assurance of Internet of Things Applications. In Leveraging Applications of Formal Methods, Verification and Validation: Discussion, Dissemination, Applications; Springer: Cham, Switzerland, 2016; pp. 707–726. [Google Scholar] [CrossRef]
- Arzo, S.T.; Naiga, C.; Granelli, F.; Bassoli, R.; Devetsikiotis, M.; Fitzek, F.H.P. A Theoretical Discussion and Survey of Network Automation for IoT: Challenges and Opportunity. IEEE Internet Things J. 2021, 8, 12021–12045. [Google Scholar] [CrossRef]
- Wu, X.; Soltani, M.D.; Zhou, L.; Safari, M.; Haas, H. Hybrid LiFi and WiFi Networks: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 1398–1420. [Google Scholar] [CrossRef]
- Edward, P.; El-Aasser, M.; Ashour, M.; Elshabrawy, T. Interleaved Chirp Spreading LoRa as a Parallel Network to Enhance LoRa Capacity. IEEE Internet Things J. 2020, 8, 3864–3874. [Google Scholar] [CrossRef]
- Sarker, I.H. Smart City Data Science: Towards data-driven smart cities with open research issues. Internet Things 2022, 19, 100528. [Google Scholar] [CrossRef]
- Maciuca, M.S.; Danubianu, M.; Simionescu, C. Tendencies in the use of Big Data analytics at a global level. In Proceedings of the 2022 International Conference on Development and Application Systems (DAS), Suceava, Romania, 26–28 May 2022; pp. 155–160. [Google Scholar]
- Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE Access 2017, 5, 5247–5261. [Google Scholar]
- Ebert, C.; Heidrich, J.; Martinez-Fernandez, S.; Trendowicz, A. Data Science: Technologies for Better Software. IEEE Softw. 2019, 36, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Dalal, K.R. Review on Application of Machine learning Algorithm for Data Science. In Proceedings of the 2018 3rd International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 15–16 November 2018; pp. 270–273. [Google Scholar]
- Luu, T.M.; Vu, T.; Nguyen, T.; Yoo, C.D. Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning. Sensors 2022, 22, 6504. [Google Scholar] [CrossRef]
- Borrageiro, G.; Firoozye, N.; Barucca, P. The Recurrent Reinforcement Learning Crypto Agent. IEEE Access 2022, 10, 38590–38599. [Google Scholar] [CrossRef]
- Feng, Y.; Yuan, Y.; Lu, X. Person Reidentification via Unsupervised Cross-View Metric Learning. IEEE Trans. Cybern. 2019, 51, 1849–1859. [Google Scholar] [CrossRef]
- Wu, Y.; Dai, H.-N.; Tang, H. Graph Neural Networks for Anomaly Detection in Industrial Internet of Things. IEEE Internet Things J. 2021, 9, 9214–9231. [Google Scholar] [CrossRef]
- Li, Z.; Gao, X.; Li, Q.; Guo, J.; Yang, B. Edge Caching Enhancement for Industrial Internet: A Recommendation-Aided Approach. IEEE Internet Things J. 2022, 9, 16941–16952. [Google Scholar] [CrossRef]
- Xie, W.; Yu, J.; Deng, G. A Network Access Control Scheme for IoT Terminals Based on Active Scanning. In Proceedings of the 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS), Huaihua, China, 15–17 July 2022; pp. 47–51. [Google Scholar]
- IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-2016); IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications—Redline. IEEE: Piscataway, NJ, USA, 2021; pp. 1–7524.
- IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002); IEEE Standard for Information technology—Local and metropolitan area networks—Specific requirements—Part 15.1a: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Wireless Personal Area Networks (WPAN). IEEE: Piscataway, NJ, USA, 2005; pp. 1–700.
- Palattella, M.R.; Accettura, N.; Vilajosana, X.; Watteyne, T.; Grieco, L.A.; Boggia, G.; Dohler, M. Standardized protocol stack for the internet of (important) things. IEEE Commun. Surv. Tutor. 2013, 15, 1389–1406. [Google Scholar] [CrossRef] [Green Version]
- Almohammedi, A.A.; Shepelev, V. Saturation Throughput Analysis of Steganography in the IEEE 802.11p Protocol in the Presence of Non-Ideal Transmission Channel. IEEE Access 2021, 9, 14459–14469. [Google Scholar] [CrossRef]
- Benkirane, S.; Benaziz, M. Performance Evaluation of IEEE 802.11p and IEEE 802.16e for Vehicular Ad Hoc Networks Using Simulation Tools. In Proceedings of the 2018 IEEE 5th International Congress on Information Science and Technology (CiSt), Marrakech, Morocco, 21–27 October 2018; pp. 573–577. [Google Scholar]
- Ahmed, M.R.A.; Shaikhedris, S.S.A. Network Migration and Performance Analysis of IPv4 and IPv6. In Proceedings of the 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan, 26 February–1 March 2021; pp. 1–6. [Google Scholar] [CrossRef]
- HyeongGon, J.; Kang, S.; Hyo Jeon, K.; Lee, J.D. In-door location-based smart factory cloud platform supporting device-to-device self-collaboration. In Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Korea, 13–16 February 2017; pp. 348–351. [Google Scholar]
- Khare, S.; Totaro, M. Big Data in IoT. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–7. [Google Scholar]
- Nishanov, A.; Akbaraliev, B.; Beglerbekov, R.; Akhmedov, O.; Tajibaev, S.; Kholiknazarov, R. Analytical method for selection an informative set of features with limited resources in the pattern recognition problem. E3S Web Conf. 2021, 284, 04018. [Google Scholar] [CrossRef]
- Tang, J.; Ma, T.; Luo, Q. Trends Prediction of Big Data: A Case Study based on Fusion Data. Procedia Comput. Sci. 2020, 174, 181–190. [Google Scholar] [CrossRef]
- Dong, Z. Research of Big Data Information Mining and Analysis: Technology Based on Hadoop Technology. In Proceedings of the 2022 International Conference on Big Data, Information and Computer Network (BDICN), Sanya, China, 20–22 January 2022; pp. 173–176. [Google Scholar] [CrossRef]
- Deng, H.; Fang, F.; Chen, J.; Zhang, Y. A Cloud Data Storage Technology for Alliance Blockchain Technology. In Proceedings of the 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), New York, NY, USA, 15–17 May 2021; pp. 174–179. [Google Scholar]
- Fu, J.; Sun, J.; Wang, K. SPARK—A Big Data Processing Platform for Machine Learning. In Proceedings of the 2016 International Conference on Industrial Informatics—Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Wuhan, China, 3–4 December 2016; pp. 48–51. [Google Scholar]
- Siledar, S.k.; Deogaonkar, B.; Panpatte, N.; Pagare, J. Map Reduce Overview and Functionality. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatre, India, 8–10 July 2021; pp. 1560–1566. [Google Scholar]
- Palanisamy, V.; Thirunavukarasu, R. Implications of big data analytics in developing healthcare frameworks—A review. J. King Saud Univ. Comput. Inf. Sci. 2019, 31, 415–425. [Google Scholar] [CrossRef]
- Guan, Z.; Ji, T.; Qian, X.; Ma, Y.; Hong, X. A Survey on Big Data Pre-processing. In Proceedings of the 2017 5th Intl Conf on Applied Computing and Information Technology/4th Intl Conf on Computational Science/Intelligence and Applied Informatics/2nd Intl Conf on Big Data, Cloud Computing, Data Science (ACIT-CSII-BCD), Hamamatsu, Japan, 9–13 July 2017; pp. 241–247. [Google Scholar]
- Assahli, S.; Berrada, M.; Chenouni, D. Data preprocessing from Internet of Things: Comparative study. In Proceedings of the 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Fez, Morocco, 19–20 April 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Liang, S.D. Smart and Fast Data Processing for Deep Learning in Internet of Things: Less is More. IEEE Internet Things J. 2018, 6, 5981–5989. [Google Scholar] [CrossRef]
- Diyan, M.; Silva, B.N.; Han, J.; Cao, Z.; Han, K. Intelligent Internet of Things gateway supporting heterogeneous energy data management and processing. Trans. Emerg. Telecommun. Technol. 2022, 33, e3919. [Google Scholar] [CrossRef]
- Baker, S.B.; Xiang, W.; Atkinson, I. Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities. IEEE Access 2017, 5, 26521–26544. [Google Scholar] [CrossRef]
- Antonini, M.; Vecchio, M.; Antonelli, F.; Ducange, P.; Perera, C. Smart Audio Sensors in the Internet of Things Edge for Anomaly Detection. IEEE Access 2018, 6, 67594–67610. [Google Scholar] [CrossRef]
- Dobson, S.; Golfarelli, M.; Graziani, S.; Rizzi, S. A Reference Architecture and Model for Sensor Data Warehousing. IEEE Sens. J. 2018, 18, 7659–7670. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep Learning for IoT Big Data and Streaming Analytics: A Survey. IEEE Commun. Surv. Tutor. 2018, 20, 2923–2960. [Google Scholar] [CrossRef] [Green Version]
- Sollins, K.R. IoT Big Data Security and Privacy Versus Innovation. IEEE Internet Things J. 2019, 6, 1628–1635. [Google Scholar] [CrossRef]
- Amin, F.; Choi, G.S. Social Pal: A Combined Platform for Internet of Things and Social Networks. In Proceedings of the 2020 5th International Conference on Computer and Communication Systems (ICCCS), Shanghai, China, 15–18 May 2020; pp. 786–790. [Google Scholar]
- Guo, J.; Ding, X.; Wu, W. Reliable Traffic Monitoring Mechanisms Based on Blockchain in Vehicular Networks. IEEE Trans. Reliab. 2022, 71, 1219–1229. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Cai, S. Data Delivery in Vehicular Named Data Networking. IEEE Netw. Lett. 2020, 2, 120–123. [Google Scholar] [CrossRef]
- Guo, J.; Ding, X.; Wu, W. An Architecture for Distributed Energies Trading in Byzantine-Based Blockchains. IEEE Trans. Green Commun. Netw. 2022, 6, 1216–1230. [Google Scholar] [CrossRef]
- Kim, J.; Nakashima, M.; Fan, W.; Wuthier, S.; Zhou, X.; Kim, I.; Chang, S.-Y. Anomaly Detection based on Traffic Monitoring for Secure Blockchain Networking. In Proceedings of the 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Sydney, Australia, 3–6 May 2021; pp. 1–9. [Google Scholar] [CrossRef]
- Plazas, J.E.; Bimonte, S.; de Vaulx, C.; Schneider, M.; Nguyen, Q.D.; Chanet, J.P.; Shi, H.; Hou, K.M.; Corrales, J.C. A Conceptual Data Model and Its Automatic Implementation for IoT-Based Business Intelligence Applications. IEEE Internet Things J. 2020, 7, 10719–10732. [Google Scholar] [CrossRef]
- Piccialli, F.; Bessis, N.; Cambria, E. Guest Editorial: Industrial Internet of Things: Where Are We and What Is Next? IEEE Trans. Ind. Inform. 2021, 17, 7700–7703. [Google Scholar] [CrossRef]
- Miao, H.; Deshpande, A. Understanding Data Science Lifecycle Provenance via Graph Segmentation and Summarization. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; pp. 1710–1713. [Google Scholar] [CrossRef] [Green Version]
- Sajid, S.; Haleem, A.; Bahl, S.; Javaid, M.; Goyal, T.; Mittal, M. Data science applications for predictive maintenance and materials science in context to Industry 4.0. Mater. Today Proc. 2021, 45, 4898–4905. [Google Scholar] [CrossRef]
- Reza, R.; Mahdi, S. Applications of Artificial Intelligence and Big Data in Industry 4.0 Technologies. In Industry 4.0 Vision for the Supply of Energy and Materials: Enabling Technologies and Emerging Applications; Wiley: Hoboken, NJ, USA, 2022; pp. 121–158. [Google Scholar]
- Amin, F.; Choi, G.S. Hotspots Analysis Using Cyber-Physical-Social System for a Smart City. IEEE Access 2020, 8, 122197–122209. [Google Scholar] [CrossRef]
- Ghosh, A.; Chakraborty, D.; Law, A. Artificial intelligence in Internet of things. CAAI Trans. Intell. Technol. 2018, 3, 208–218. [Google Scholar] [CrossRef]
- Amin, F.; Ahmad, A.; Choi, G.S. To Study and Analyse Human Behaviours on Social Networks. In Proceedings of the 2018 4th Annual International Conference on Network and Information Systems for Computers (ICNISC), Wuhan, China, 19–21 April 2018; pp. 233–236. [Google Scholar]
- Muhammad, G.; Alhussein, M. Convergence of Artificial Intelligence and Internet of Things in Smart Healthcare: A Case Study of Voice Pathology Detection. IEEE Access 2021, 9, 89198–89209. [Google Scholar] [CrossRef]
- Mohanta, B.K.; Jena, D.; Satapathy, U.; Patnaik, S. Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology. Internet Things 2020, 11, 100227. [Google Scholar] [CrossRef]
- Bzai, J.; Alam, F.; Dhafer, A.; Bojović, M.; Altowaijri, S.M.; Niazi, I.K.; Mehmood, R. Machine Learning-Enabled Internet of Things (IoT): Data, Applications, and Industry Perspective. Electronics 2022, 11, 2676. [Google Scholar] [CrossRef]
- Kotenko, I.; Saenko, I.; Branitskiy, A. Framework for Mobile Internet of Things Security Monitoring Based on Big Data Processing and Machine Learning. IEEE Access 2018, 6, 72714–72723. [Google Scholar] [CrossRef]
- Hossain, E.; Khan, I.; Un-Noor, F.; Sikander, S.S.; Sunny, M.S.H. Application of Big Data and Machine Learning in Smart Grid, and Associated Security Concerns: A Review. IEEE Access 2019, 7, 13960–13988. [Google Scholar] [CrossRef]
- Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network Intrusion Detection for IoT Security Based on Learning Techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, N.; Qu, Y. Research on the Integration System of Ubiquitous Power Internet of Things Based on Blockchain Technology. In Proceedings of the 2020 International Conference on Robots & Intelligent System (ICRIS), Sanya, China, 7–8 November 2020; pp. 356–359. [Google Scholar] [CrossRef]
- IEEE P3652.1/D6.1; IEEE Approved Draft Guide for Architectural Framework and Application of Federated Machine Learning. IEEE: Piscataway, NJ, USA, 2020; pp. 1–70.
- Imteaj, A.; Thakker, U.; Wang, S.; Li, J.; Amini, M.H. A Survey on Federated Learning for Resource-Constrained IoT Devices. IEEE Internet Things J. 2021, 9, 1–24. [Google Scholar] [CrossRef]
- Brandes, U.; Robins, G.; McCranie, A.N.N.; Wasserman, S. What is network science? Netw. Sci. 2013, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kai, Z.; Dahai, H.; Hongping, F. Research on the complexity in Internet of Things. In Proceedings of the 2010 International Conference on Advanced Intelligence and Awareness Internet (AIAI 2010), Beijing, China, 23–25 October 2010; pp. 395–398. [Google Scholar]
- Amin, F.; Ahmad, A.; Choi, G.S. Community Detection and Mining Using Complex Networks Tools in Social Internet of Things. In Proceedings of the TENCON 2018—2018 IEEE Region 10 Conference, Jeju, Korea, 28–31 October 2018; pp. 2086–2091. [Google Scholar] [CrossRef]
- Amin, F.; Choi, G.S. Model for Generating Scale-Free Artificial Social Networks Using Small-World Networks. Comput. Mater. Contin. 2022, 73, 6367–6391. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.; Li, P.; Luo, X.; Yang, Y. Internet of Things as Complex Networks. IEEE Netw. 2021, 35, 238–245. [Google Scholar] [CrossRef]
- Batool, K.; Niazi, M.A. Modeling the internet of things: A hybrid modeling approach using complex networks and agent-based models. Complex Adapt. Syst. Model. 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Mercuur, R.; Dignum, V.; Jonker, C.M. Integrating Social Practice Theory in Agent-Based Models: A Review of Theories and Agents. IEEE Trans. Comput. Soc. Syst. 2020, 7, 1131–1145. [Google Scholar] [CrossRef]
- Trajkovic, L. Complex Networks. In Proceedings of the 2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Beijing, China, 26–28 September 2020; p. 1. [Google Scholar]
- Atov, I.; Chen, K.C.; Kamal, A.; Yu, S. Data Science and Artificial Intelligence for Communications. IEEE Commun. Mag. 2020, 58, 10–11. [Google Scholar] [CrossRef]
- Li, L.; Cui, J.; Zhang, R.; Xia, H.; Cheng, X. Dynamics of Complex Networks: Malware Propagation Modeling and Analysis in Industrial Internet of Things. IEEE Access 2020, 8, 64184–64192. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M. Complex network-based growth and evolution model for Internet of Things. In Proceedings of the 2014 IEEE 5th International Conference on Software Engineering and Service Science, Beijing, China, 23 October 2014; pp. 120–123. [Google Scholar]
- Rohadi, E.; Suwignjo, S.A.; Pradana, M.C.; Setiawan, A.; Siradjuddin, I.; Ronilaya, F.; Amalia, A.; Andrie, R.; Ariyanto, R. Internet of Things: CCTV Monitoring by Using Raspberry Pi. In Proceedings of the 2018 International Conference on Applied Science and Technology (iCAST), Manado, Indonesia, 26–27 October 2018; pp. 454–457. [Google Scholar]
- Pal, S.; Mishra, S.K.; Rath, C.K.; Debnath, N.C.; Sarkar, A. Enrichment of Semantic Sensor Network Ontology: Description Logics based approach. In Proceedings of the 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 26–28 February 2020; pp. 995–1000. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, X.; Du, X. A Big Data Provenance Model for Data Security Supervision Based on PROV-DM Model. IEEE Access 2020, 8, 38742–38752. [Google Scholar] [CrossRef]
- Khan, P.W.; Byun, Y.-C.; Park, N. IoT-Blockchain Enabled Optimized Provenance System for Food Industry 4.0 Using Advanced Deep Learning. Sensors 2020, 20, 2990. [Google Scholar] [CrossRef]
- Amin, F.; Hwang, S.O. Automated Service Search Model for the Social Internet of Things. Comput. Mater. Contin. 2022, 72, 5871–5888. [Google Scholar] [CrossRef]
- Amin, F.; Majeed, A.; Mateen, A.; Abbasi, R.; Hwang, S.O. A Systematic Survey on the Recent Advancements in the Social Internet of Things. IEEE Access 2022, 10, 63867–63884. [Google Scholar] [CrossRef]
- Ali, A.; Mateen, A.; Hanan, A.; Amin, F. Advanced Security Framework for Internet of Things (IoT). Technologies 2022, 10, 60. [Google Scholar] [CrossRef]
- Amin, F.; Ahmad, A.; Sang Choi, G.S. Towards Trust and Friendliness Approaches in the Social Internet of Things. Appl. Sci. 2019, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Amin, F.; Abbasi, R.; Rehman, A.; Choi, G.S. An Advanced Algorithm for Higher Network Navigation in Social Internet of Things Using Small-World Networks. Sensors 2019, 19, 2007. [Google Scholar] [CrossRef] [Green Version]
- Tahtaci, B.; Canbay, B. Android Malware Detection Using Machine Learning. In Proceedings of the 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), Istanbul, Turkey, 15–17 October 2020; pp. 1–6. [Google Scholar]
- Tufail, S.; Batool, S.; Sarwat, A.I. False Data Injection Impact Analysis In AI-Based Smart Grid. In Proceedings of the SoutheastCon 2021, Atlanta, GA, USA, 10–13 March 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Haseeb-Ur-Rehman, R.M.A.; Liaqat, M.; Aman, A.H.M.; Hamid, S.H.A.; Ali, R.L.; Shuja, J.; Khan, M.K. Sensor Cloud Frameworks: State-of-the-Art, Taxonomy, and Research Issues. IEEE Sens. J. 2021, 21, 22347–22370. [Google Scholar] [CrossRef]
- Peniak, P.; Bubeníková, E.; Kanáliková, A. The Redundant Virtual Sensors via Edge Computing. In Proceedings of the 2021 International Conference on Applied Electronics (AE), Pilsen, Czech Republic, 7–8 September 2021; pp. 1–5. [Google Scholar]
- Karlstetter, R.; Widhopf-Fenk, R.; Schulz, M. Querying Distributed Sensor Streams in the Edge-to-Cloud Continuum. In Proceedings of the 2022 IEEE International Conference on Edge Computing and Communications (EDGE), Barcelona, Spain, 11–15 July 2022; pp. 192–197. [Google Scholar]
- Shehab, A.H.; Al-Janabi, S.T.F. Microsoft Azure IoT-based Edge Computing for Smart Homes. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 8–9 November 2020; pp. 315–319. [Google Scholar]
- Amin, F.; Barukab, O.M.; Choi, G.S. Big Data Analytics Using Graph Signal Processing. Comput. Mater. Contin. 2023, 74, 489–502. [Google Scholar] [CrossRef]
- IEEE Draft P1930.1/D1; Recommended Practice for Software Defined Networking (SDN) based Middleware for Control and Management of Wireless Networks. December 2021. IEEE: Piscataway, NJ, USA, 2022; pp. 1–136.
- Alansari, Z.; Anuar, N.B.; Kamsin, A.; Soomro, S.; Belgaum, M.R.; Miraz, M.H.; Alshaer, J. Challenges of internet of things and big data integration. In Proceedings of the International Conference for Emerging Technologies in Computing, London, UK, 23–24 August 2018; pp. 47–55. [Google Scholar]
- Bidhan, S.k.; Ahuja, L.; Khatri, S.K.; Som, S. Anatomy of Big Iot Data analytics. In Proceedings of the 2019 Third International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 10–11 January 2019; pp. 123–127. [Google Scholar]
Reference Paper | Year | Big Data | Data Science | Network Science |
---|---|---|---|---|
Our Research | 2022 | ☑ | ☑ | ☑ |
Amin et al. [5] | 2021 | ⊠ | ☑ | ☑ |
Wang et al. [6] | 2020 | ⊠ | ⊠ | ☑ |
Piccirilli et al. [7] | 2020 | ⊠ | ☑ | ⊠ |
Youhua et al. [2] | 2020 | ☑ | ○ | ⊠ |
Devi et al. [8] | 2020 | ⊠ | ☑ | ⊠ |
Qiang et al. [10] | 2019 | ○ | ☑ | ⊠ |
Ranjan et al. [11] | 2018 | ⊠ | ☑ | ⊠ |
Foidl et al. [12] | 2016 | ⊠ | ☑ | ⊠ |
References | Years | Contribution |
---|---|---|
[47] | 2022 | An efficient energy-management and data-processing model using gateways has been proposed. This model is suitable for demands such as multi-tasking, inter-operability, classification, and fast data delivery between different modules. |
[46] | 2019 | A deep learning model has been proposed for the fast data processing in IoT systems. |
[45] | 2017 | The authors proposed a framework using multi-agents for cleaning and pre-processing of data in the IoT. |
[48] | 2017 | The authors proposed a unique model for IoT-based smart healthcare. They had discussed the challenges and the state-of-the-art methods in healthcare systems. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, F.; Abbasi, R.; Mateen, A.; Ali Abid, M.; Khan, S. A Step toward Next-Generation Advancements in the Internet of Things Technologies. Sensors 2022, 22, 8072. https://doi.org/10.3390/s22208072
Amin F, Abbasi R, Mateen A, Ali Abid M, Khan S. A Step toward Next-Generation Advancements in the Internet of Things Technologies. Sensors. 2022; 22(20):8072. https://doi.org/10.3390/s22208072
Chicago/Turabian StyleAmin, Farhan, Rashid Abbasi, Abdul Mateen, Muhammad Ali Abid, and Salabat Khan. 2022. "A Step toward Next-Generation Advancements in the Internet of Things Technologies" Sensors 22, no. 20: 8072. https://doi.org/10.3390/s22208072
APA StyleAmin, F., Abbasi, R., Mateen, A., Ali Abid, M., & Khan, S. (2022). A Step toward Next-Generation Advancements in the Internet of Things Technologies. Sensors, 22(20), 8072. https://doi.org/10.3390/s22208072