Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Overview
2.2. Acquisition Setup and Paradigm
2.3. EEG Data Preprocessing and Analysis
3. Results
3.1. Preparation Time, Acquisition Time, Attention, and Comfort
3.2. Impedance and Reliability
3.3. EEG Signal Characteristics
4. Discussion
4.1. Preparation and Acquisition Time, Attention, and Comfort
4.2. Impedance and Reliability
- -
- Selection of the correct EEG cap size considering multiple factors, such as subject head circumference, head shape, hairstyle, and hair density;
- -
- Clean skin and hair, avoiding fat and oil layers, which would increase electrode-skin impedance and decrease electrical contact quality;
- -
- Stable and low electrode-skin impedances at the ground and reference electrodes influencing the signal quality of all referential channels;
- -
- Correct application procedure, including minimal post-application movements of the cap on the head, to avoid hair accumulation and counter-pressure at individual electrode areas;
- -
- Dry-electrode specific knowledge on identification and improvement of bad or instable electrode-skin contacts.
4.3. EEG Signal Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ratti, E.; Waninger, S.; Berka, C.; Ruffini, G.; Verma, A. Comparison of medical and consumer wireless EEG systems for use in clinical trials. Front. Hum. Neurosci. 2017, 11, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erani, F.; Zolotova, N.; Vanderschelden, B.; Khoshab, N.; Sarian, H.; Nazarzai, L.; Wu, J.; Chakravarthy, B.; Hoonpongsimanont, W.; Yu, W.; et al. Electroencephalography might improve diagnosis of acute stroke and large vessel occlusion. Stroke 2020, 51, 3361–3365. [Google Scholar] [CrossRef] [PubMed]
- Zander, T.O.; Lehne, M.; Ihme, K.; Jatzev, S.; Correia, J.; Kothe, C.; Picht, B.; Nijboer, F. A dry EEG-system for scientific research and brain-computer interfaces. Front. Neurosci. 2011, 5, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spüler, M. A high-speed brain-computer interface (BCI) using dry EEG electrodes. PLoS ONE 2017, 12, e0172400. [Google Scholar] [CrossRef] [Green Version]
- Grozea, C.; Voinescu, C.D.; Fazli, S. Bristle-sensors—Low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications. J. Neural Eng. 2011, 8, 25008. [Google Scholar] [CrossRef]
- Ko, L.-W.; Chang, Y.; Wu, P.-L.; Tzou, H.-A.; Chen, S.-F.; Tang, S.-C.; Yeh, C.-L.; Chen, Y.-J. Development of a Smart Helmet for Strategical BCI Applications. Sensors 2019, 19, 1867. [Google Scholar] [CrossRef] [Green Version]
- Xing, X.; Wang, Y.; Pei, W.; Guo, X.; Liu, Z.; Wang, F.; Ming, G.; Zhao, H.; Gui, Q.; Chen, H. A High-Speed SSVEP-Based BCI Using Dry EEG Electrodes. Sci. Rep. 2018, 8, 14708. [Google Scholar] [CrossRef] [Green Version]
- Gargiulo, G.; Bifulco, P.; Calvo, R.A.; Cesarelli, M.; Jin, C.; van Schaik, A. A mobile EEG system with dry electrodes. In Proceedings of the 2008 IEEE Biomedical Circuits and Systems Conference, Baltimore, MD, USA, 20–22 November 2008; pp. 273–276. [Google Scholar]
- Ries, A.J.; Touryan, J.; Vettel, J.; McDowell, K.; Hairston, W.D. A comparison of electroencephalography signals acquired from conventional and mobile systems. J. Neurosci. Neuroeng. 2014, 3, 10–20. [Google Scholar] [CrossRef]
- Troller-Renfree, S.V.; Morales, S.; Leach, S.C.; Bowers, M.E.; Debnath, R.; Fifer, W.P.; Fox, N.A.; Noble, K.G. Feasibility of assessing brain activity using mobile, in-home collection of electroencephalography: Methods and analysis. Dev. Psychobiol. 2021, 63, e22128. [Google Scholar] [CrossRef]
- Di Fronso, S.; Fiedler, P.; Tamburro, G.; Haueisen, J.; Bertollo, M.; Comani, S. Dry EEG in sports sciences: A fast and reliable tool to assess individual alpha peak frequency changes induced by physical effort. Front. Neurosci. 2019, 13, 982. [Google Scholar] [CrossRef]
- Pei, G.; Wu, J.; Chen, D.; Guo, G.; Liu, S.; Hong, M.; Yan, T. Effects of an integrated neurofeedback system with dry electrodes: EEG acquisition and cognition assessment. Sensors 2018, 18, 3396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillard, R.; Fraysse, M.-J.; Simeon, R.; Cervoni, T.; Schmutz, J.; Piedfort, B.; Ferat, V.; Congedo, M.; Londero, A. A portable neurofeedback device for treating chronic subjective tinnitus: Feasibility and results of a pilot study. Prog. Brain Res. 2021, 260, 167–185. [Google Scholar] [PubMed]
- Jakab, A.; Kulkas, A.; Salpavaara, T.; Kauppinen, P.; Verho, J.; Heikkilä, H.; Jäntti, V. Novel wireless electroencephalography system with a minimal preparation time for use in emergencies and prehospital care. Biomed. Eng. Online 2014, 13, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Meenen, L.C.C.; van Stigt, M.N.; Marquering, H.A.; Majoie, C.B.; Roos, Y.B.; Koelman, J.H.; Potters, W.V.; Coutinho, J.M. Detection of large vessel occlusion stroke with electroencephalography in the emergency room: First results of the ELECTRA-STROKE study. J. Neurol. 2021, 269, 2030–2038. [Google Scholar] [CrossRef]
- Lin, S.; Liu, J.; Li, W.; Wang, D.; Huang, Y.; Jia, C.; Li, Z.; Murtaza, M.; Wang, H.; Song, J.; et al. A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces. Nano Lett. 2019, 19, 6853–6861. [Google Scholar] [CrossRef] [PubMed]
- Wunder, S.; Hunold, A.; Fiedler, P.; Schlegelmilch, F.; Schellhorn, K.; Haueisen, J. Novel bifunctional cap for simultaneous electroencephalography and transcranial electrical stimulation. Sci. Rep. 2018, 8, 7259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouchida, S.; Nikpour, A.; Fairbrother, G. A Prospective Randomized Controlled Trial: Alternative Approach to EEG Application to Reduce Electrode-induced Skin Injury among Ambulatory EEG Patients. Neurodiagnostic J. 2022, 62, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Greischar, L.L.; Burghy, C.A.; van Reekum, C.M.; Jackson, D.C.; Pizzagalli, D.A.; Mueller, C.; Davidson, R.J. Effects of electrode density and electrolyte spreading in dense array electroencephalographic recording. Clin. Neurophysiol. 2004, 115, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Puce, A.; Hämäläinen, M.S. A review of issues related to data acquisition and analysis in EEG/MEG studies. Brain Sci. 2017, 7, 58. [Google Scholar] [CrossRef]
- Fiedler, P.; Pedrosa, P.; Griebel, S.; Fonseca, C.; Vaz, F.; Supriyanto, E.; Zanow, F.; Haueisen, J. Novel multipin electrode cap system for dry electroencephalography. Brain Topogr. 2015, 28, 647–656. [Google Scholar] [CrossRef]
- Fiedler, P.; Fonseca, C.; Supriyanto, E.; Zanow, F.; Haueisen, J. A high-density 256-channel cap for dry electroencephalography. Hum. Brain Mapp. 2022, 43, 1295–1308. [Google Scholar] [CrossRef]
- Mathewson, K.E.; Harrison, T.J.L.; Kizuk, S.A.D. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Psychophysiology 2017, 54, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, S.; Duan, Y.Y. Towards gel-free electrodes: A systematic study of electrode-skin impedance. Sens. Actuators B Chem. 2017, 241, 1244–1255. [Google Scholar] [CrossRef]
- Zhang, L.; Kumar, K.S.; He, H.; Cai, C.J.; He, X.; Gao, H.; Yue, S.; Li, C.; Seet, R.C.-S.; Ren, H.; et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683. [Google Scholar] [CrossRef] [PubMed]
- Pei, W.; Wu, X.; Zhang, X.; Zha, A.; Tian, S.; Wang, Y.; Gao, X. A Pre-Gelled EEG Electrode and Its Application in SSVEP-Based BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Huang, J.; Li, M.; Li, H. Evaluation of flexible multi-claw and multi-channel semi-dry electrodes for evoked electroencephalography recording. Sens. Actuators A Phys. 2022, 340, 113547. [Google Scholar] [CrossRef]
- Hinrichs, H.; Scholz, M.; Baum, A.K.; Kam, J.W.Y.; Knight, R.T.; Heinze, H.-J. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications. Sci. Rep. 2020, 10, 5218. [Google Scholar] [CrossRef] [Green Version]
- Oostenveld, R.; Praamstra, P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 2001, 112, 713–719. [Google Scholar] [CrossRef]
- Graichen, U.; Eichardt, R.; Fiedler, P.; Strohmeier, D.; Zanow, F.; Haueisen, J. SPHARA-a generalized spatial Fourier analysis for multi-sensor systems with non-uniformly arranged sensors: Application to EEG. PLoS ONE 2015, 10, e0121741. [Google Scholar] [CrossRef] [Green Version]
- Junghöfer, M.; Elbert, T.; Tucker, D.M.; Braun, C. The polar average reference effect: A bias in estimating the head surface integral in EEG recording. Clin. Neurophysiol. 1999, 110, 1149–1155. [Google Scholar] [CrossRef]
- Desmedt, J.E.; Chalklin, V.; Tomberg, C. Emulation of somatosensory evoked potential (SEP) components with the 3-shell head model and the problem of ‘ghost potential fields’ when using an average reference in brain mapping. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 1990, 77, 243–258. [Google Scholar] [CrossRef]
- Fiedler, P.; Mühle, R.; Griebel, S.; Pedrosa, P.; Fonseca, C.; Vaz, F.; Zanow, F.; Haueisen, J. Contact pressure and flexibility of multipin dry EEG electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 750–757. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, D.L.; Marmor, M.F.; Brigell, M.G.; Hamilton, R.; Holder, G.E.; Tzekov, R.; Bach, M. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc. Ophthalmol. 2015, 130, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoddes, E.; Zarcone, V.; Dement, W. Stanford sleepiness scale. In Enzyklopädie der Schlafmedizin; Springer: Berlin/Heidelberg, Germany, 1972; p. 1184. [Google Scholar]
- Scott, J.; Huskisson, E.C. Graphic representation of pain. Pain 1976, 2, 175–184. [Google Scholar] [CrossRef]
- Ferree, T.C. Spherical splines and average referencing in scalp electroencephalography. Brain Topogr. 2006, 19, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Osselton, J.W. Acquisition of EEG data by bipolar unipolar and average reference methods: A theoretical comparison. Electroencephalogr. Clin. Neurophysiol. 1965, 19, 527–528. [Google Scholar] [CrossRef]
- Parhi, K.K.; Ayinala, M. Low-complexity Welch power spectral density computation. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 61, 172–182. [Google Scholar] [CrossRef]
- Fiedler, P.; Pedrosa, P.; Griebel, S.; Fonseca, C.; Vaz, F.; Zanow, F.; Haueisen, J. Novel flexible dry PU/TiN-multipin electrodes: First application in EEG measurements. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 55–58. [Google Scholar] [CrossRef]
- Pedrosa, P.; Fiedler, P.; Pestana, V.; Vasconcelos, B.; Gaspar, H.; Amaral, M.H.; Freitas, D.; Haueisen, J.; Nóbrega, J.M.; Fonseca, C. In-service characterization of a polymer wick-based quasi-dry electrode for rapid pasteless electroencephalography. Biomed. Tech. 2018, 63, 349–359. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Q.; Zhang, Z.; Gan, L.; Zhang, Y.; Wu, J. Materials for Dry Electrodes for the Electroencephalography: Advances, Challenges, Perspectives. Adv Mater. Technol. 2022, 7, 2100612. [Google Scholar] [CrossRef]
- Lehmann, D.; Skrandies, W. Spatial analysis of evoked potentials in man—A review. Prog. Neurobiol. 1984, 23, 227–250. [Google Scholar] [CrossRef]
- Skrandies, W. Global field power and topographic similarity. Brain Topogr. 1990, 3, 137–141. [Google Scholar] [CrossRef]
- Massey, F.J., Jr. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Fagerland, M.W.; Sandvik, L. The wilcoxon-mann-whitney test under scrutiny. Stat. Med. 2009, 28, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Ödman, S. Changes in skin potentials induced by skin compression. Med. Biol. Eng. Comput. 1989, 27, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Cömert, A.; Honkala, M.; Hyttinen, J. Effect of pressure and padding on motion artifact of textile electrodes. Biomed. Eng. Online 2013, 12, 26. [Google Scholar] [CrossRef] [PubMed]
Dataset | EEG Center | Volunteer No. | Age (Years) | Head Circumference (cm) | Electrode Layout | Operator Experience (Years) | ||
---|---|---|---|---|---|---|---|---|
Gel- Based | Dry | Gel- Based | Dry | |||||
1 | Swinburne University of Technology, Australia | 20 | 33.4 (±10.4) | 56.8 (±1.9) | ten-twenty | ten-twenty | >5 | <1 |
2 | University ‘G. d’Annunzio’ of Chieti–Pescara, Italy | 7 | 28.0 (±5.4) | 56.9 (±1.9) | equidistant | equidistant | <1 | <1 |
3 | University ‘G. d’Annunzio’ of Chieti–Pescara, Italy | 18 | 27.1 (±5.9) | 56.6 (±1.2) | ten-twenty | equidistant | >5 | >1 |
4 | Technische Universität Ilmenau, Germany | 21 | 26.3 (±3.7) | 56.5 (±1.4) | equidistant | equidistant | >5 | >5 |
5 | Universidade do Porto, Porto, Portugal | 17 | 26.3 (±8.7) | 55.9 (±1.4) | equidistant | equidistant | >1 | >1 |
6 | Chinese University of Hong Kong, China | 22 | 22.2 (±3.0) | 56.2 (±2.8) | ten-twenty | equidistant | <1 | <1 |
7 | Universiti Teknologi Malaysia, Malaysia | 10 | 21.2 (±0.9) | 55.8 (±0.8) | ten-twenty | equidistant | <1 | <1 |
Cap Type | Preparation Time (min) | Acquisition Time (min) | Attention Level (1–10) | Comfort Level (1–10) | ||
---|---|---|---|---|---|---|
Start | End | Start | End | |||
Gel-based | 32.3 ± 13.8 | 21.3 ± 9.3 | 3.3 ± 1.6 | 3.6 ± 1.9 | 2.4 ± 1.3 | 2.5 ± 1.4 |
Dry | 12.4 ± 6.5 | 23.4 ± 8.3 | 3.2 ± 1.6 | 3.7 ± 1.9 | 3.6 ± 1.8 | 4.3 ± 2.2 |
EEG Segment | Electrode Layout | Average Correlation | Average RMSD |
---|---|---|---|
Eye blink artifact (Fp1/Fp2 and L1/R1) | ten-twenty | 0.83 ± 0.13 | 36.45 ± 32.51 μV |
equidistant | 0.87 ± 0.11 | 27.24 ± 23.25 μV | |
Resting state closed eyes (PSD, all channels) | combined layout | 0.70 ± 0.16 | 2.14 ± 3.93 μV2/Hz |
VEP (all channels) | combined layout | 0.66 ± 0.28 | 0.82 ± 0.44 μV |
VEP (GFPt) | combined layout | 0.85 ± 0.17 | 2.97 ± 1.53 μV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, C.R.; Fiedler, P.; Kuhlmann, L.; Liley, D.; Vasconcelos, B.; Fonseca, C.; Tamburro, G.; Comani, S.; Lui, T.K.-Y.; Tse, C.-Y.; et al. Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps. Sensors 2022, 22, 8079. https://doi.org/10.3390/s22208079
Ng CR, Fiedler P, Kuhlmann L, Liley D, Vasconcelos B, Fonseca C, Tamburro G, Comani S, Lui TK-Y, Tse C-Y, et al. Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps. Sensors. 2022; 22(20):8079. https://doi.org/10.3390/s22208079
Chicago/Turabian StyleNg, Chuen Rue, Patrique Fiedler, Levin Kuhlmann, David Liley, Beatriz Vasconcelos, Carlos Fonseca, Gabriella Tamburro, Silvia Comani, Troby Ka-Yan Lui, Chun-Yu Tse, and et al. 2022. "Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps" Sensors 22, no. 20: 8079. https://doi.org/10.3390/s22208079
APA StyleNg, C. R., Fiedler, P., Kuhlmann, L., Liley, D., Vasconcelos, B., Fonseca, C., Tamburro, G., Comani, S., Lui, T. K. -Y., Tse, C. -Y., Warsito, I. F., Supriyanto, E., & Haueisen, J. (2022). Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps. Sensors, 22(20), 8079. https://doi.org/10.3390/s22208079