
Citation: Sey, C.; Lei, H.; Qian, W.; Li,

X.; Fiasam, L.D.; Kodjiku, S.L.;

Adjei-Mensah, I.; Agyemang, I.O.

VBlock: A Blockchain-Based

Tamper-Proofing Data Protection

Model for Internet of Vehicle

Networks. Sensors 2022, 22, 8083.

https://doi.org/10.3390/s22208083

Academic Editor: Nikos Fotiou

Received: 25 September 2022

Accepted: 13 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

VBlock: A Blockchain-Based Tamper-Proofing Data Protection
Model for Internet of Vehicle Networks
Collins Sey 1 , Hang Lei 1,*, Weizhong Qian 1,*, Xiaoyu Li 1, Linda Delali Fiasam 1 , Seth Larweh Kodjiku 2,
Isaac Adjei-Mensah 3 and Isaac Osei Agyemang 3

1 School of Information and Software Engineering, University of Electronic Science and Technology of China,
Chengdu 610054, China

2 School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
3 School of Information and Communication Engineering, University of Electronic Science and Technology of

China, Chengdu 611731, China
* Correspondence: hlei@uestc.edu.cn (H.L.); wzqian@uestc.edu.cn (W.Q.); Tel.: +86-13908098749 (H.L.);

+86-13730885415 (W.Q.)

Abstract: The rapid advancement of the Internet of Vehicles (IoV) has led to a massive growth in
data received from IoV networks. The cloud storage has been a timely service that provides a vast
range of data storage for IoV networks. However, existing data storage and access models used to
manage and protect data in IoV networks have proven to be insufficient. They are centralized and
usually accompanied by a lack of trust, transparency, security, immutability, and provenance. In this
paper, we propose VBlock, a blockchain-based system that addresses the issues of illegal modification
of outsourced vehicular data for smart city management and improvement. We introduce a novel
collusion-resistant model for outsourcing data to cloud storage that ensures the network remains
tamper-proof, has good data provenance and auditing, and solves the centralized problems prone to
the single point of failure. We introduced a key revocation mechanism to secure the network from
malicious nodes. We formally define the system model of VBlock in the setting of a consortium
blockchain. Our simulation results and security analysis show that the proposed model provides a
strong security guarantee with high efficiency and is practicable in the IoV environment.

Keywords: blockchain; Internet of Vehicles (IoV); smart city; tamper-proof; Internet of Things (IoT);
collusion resistance; key revocation

1. Introduction

The smart transportation sector is one of the major sectors that has been transformed
by the Internet of Things (IoT) concept with the inception of the Internet of Vehicles (IoV) [1].
The IoV network is a network that consists of vehicles with IoT-enabled devices deployed
in them, interconnected to provide innovative services to form the smart city [2]. The
IoT-enabled devices coordinate to form a network which integrates information. The
information includes the location of vehicles, speed, and vehicle routes. This creates
a trend of massive data collection, of which the cloud computing techniques provide
a perfect solution for the vehicles to outsource unlimited storage resources for smart
city management.

The field continues to attract huge research attention, as vast data are projected to
emanate from the IoV network. In vehicular networks, data exchanges are needed to
improve the management of smart cities. This creates significant importance and merits for
the network. Although there are significant advantages, there are issues and challenges
associated with the security and privacy of the data being exchanged [3–5]. The safety and
efficiency of smart city management rely on valid data from the IoV network. Valid data
imply data free from forgery and illegal modification. Data integrity should be maintained,
for the usage of data by the various systems and services. Systems such as Intelligent

Sensors 2022, 22, 8083. https://doi.org/10.3390/s22208083 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22208083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8225-6023
https://orcid.org/0000-0002-3075-9144
https://doi.org/10.3390/s22208083
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22208083?type=check_update&version=2

Sensors 2022, 22, 8083 2 of 23

Transport System (ITS), Traffic Management System (TMS), safety services departments
(such as fire service, and ambulance), and forensic services [6] (crime investigation) heavily
rely on valid data from the IoV network for their works. Invalid data from the IoV
network will lead to serious problems. The 2021 Global Automotive Cybersecurity Report
released by Upstream Security points out an increase of 75% in servers targeted for attacks
in 2020 [7]. For this reason, IoV network data must meet security requirements such
as authentication, integrity, privacy preservation, and data provenance described in [8].
To secure the data emanating from the IoV network, some authentication schemes and
models have been proposed [9], such as identity-based cryptography (IDC), public key
infrastructure (PKI), certificateless cryptography (CLC) [10], log management scheme [11],
and proxy re-encryption [12], which focus on different security requirements.

Blockchain technology has shown great potential recently, and thus attracted interest
from many researchers, computer scientists, engineers, etc., who have therefore proposed its
application to diverse disciplines, which include intelligent transport systems [13,14]. It has
shown great potential to provide a substantial number of innovative solutions to a majority
of IoV application scenarios. The technology has the potential to make intelligent transport
systems more secure, autonomous, distributed, and safe. Integrating blockchain into IoV
not only improves security, privacy, and trust but also enhances system performance and
automation. As we seek to ensure the integrity of data that smart city systems rely on,
blockchain has proven to be crucial in realizing this goal. Blockchain technology represents
an immutable ledger of transactions. By this, accountability and auditing can be achieved
without relying on a single point of trust. In this work, we ensure tamper-proofing, data
provenance, and auditing of IoV data in the cloud server scenarios, which prevent illegal
modification of data even if the data generator colludes with the cloud server. Current
security measures implemented in the IoV systems are centralized. To ensure tamper-proof
outsourced IoV data, existing models utilize authentication mechanisms to authenticate
the IoV nodes that are validated by these centralized authorities, such as the cloud server.
In these models, a strong presumption exists that the IoV node will not collude with the
cloud server to modify or tamper with the outsourced IoV data. If the IoV node or the user
incentivizes the cloud server to tamper with the outsourced IoV data generated by itself, it
is difficult to detect. Since the cloud server is viewed as a rational entity, it is feasible for a
malicious node/user to compromise it, provided the cloud server is given the necessary
incentives. Figure 1 shows a typical scenario of IoV network.

Sensors 2022, 22, 8083 3 of 23

Figure 1. A typical scenario of IoV network.

The rest of this paper is organized as follows. We summarize the related works in
Section 2. In Section 3, we formulate the problem statement. We discuss the preliminaries
and core technologies used for this research in Section 4. Section 5 details the proposed
model. Sections 6 and 7 present the security analyses and performance evaluation. respec-
tively. We present our concluding remarks and future work in Section 8.

2. Related Works
Security and privacy protection in IoV systems continue to be the focus for research-

ers due to standardization differences in device production, centralized storage, and ac-
cess models. Significant research proposals have been presented which enable secure data
access model in the usual client–server architectures. Other IoT providers use techniques
that constitute proprietary authorization. In such situations, they serve as centralized au-
thorizing entities. Nonetheless, a major challenge associated with centralized IoT data
management is scalability and trust issues. The security of such systems is solely based on
trust in the central server. A compromise of the central server leaves the entire system
void. Ensuring data security of IoV data for safety and efficient management of the smart
city is very crucial. This has attracted significant research focus on incorporating block-
chain technology into IoV systems to decentralize data security and privacy.

Vallent et al. [15] proposed a certificateless signature scheme based on elliptic curve
cryptography that preserves privacy in VANET. Their scheme sorts out the KGC escrow
problem and uses time and pseudo-identity to validate communicating vehicles while ex-
cluding bilinear pairings. Liu et al. [16] presented a scheme for defense against malicious
nodes in VANET based on blockchain. They constructed two types of blockchains that can
identify malicious nodes and forged messages through reputation, time and distance.
Ma et al. [17] presented a blockchain-based secure, privacy-preserving, and decentralized
IoV architecture. Their work introduced a hierarchical data-sharing framework with two
types of sub-blockchain for flexible access control. Their architecture consists of vehicles,
actuators and sensors, roadside units (RSUs), and cloud computing nodes. They designed
a lightweight consensus algorithm based on a reputation that uses a multi-weight reputa-
tion technique. Kang et al. [18] utilized consortium blockchain and smart contract to se-
cure data storage and sharing in vehicular edge computing networks. The authors used
the technologies to ensure that the data could not be shared without the necessary author-
ization, employing a reputation-based data-sharing scheme to help vehicles achieve high-
quality data sharing. Their reputation scheme improves malicious vehicle detection com-
pared to traditional reputation schemes. Javaid et al. [19] proposed DrivMan, a

Figure 1. A typical scenario of IoV network.

Sensors 2022, 22, 8083 3 of 23

In this work, we leverage blockchains to address the issue of illegal modification of
outsourced IoV data, even by the data generators themselves, in a model called VBlock.
The main contributions of our work are summarized below:

• We design a secure model called VBlock for outsourcing data to the cloud by IoV
nodes which ensures tamper-proofing, data provenance, and auditing. We utilize
blockchain techniques to decentralize all data storing entities in the IoV network by
integrating activities as transactions on the blockchain. The cloud server in our model
only accepts the IoV data generated by the IoV node, provided the IoV node has a
valid warrant, and a corresponding transaction is recorded on the blockchain for the
data being outsourced. We describe this as warrant-based data outsourcing.

• We introduce a certificate/key revocation mechanism to ensure that all nodes commu-
nicating in the IoV environment are legitimate and have not been compromised by
malicious activities.

• We conducted a series of experiments to evaluate the validity, security, and perfor-
mance efficiency of our proposed model, and the results shows that our model is
practical and efficient in the IoV scenario.

The rest of this paper is organized as follows. We summarize the related works in
Section 2. In Section 3, we formulate the problem statement. We discuss the preliminaries
and core technologies used for this research in Section 4. Section 5 details the proposed
model. Sections 6 and 7 present the security analyses and performance evaluation. respec-
tively. We present our concluding remarks and future work in Section 8.

2. Related Works

Security and privacy protection in IoV systems continue to be the focus for researchers
due to standardization differences in device production, centralized storage, and access
models. Significant research proposals have been presented which enable secure data
access model in the usual client–server architectures. Other IoT providers use techniques
that constitute proprietary authorization. In such situations, they serve as centralized
authorizing entities. Nonetheless, a major challenge associated with centralized IoT data
management is scalability and trust issues. The security of such systems is solely based on
trust in the central server. A compromise of the central server leaves the entire system void.
Ensuring data security of IoV data for safety and efficient management of the smart city
is very crucial. This has attracted significant research focus on incorporating blockchain
technology into IoV systems to decentralize data security and privacy.

Vallent et al. [15] proposed a certificateless signature scheme based on elliptic curve
cryptography that preserves privacy in VANET. Their scheme sorts out the KGC escrow
problem and uses time and pseudo-identity to validate communicating vehicles while
excluding bilinear pairings. Liu et al. [16] presented a scheme for defense against malicious
nodes in VANET based on blockchain. They constructed two types of blockchains that
can identify malicious nodes and forged messages through reputation, time and distance.
Ma et al. [17] presented a blockchain-based secure, privacy-preserving, and decentralized
IoV architecture. Their work introduced a hierarchical data-sharing framework with two
types of sub-blockchain for flexible access control. Their architecture consists of vehicles,
actuators and sensors, roadside units (RSUs), and cloud computing nodes. They designed a
lightweight consensus algorithm based on a reputation that uses a multi-weight reputation
technique. Kang et al. [18] utilized consortium blockchain and smart contract to secure
data storage and sharing in vehicular edge computing networks. The authors used the tech-
nologies to ensure that the data could not be shared without the necessary authorization,
employing a reputation-based data-sharing scheme to help vehicles achieve high-quality
data sharing. Their reputation scheme improves malicious vehicle detection compared to
traditional reputation schemes. Javaid et al. [19] proposed DrivMan, a blockchain-based
solution for Internet of Vehicles, which ensures trust management, data provenance, and
privacy via smart contract, public key infrastructure (PKI), and physically unclonable
function (PUF). PUF helped to provide a unique crypto fingerprint to every vehicle. They

Sensors 2022, 22, 8083 4 of 23

used a certificate authority (CA) to register vehicles, and also revoke their registration
certificate when necessary. Shi et al. [20] presented a multimedia data-sharing model based
on blockchain and cryptographic primitives for vehicular social networks. They used
cryptographic primitives to conceal the identity of users, vehicles, and RSUs. On the other
hand, blockchain was used to ensure the immutability of reliable data sources and prevent
attackers from forging or tampering with multimedia data. Ali et al. [21] proposed a
blockchain-based certificateless public key signature with bilinear pairing for VANETs that
enable conditional privacy-preserving authentication. They used blockchain to efficiently
implement transparency of pseudo-entities prior to signature verification. Su et al. [22]
presented a privacy protection system based on blockchain for the Internet of Vehicles.
They designed a two-way authentication and key agreement algorithm, which eliminates
the central point of failure problem associated with the traditional IoV system. However,
their model makes use of a proof-of-work consensus algorithm that consumes more com-
puting resources. Malik et al. [23] presented a novel method of mutual authentication and
privacy protection for nodes in a vehicular ad hoc network (VANET). They used a private
blockchain with an access control layer on the shared ledger and introduced a certificate
revocation mechanism to secure the VANET from malicious nodes. Ratep et al. [24] pre-
sented a blockchain-based decentralized IoT solution for vehicles communication (DISV)
to secure vehicle-to-everything (V2X) communication in a decentralized cloud computing
environment. They used a three-layer approach to explore communication via blockchain
on an Ethereum blockchain. However, the base guest price in Ethereum deployment will
limit their scalability. Recent literature has attracted attention in ensuring the integrity of
outsourced data [25–27]. These schemes ensure that data outsourcing to the cloud server is
done by the trusted data generators themselves. However, if a malicious node (generator)
tampers with the outsourced data that it generated already by incentivizing the cloud
server, it is quite hard to detect. Furthermore, schemes rely on centralized authorities to
achieve trust in data management. A comprehensive survey of blockchain for IoV networks
has been discussed in [28–30].

3. Problem Statement
3.1. Cloud-Based IoV Network

There are basically three different entities in the IoV system: the IoV node (the vehicle),
the cloud server, and the authorized data users (police, government/research institutions,
intelligent systems). The procedure for outsourcing IoV data in the IoV system is illustrated
as follows.

First, the IoV node is registered onto the IoV system with a unique ID provided by the
manufacturer. The unique identity of the vehicle is strictly reviewed in order to ensure the
legitimacy of the nodes in the system. Authorization keys are generated for access to the
cloud server services. The same process is done for authorized data users. The IoV node
encrypts the data (GPS Location, Travel Time Index) generated or collected and outsources
them to the cloud server. The cloud server authenticates the node by verifying the validity
of the key being used. The authorized data users retrieve the outsourced data for further
analysis or usage in other smart city systems such as the intelligent transport system and
traffic management system. The efficiency of these systems greatly depends on the data
accessed from the cloud storage server, and any illegal modification of this data will cause
serious problems.

From the description above, the data is generated, encrypted, and uploaded by the
data owner. This makes it very challenging to ensure illegal modification of the already
outsourced data by the data owner does not take place. In this situation, security and
efficiency challenges are introduced.

The general overall safety and efficiency of smart city designs make use of the data
collected and outsourced to the cloud. In the case of the Smart Traffic System, the IoV
devices deployed on the vehicles constantly broadcast their location information to the
cloud to enable the Smart Traffic System to make accurate analysis and controls with the

Sensors 2022, 22, 8083 5 of 23

data received from these vehicles. Attackers can manipulate the data collected and stored
by the cloud server to create a misrepresentation of the actual location data in the cloud
server. In a case of criminal investigation, gathering evidence is an important aspect of
an active police investigation [6]. Data such as GPS tracking information can serve as
evidence that helps in crime investigation. Typically, an attacker may forge, modify or
delete outsourced IoV data to conceal such malicious activity or criminal acts that have been
recorded by the vehicle and could aid the security services (police) in criminal investigation.

3.2. Threat Model

Here, we analyze the potential threats in the IoV system. In this threat model, we
consider threats from two different perspectives: the external threat and the internal threat.

3.2.1. External Threat

External threats target systems by impersonating an IoV node to outsource data to the
cloud. In the existing system, IoV nodes encrypt data with their private key information
and then outsource the data to the cloud. External threats may be able to acquire the
master secret key of other IoV nodes. However, they may not be able to replace public keys.
One-way chosen ciphertext attack OW-CCA security is defined by this type of threat.

3.2.2. Internal Threat

• Rational Storage server. We follow the same assumptions made in [26,31], that the
cloud server is a rational entity. This simply implies that the server will only deviate
from the expected protocol if such a strategy increases benefits in the system.

• Semi-trusted IoV node. Users of the IoV nodes can all be classified as semi-trusted
nodes. By this, we mean the nodes will operate normally during everyday scenarios.
However, the user of the IoV node (attacker) may perform the following attacks.

1. The attacker may collude with the cloud server, outsource forged IoV data
to conceal evidence needed for criminal investigation or cause data integrity
problems that affect smart city management.

2. The attacker may violate the integrity of IoV data outsourced. The attacker may
collude with the cloud server to illegally modify or delete portions of outsourced
data from other nodes on the cloud server.

3.3. Design Goals

In this paper, we focus on the security of outsourced IoV network data to the cloud
server in vehicular networks, where the following challenges exist:

1. How collusion between malicious deployed IoV node (attackers) and the cloud server
can be avoided in the IoV network. A strong assumption exists in the current cloud-
assisted data storage of IoV networks, that the cloud server will not collude with the
IoV node or the user to modify outsourced IoV network data.

2. How to securely timestamp the IoV data before outsourcing to verify the legitimacy of
outsourced data and avoid replay attacks by malicious nodes. It is very important to
accurately maintain and securely timestamp the data from the IoV network.

3. How to securely authenticate the IoV nodes. Current cloud-assisted IoV networks
utilize the traditional PKI schemes such as central authority (CA) or key generation
center (KGC), which are prone to a single point of failure when data are tampered
with in the CA or KGC.

4. How to ensure trust in outsourced data in a cloud-assisted IoV system by eliminating
the single point of trust in the cloud server. The current server-aided model is limited
to a single point of trust in the outsourced cloud server where the security of data no
longer holds when the server is compromised.

Sensors 2022, 22, 8083 6 of 23

4. Preliminaries
4.1. Notations, Conventions, and Basic Theory

Notation: We denote x ‖ y as the concatenation of two bits strings x and y. We use EncCL()
to denote certificateless public key encryption.

Bilinear Maps:
Let G1 and G2 be two cyclic additive and multiplicative groups, respectively, with the

same prime order q. P is the generator of G1. A bilinear map e : G1 × G1 → G2 should
satisfy the following properties.

• Bilinearity: e(aP, bP) = e(P, P)ab = e(P, abP) = e(abP, P) for all a, b ∈ z∗q
• Non-degeneracy: For P, Q ∈ G1, e(P, Q) 6= 1 where 1 is the identity element in G2.
• Computability: There exists an efficient computable algorithm to compute e(P, Q) for

P, Q ∈ G1.

4.2. Cryptographic Keys

Cryptographic keys employed in this model are used to guarantee the security of the
model used and the process. We encrypt data generated to protect its confidentiality for
communication between devices via untrusted channels. These keys provide the necessary
assurance of high-level data security for our model. The processes of outsourcing data
to and sending and receiving query responses make use of cryptographic primitives to
achieve secure communication, free from unwanted/malicious activities such as eavesdrop-
ping. Cryptographic keys are also employed at the data consumption level to ensure the
authenticity of users requesting access to the outsourced data. We adopt the certificateless
public key cryptography system, where the process of generating a key is divided into
two parts. The KGC provides the first part, which is the partial private key, and the user
combines it with his/her secret value to generate the full private key. Usually, the Key
Generation Center (KGC) generates keys for usage in cryptosystems. However, in a case
of a compromised KGC, the whole system breaks down. To solve this, Certificateless
cryptography was introduced. All cryptographic operations are done by the user using
the full private key, which consists of the user’s secret value and the partial private key
generated by the KGC. Here, the KGC cannot have access to the user’s data because it has
only partial access to the private key.

4.3. Blockchain

The blockchain is a classical distributed database that shares transactional records
that are linked together across a peer-to-peer network. Records are shared in such a way
that all participants in the network hold the same copy of the database. No central au-
thority is needed in this network, and no single node or participant can control the whole
peer-to-peer network. Blockchain technology has recently attracted interest from many
computer scientists and domain experts in various industries and academia. Cryptocur-
rency (such as Bitcoin [32], Ethereum [33], and Zcash [34]) has been a great application
of this technology. Lately, the financial field has received major backing with blockchain
technology. Nevertheless, it has been very useful in many other non-financial fields such
as identity-based PKI [35], supply chain, crowdsourcing [36], decentralized proof of doc-
ument existence, decentralized IoT [37], decentralized storage [38], and electronic health
systems [39]. Blocks are linked together in series and are added by consensus algorithm
among the participating nodes. Blocks are mathematically verified using cryptography to
ensure that they follow in order from the previous block. The cryptographic scheme used
in the consensus protocol makes the network immutable and tamper-resistant. Figure 2
shows a simplified blockchain structure.

Sensors 2022, 22, 8083 7 of 23

Sensors 2022, 22, 8083 7 of 23

ensure that they follow in order from the previous block. The cryptographic scheme used
in the consensus protocol makes the network immutable and tamper-resistant. Figure 2
shows a simplified blockchain structure.

Figure 2. A simplified Blockchain Structure.

4.4. Hyperledger Fabric Blockchain
Fabric is the most common open-source permissioned blockchain platform project

developed by the Linux Foundation. The project, which consists of other platforms, in-
cludes Hyperledger Sawtooth, Hyperledger Iroha, Hyperledger Burrow, and Hy-
perledger Indy. Three types of nodes basically form the Hyperledger Fabric network.
These nodes are peers, customers, and clients. A membership service provider (MSP) that
is owned by participating organizations is used to identify nodes on the network. Fabric
utilizes a three-phase protocol, execute–order–validate, to complete transactions. Figure 3
shows an example of a Fabric blockchain network operated by three organizations.

Figure 3. Fabric blockchain network operated by three organizations.

Clients send transaction proposals to the endorsing peers specified by the endorse-
ment policy. The endorsing peers validate the transaction proposal, execute the chaincode
(smart contract) and send a response to the client. The client waits to get enough responses
specified by endorsing policy and then sends the responses as a transaction to the ordering
service. The transaction contains the set of endorsements, the metadata of the transaction,
the transaction payload, and the channel ID. The ordering service is not permitted to check
the content of the transactions. It uses the plugged consensus mechanism to order trans-
actions into blocks and broadcast them to the committing peers using the gossip protocol.

Figure 2. A simplified Blockchain Structure.

4.4. Hyperledger Fabric Blockchain

Fabric is the most common open-source permissioned blockchain platform project
developed by the Linux Foundation. The project, which consists of other platforms, includes
Hyperledger Sawtooth, Hyperledger Iroha, Hyperledger Burrow, and Hyperledger Indy.
Three types of nodes basically form the Hyperledger Fabric network. These nodes are
peers, customers, and clients. A membership service provider (MSP) that is owned by
participating organizations is used to identify nodes on the network. Fabric utilizes a
three-phase protocol, execute–order–validate, to complete transactions. Figure 3 shows an
example of a Fabric blockchain network operated by three organizations.

Sensors 2022, 22, 8083 7 of 23

ensure that they follow in order from the previous block. The cryptographic scheme used
in the consensus protocol makes the network immutable and tamper-resistant. Figure 2
shows a simplified blockchain structure.

Figure 2. A simplified Blockchain Structure.

4.4. Hyperledger Fabric Blockchain
Fabric is the most common open-source permissioned blockchain platform project

developed by the Linux Foundation. The project, which consists of other platforms, in-
cludes Hyperledger Sawtooth, Hyperledger Iroha, Hyperledger Burrow, and Hy-
perledger Indy. Three types of nodes basically form the Hyperledger Fabric network.
These nodes are peers, customers, and clients. A membership service provider (MSP) that
is owned by participating organizations is used to identify nodes on the network. Fabric
utilizes a three-phase protocol, execute–order–validate, to complete transactions. Figure 3
shows an example of a Fabric blockchain network operated by three organizations.

Figure 3. Fabric blockchain network operated by three organizations.

Clients send transaction proposals to the endorsing peers specified by the endorse-
ment policy. The endorsing peers validate the transaction proposal, execute the chaincode
(smart contract) and send a response to the client. The client waits to get enough responses
specified by endorsing policy and then sends the responses as a transaction to the ordering
service. The transaction contains the set of endorsements, the metadata of the transaction,
the transaction payload, and the channel ID. The ordering service is not permitted to check
the content of the transactions. It uses the plugged consensus mechanism to order trans-
actions into blocks and broadcast them to the committing peers using the gossip protocol.

Figure 3. Fabric blockchain network operated by three organizations.

Clients send transaction proposals to the endorsing peers specified by the endorsement
policy. The endorsing peers validate the transaction proposal, execute the chaincode (smart
contract) and send a response to the client. The client waits to get enough responses
specified by endorsing policy and then sends the responses as a transaction to the ordering
service. The transaction contains the set of endorsements, the metadata of the transaction,
the transaction payload, and the channel ID. The ordering service is not permitted to
check the content of the transactions. It uses the plugged consensus mechanism to order
transactions into blocks and broadcast them to the committing peers using the gossip
protocol. Each peer independently validates the transactions and commits the blocks to
their locally stored ledger state.

Sensors 2022, 22, 8083 8 of 23

5. Architecture of VBlock

We propose VBlock, a model based on blockchain technology in smart city vehicular
networks that allows for the development of a decentralized network of large-scale vehicu-
lar data security more effectively and efficiently. With this architecture, we aim to provide
IoV data security via blockchain and also address the challenges associated with deploying
blockchain to IoV networks. In selecting the type of blockchain suitable for our model, we
consider the following factors: the number of transactions per second, confirmation time,
security and access control, participation cost, and fault tolerance on the network. The IoV
network requires a high-performing blockchain platform that supports a high number of
transactions per second with a low confirmation time. The use case designed in our model
requires such a type of blockchain and hence makes the consortium blockchain best suited
for our model. We model VBlock in a consortium blockchain where access to the ledger is
confined to previously validated and registered members via only a Hyperledger Fabric
blockchain to increase the security and privacy of data. Figure 4 shows the architectural
overview with the key components of our model.

Sensors 2022, 22, 8083 8 of 23

Each peer independently validates the transactions and commits the blocks to their locally
stored ledger state.

5. Architecture of VBlock
We propose VBlock, a model based on blockchain technology in smart city vehicular

networks that allows for the development of a decentralized network of large-scale vehic-
ular data security more effectively and efficiently. With this architecture, we aim to pro-
vide IoV data security via blockchain and also address the challenges associated with de-
ploying blockchain to IoV networks. In selecting the type of blockchain suitable for our
model, we consider the following factors: the number of transactions per second, confir-
mation time, security and access control, participation cost, and fault tolerance on the net-
work. The IoV network requires a high-performing blockchain platform that supports a
high number of transactions per second with a low confirmation time. The use case de-
signed in our model requires such a type of blockchain and hence makes the consortium
blockchain best suited for our model. We model VBlock in a consortium blockchain where
access to the ledger is confined to previously validated and registered members via only
a Hyperledger Fabric blockchain to increase the security and privacy of data. Figure 4
shows the architectural overview with the key components of our model.

Figure 4. VBlock architecture with key components.

5.1. Choice of Blockchain Platform
Blockchain systems rely on consensus mechanisms to keep the network running.

Ethereum and Hyperledger being the most popular blockchain platforms, are both great
platforms; however, they target different use cases and have different consensus mecha-
nisms. Hyperledger Fabric is a permissioned blockchain and therefore ensures strict con-
trol over members of the network. Only preconfigured, authorized members can have
access to the network. This ensures higher data privacy, security, and confidentiality as
compared to the Ethereum blockchain, which is public, with transactions being transpar-
ent to any participants that join the network. Although Ethereum now introduces the PoS
consensus mechanism, it still requires some base guest price to keep the network running
as compared to Hyperledger, which does not require any. Hyperledger comparably has
lower confirmation time and higher throughput. For this work, Ethereum did not fully
meet the needed requirements of our IoV network design, which requires higher transac-
tion speed with higher data privacy, security, and confidentiality. Moreover, the cost-free
deployment feature of Hyperledger makes it more suitable for the IoV network as

Figure 4. VBlock architecture with key components.

5.1. Choice of Blockchain Platform

Blockchain systems rely on consensus mechanisms to keep the network running.
Ethereum and Hyperledger being the most popular blockchain platforms, are both great
platforms; however, they target different use cases and have different consensus mech-
anisms. Hyperledger Fabric is a permissioned blockchain and therefore ensures strict
control over members of the network. Only preconfigured, authorized members can have
access to the network. This ensures higher data privacy, security, and confidentiality as
compared to the Ethereum blockchain, which is public, with transactions being transparent
to any participants that join the network. Although Ethereum now introduces the PoS
consensus mechanism, it still requires some base guest price to keep the network running as
compared to Hyperledger, which does not require any. Hyperledger comparably has lower
confirmation time and higher throughput. For this work, Ethereum did not fully meet
the needed requirements of our IoV network design, which requires higher transaction
speed with higher data privacy, security, and confidentiality. Moreover, the cost-free de-
ployment feature of Hyperledger makes it more suitable for the IoV network as compared
to Ethereum, which requires the base guest price for every transaction on the network. For
these reasons, we chose Hyperledger Fabric Blockchain.

Sensors 2022, 22, 8083 9 of 23

5.2. Key Components

Roadside Units (RSUs): These are special wireless communication devices or base
stations mounted along the road to provide connectivity and information support
to moving vehicles within their range. RSUs communicate with IoV nodes (OBUs)
via message exchanges within their communications zone. They usually have better
storage capacity and computation power than the IoV nodes. In this work, we model
the RSU as a warrant issuer that permits the IoV node to outsource data to the cloud
server. The cloud server only receives data for storage if the IoV node provides a valid
warrant from the RSU.
IoV node (OBU): These are vehicles deployed with Internet of Things sensors that
are able to collect, compute and send data to the cloud server or an edge server. They
have inbuilt clocks that are used in timestamping communication messages. They are
the main data generators on the network. They are tamper-proof; hence, information
stored on them, such as secret key, cannot be uncovered. They communicate with the
RSUs to obtain a warrant to outsource the data collected or generated to the cloud or
edge server. In our model, they create transactions on the blockchain and store the
hash of the corresponding data generated, before outsourcing the data to the cloud or
edge server.
Key Generation Center (KGC): This is a trusted entity that manages keys used in com-
munication in our network. It registers RSUs and IoV nodes and generates partially
private key and pseudo-identities (PSID), for anonymity of entities communicating. It
stores a mapping of the assigned pseudo-identity with the actual identity and public
key in a hash map in its database. It can trace and revoke the identity of malicious
entities. The KGC also has enormous computation resources.
Cloud or Edge Server: This is a high-end computational resource and a huge storage-
enabled server. Considering the limited resources of the IoV nodes for storage and
managing large data generated, the cloud or edge server is the perfect solution. It
provides unlimited data processing and storage resources to the IoV nodes. The IoV
nodes outsource the data generated to the cloud server.

5.3. Layers Design

We grouped the various entities of our model into five layers, namely: data generation
layer, data management layer, data security and provenance layer, data storage layer, and
data consumption/usage layer. Figure 5 shows the various layer groupings of our model.

Sensors 2022, 22, 8083 9 of 23

compared to Ethereum, which requires the base guest price for every transaction on the
network. For these reasons, we chose Hyperledger Fabric Blockchain.

5.2. Key Components
Roadside Units (RSUs): These are special wireless communication devices or base
stations mounted along the road to provide connectivity and information support to
moving vehicles within their range. RSUs communicate with IoV nodes (OBUs) via
message exchanges within their communications zone. They usually have better stor-
age capacity and computation power than the IoV nodes. In this work, we model the
RSU as a warrant issuer that permits the IoV node to outsource data to the cloud
server. The cloud server only receives data for storage if the IoV node provides a
valid warrant from the RSU.
IoV node (OBU): These are vehicles deployed with Internet of Things sensors that
are able to collect, compute and send data to the cloud server or an edge server. They
have inbuilt clocks that are used in timestamping communication messages. They are
the main data generators on the network. They are tamper-proof; hence, information
stored on them, such as secret key, cannot be uncovered. They communicate with the
RSUs to obtain a warrant to outsource the data collected or generated to the cloud or
edge server. In our model, they create transactions on the blockchain and store the
hash of the corresponding data generated, before outsourcing the data to the cloud
or edge server.
Key Generation Center (KGC): This is a trusted entity that manages keys used in
communication in our network. It registers RSUs and IoV nodes and generates par-
tially private key and pseudo-identities (𝑃𝑆ூ), for anonymity of entities communi-
cating. It stores a mapping of the assigned pseudo-identity with the actual identity
and public key in a hash map in its database. It can trace and revoke the identity of
malicious entities. The KGC also has enormous computation resources.
Cloud or Edge Server: This is a high-end computational resource and a huge storage-
enabled server. Considering the limited resources of the IoV nodes for storage and
managing large data generated, the cloud or edge server is the perfect solution. It
provides unlimited data processing and storage resources to the IoV nodes. The IoV
nodes outsource the data generated to the cloud server.

5.3. Layers Design
We grouped the various entities of our model into five layers, namely: data genera-

tion layer, data management layer, data security and provenance layer, data storage layer,
and data consumption/usage layer. Figure 5 shows the various layer groupings of our
model.

Figure 5. VBlock design with five main layers and individual components. Figure 5. VBlock design with five main layers and individual components.

Data Generation Layer: This layer consists of vehicles deployed with IoT-enabled
devices or simply IoV nodes and roadside units (RSUs). The IoV node sends generated
or collected data to the data storage layer via the data management layer after it
receives a warrant from the RSU. The data includes the GPS location data, speed, and

Sensors 2022, 22, 8083 10 of 23

safety condition status. The data cannot be outsourced without receiving a warrant
from the RSU node.
Data Management Layer: This layer consists of library functions that allow access
and process requests received from the data generation layer or consumption layer. It
focuses on some specific data processing and operations. Processing of requests in the
system includes access to cloud storage data. It also interfaces with the data security
and provenance layer. Additionally, it has structured functions that send activities to
the data security and provenance. Both the data generation layer and consumption
layer interface directly with the data management layer for the processing of requests.
Data Security and Provenance Layer: This layer is responsible for data security and
auditing. This layer stores hashes of corresponding data needing to be secured from
illegal modification. It ensures the immutability of stored data which helps to ensure
data provenance. It keeps track of changes made to stored data. It also ensures the secu-
rity of communication by providing the underlying security communication scheme.
Data Storage Layer: This layer is responsible for the scalability of the IoV system
applications by providing a distributed or parallel computing environment. This layer
plays a major role in storing and managing the IoV data received from the IoV node.
Sensors on the vehicles continuously generate a significant amount of data that is
collected and managed by the data storage layer.
Data Consumption/Usage Layer: The layer consists of all kinds of user classifications,
the aim of which are to access the outsourced data from the system for research, in-
vestigation, or other useful purposes. Most users at this level help analyze the data
received by the cloud server for research purposes. Some of these users include insur-
ance companies, security agencies such as police, healthcare organizations, research
institutions such as universities, and governmental bodies.

5.4. Communication Design

In this section, we present the communication flow of our model to achieve data
security and integrity. We outline the communication structures that realize secure data
transmission by the nodes and collusion-resistant features of the system. The first stage
involves the initialization of the system, where relevant system parameters are set and
the blockchain network initiated. The vehicle sends its real identity to the KGC. The KGC
verifies the uniqueness of the IoV node’s identity and generates a pseudo-identity PSID for
the IoV node if the real ID submitted is not tagged as revoked. The KGC then generates the
partial private key for the IoV node. The KGC sends both PSID and partial private key to
the IoV node. IoV verifies the KGC and generates its full private key and public key. The
IoV node sends its public key to the KGC. A transaction is created on the blockchain for
the public key, and the pseudo-identity is generated to secure the public key information
from any future tamper attacks. For the IoV node to outsource generated data to the
cloud, it sends a warrant request to the RSU node. The IoV node signs repeated messages
requesting for a warrant to the nearby RSU node. This is done at an interval of 100–300 ms,
according to the DSRC protocol. The receiving RSU node verifies the message to ensure
that the request is from a legitimate IoV node. The IoV node is also required to send
clock information which is used by the RSU to avoid replay attacks. The RSU compares
the clock information received to its own to determine the difference. If the difference
exceeds the specified threshold, the message is dropped. We further adopt the mechanism
described in [40] to increase the security in detecting malicious nodes. To reduce the latency
in communication exchanges for every warrant issuing process, we have designed the RSU
node to periodically fetch revoked public key lists from the KGC. For every list fetched
from the KGC, it is verified from the blockchain using the stored hash values to ensure that
it corresponds to the data stored earlier by the KGC on the blockchain. In a situation where
the list does not correspond to the hash stored on the blockchain, it means the KGC is
compromised, and therefore the list cannot be used [41]. The RSU node responds with the
warrant on successful verification of the public key information and pseudo-identity of the

Sensors 2022, 22, 8083 11 of 23

IoV node. Finally, the IoV node signs and encrypts the IoV data, creates a corresponding
transaction on the blockchain using the steps described in Section 4.4 of this paper, and
outsources the data to the cloud server. The cloud server checks the validity of the warrant
and transaction. If successful, the cloud server accepts the data. We provide a sequence
diagram in Figure 6 that illustrates the processes involved.

Sensors 2022, 22, 8083 11 of 23

designed the RSU node to periodically fetch revoked public key lists from the KGC. For
every list fetched from the KGC, it is verified from the blockchain using the stored hash
values to ensure that it corresponds to the data stored earlier by the KGC on the block-
chain. In a situation where the list does not correspond to the hash stored on the block-
chain, it means the KGC is compromised, and therefore the list cannot be used [41]. The
RSU node responds with the warrant on successful verification of the public key infor-
mation and pseudo-identity of the IoV node. Finally, the IoV node signs and encrypts the
IoV data, creates a corresponding transaction on the blockchain using the steps described
in Section 4.4 of this paper, and outsources the data to the cloud server. The cloud server
checks the validity of the warrant and transaction. If successful, the cloud server accepts
the data. We provide a sequence diagram in Figure 6 that illustrates the processes in-
volved.

Figure 6. Communication flow between the nodes in the system.

5.5. Key Revocation
Key revocation comprises the steps taken to remove malicious or compromised IoV

nodes from the network. The RSU node is designed to initiate the key revocation process
in the system. It uses the message exchange mechanism required to issue a warrant to the
IoV node to determine if the IoV node is compromised or malicious. The detailed process
is described below.

The RSU node, on receipt of a warrant request, sends a verification request message
with a random number 𝑟, encrypted with the public key of the IoV node. The IoV node is
expected to send a response verification with a random value 𝑟 + 1 within a valid time
period that is less than the threshold time interval (THs) of the system. The RSU node, on
receipt of the response verification, compares the clock information received to its clock.
If the time interval is within the specified threshold value and the random value is equal
to 𝑟 + 1, the message exchange continues with the issuance of the warrant. If otherwise,
the RSU node logs the IoV node’s information into its database of malicious lists. The RSU
queries its database of malicious lists for the current IoV node’s information. If the query
result returns false, the current IoV node is marked as malicious, and its information is
stored in the RSU’s database. The RSU now bundles the IoV node’s information (𝑃𝑆ூ,
public key 𝑃𝐾ூ, and other information) and sends a revocation request to the KGC. The

Figure 6. Communication flow between the nodes in the system.

5.5. Key Revocation

Key revocation comprises the steps taken to remove malicious or compromised IoV
nodes from the network. The RSU node is designed to initiate the key revocation process
in the system. It uses the message exchange mechanism required to issue a warrant to the
IoV node to determine if the IoV node is compromised or malicious. The detailed process
is described below.

The RSU node, on receipt of a warrant request, sends a verification request message
with a random number r, encrypted with the public key of the IoV node. The IoV node
is expected to send a response verification with a random value r + 1 within a valid time
period that is less than the threshold time interval (THs) of the system. The RSU node, on
receipt of the response verification, compares the clock information received to its clock.
If the time interval is within the specified threshold value and the random value is equal
to r + 1, the message exchange continues with the issuance of the warrant. If otherwise,
the RSU node logs the IoV node’s information into its database of malicious lists. The RSU
queries its database of malicious lists for the current IoV node’s information. If the query
result returns false, the current IoV node is marked as malicious, and its information is
stored in the RSU’s database. The RSU now bundles the IoV node’s information (PSID,
public key PKID, and other information) and sends a revocation request to the KGC. The
KGC validates the revocation request and extracts the IoV node’s real information. It marks
the IoV node as revoked and creates a corresponding transaction on the blockchain to
secure the list of revoked IoV nodes.

5.6. Assumptions

Assumptions for the proposed architecture are as follows:

• All communication with the KGC is done via a secure channel.

Sensors 2022, 22, 8083 12 of 23

• IoV nodes connect with the RSUs through a secure channel.
• IoV node uses a secure communication channel to outsource the generated data to the

cloud server.
• The IoV nodes and RSUs have a secure communication channel with the blockchain

network.

5.7. Construction of VBlock

We leverage an efficient certificateless public key cryptography scheme [42] to con-
struct VBlock. We anonymize the real identity of nodes with a pseudo-identity to achieve
conditional privacy of the nodes.

5.7.1. Setup

In this phase, the algorithm sets the parameters and the secret parameters needed to
initialize the system. The KGC runs this algorithm with input k and outputs the public
parameters params. It determines the pairing parameters: G1 and G2 of prime order q,
with bilinear map e : G1 × G1 → G2 . It chooses the generator P ∈ G1. It chooses the hash
functions: H1 : {0, 1}∗ → Z∗p , H2 : G1 → Z∗p , H3 : G2 → {0, 1}n , H4 : G2 → Z∗p , where n
is the number of message bits being sent. It randomly chooses (s1, s2) ∈ Z∗p a master secret
key (MSK), then set Ppub = (s1P, s2P) as its master public key (MPK). It publishes the

public parameters, params =
(

p, q, G1 , G2, e, g, Ppub, H1, H2, H3

)
where g = e(P, P).

This phase also includes the creation of the various blockchain accounts for the nodes
of the model.

5.7.2. Register

In this phase, the real unique identity RID of the IoV node is taken to generate
the pseudo-identity and partial private key. The IoV node selects a secrete value b,
computes PSID,1 = bP and sends (RID , PSID,1) to the KGC. The KGC generates the
pseudo-identity PSID using the hash function H4, which is not published. KGC computes
PSID,2 = RID ⊕ H4(s1PSID,1||t) where t is the timestamp. The pseudo-identity is given
as PSID = (PSID,1 , PSID,2, t). The KGC runs a partial private key generation algorithm
with params, msk, and the IoV node pseudo-identity PSID and returns the partial private
key PPKID.

KGC sends the pseudo-identity PSID and partial private key PPKID to the IoV node
via a secure channel. The IoV node uses the partial private key and pseudo-identity to
generate its full key pairs, i.e., public and private key. The generated public key is PKID
and the private key is PSKID; the IoV node broadcasts the public key PKID to the KGC.
The KGC creates a transaction on the blockchain for every public key received and its
corresponding pseudo-identity.

5.7.3. Store

We describe the mode of outsourcing the data to the cloud server. An RSU node
with its identity denoted by RSUID, with secrete key αRS and corresponding public key
as PKRS = αRSP, computes a warrant WRS to authorize the IoV node to outsource
IoV data to the cloud. The warrant includes a validity period TRS and some auxiliary
information AuxRS.

WARS = RSUID‖ PSID ‖ TRS‖AuxRS (1)

WRS = αRS · H(WARS) (2)

An IoV node generates data (message) M, receives the warrant, encrypts the data,
creates a transaction on the blockchain, and sends the encrypted data together with the
transaction ID to the cloud server, CS. By the certificateless encryption in [42] it encrypts
M as

C = EncCL(M‖WARS‖WRS) (3)

Sensors 2022, 22, 8083 13 of 23

With the current time t, the IoV node extracts the hash value of the latest block to be
added to the blockchain. We denote this as VBhasht.

The IoV node creates a transaction Tx that is endorsed and recorded into the block
and sends the transaction details to the cloud server with the data value of the transaction
as VBhasht‖h(RSUID)‖h(C‖WARS‖WRS).

The IoV node sends (VBhasht , C , WARS , WRS) and Transaction ID, TxID to the
cloud server.

The cloud server confirms the transaction from the state transition of the ledger and
checks the validity of TRS and VBhasht by the equation:

e(WRS, P) = e(H(WARS), PKRS) (4)

5.7.4. Audit

Given the IoV Data (RSUID , C , WARS , WRS , TxID), the auditor is capable of check-
ing the correctness and timeliness via the following:

• Trim the IoV data and obtain (C , WARS , WRS , TxID).
• Extract the corresponding transactions from the blockchain.
• Check if the number of transactions created correspond to the number of stored IoV

data. If the verification fails, reject.
• Check the validity of WRS and WARS . Reject if the validity check fails or is invalid.
• Verify the IoV data timelines by verifying the time of the transaction and reject if the

check fails. The transaction time can be obtained from the block.
• Compute VBhasht‖h(RSUID)‖h(C‖WARS‖WRS) and confirm it is the same as the

transaction information.

If the verifications above are successful, the timeliness and correctness of the IoV data
is guaranteed. Figure 7 shows a transaction on the blockchain for outsourcing data.

Sensors 2022, 22, 8083 13 of 23

𝑊ோௌ = 𝛼ோௌ ⋅ 𝐻(𝑊𝐴ோௌ) (2)

An IoV node generates data (message) 𝑀, receives the warrant, encrypts the data, creates
a transaction on the blockchain, and sends the encrypted data together with the transaction ID
to the cloud server, 𝐶𝑆. By the certificateless encryption in [42] it encrypts M as 𝐶 = 𝐸𝑛𝑐(𝑀‖𝑊𝐴ோௌ‖𝑊ோௌ) (3)

With the current time 𝑡, the IoV node extracts the hash value of the latest block to be
added to the blockchain. We denote this as 𝑉𝐵ℎ𝑎𝑠ℎ௧.

The IoV node creates a transaction 𝑇𝑥 that is endorsed and recorded into the block
and sends the transaction details to the cloud server with the data value of the transaction
as 𝑉𝐵ℎ𝑎𝑠ℎ௧‖ℎ(𝑅𝑆𝑈ூ)‖ℎ(𝐶‖𝑊𝐴ோௌ‖𝑊ோௌ).

The IoV node sends (𝑉𝐵ℎ𝑎𝑠ℎ௧ , 𝐶 , 𝑊𝐴ோௌ , 𝑊ோௌ) and Transaction ID, 𝑇𝑥ூ to the
cloud server.

The cloud server confirms the transaction from the state transition of the ledger and
checks the validity of 𝑇ோௌ and 𝑉𝐵ℎ𝑎𝑠ℎ௧ by the equation: 𝑒(𝑊ோௌ, 𝑃) = 𝑒(𝐻(𝑊𝐴ோௌ), 𝑃𝐾ோௌ) (4)

5.7.4. Audit
Given the IoV Data (𝑅𝑆𝑈ூ , 𝐶 , 𝑊𝐴ோௌ , 𝑊ோௌ , 𝑇𝑥ூ), the auditor is capable of checking

the correctness and timeliness via the following:
• Trim the IoV data and obtain (𝐶 , 𝑊𝐴ோௌ , 𝑊ோௌ , 𝑇𝑥ூ).
• Extract the corresponding transactions from the blockchain.
• Check if the number of transactions created correspond to the number of stored IoV

data. If the verification fails, reject.
• Check the validity of 𝑊ோௌ and 𝑊𝐴ோௌ . Reject if the validity check fails or is invalid.
• Verify the IoV data timelines by verifying the time of the transaction and reject if the

check fails. The transaction time can be obtained from the block.
• Compute 𝑉𝐵ℎ𝑎𝑠ℎ௧‖ℎ(𝑅𝑆𝑈ூ)‖ℎ(𝐶‖𝑊𝐴ோௌ‖𝑊ோௌ) and confirm it is the same as the

transaction information.
If the verifications above are successful, the timeliness and correctness of the IoV data

is guaranteed. Figure 7 shows a transaction on the blockchain for outsourcing data.

Figure 7. Transaction on the Hyperledger blockchain by the IoV node for outsourcing data.

5.8. Algorithms

Figure 7. Transaction on the Hyperledger blockchain by the IoV node for outsourcing data.

5.8. Algorithms

We provide the three main algorithms needed to achieve our proposed model for
outsourcing data to the cloud server. The description is as follow.

We denote endorsing peers as Endi, public key and private key of endorsing peers
as EndPKi and EndSKi respectively. We denote committing peers as Comi, public key
and private key of committing peers as ComPKi and ComSKi respectively. We denote
chaincode as CHC, numbers of endorsing peers as ‘l’ and number of committing peers as
‘m’. The endorsement policy is represented as EP and Transaction ID as TxID. We show
the algorithm for requesting warrant from RSU node in Algorithm 1. We also show the
algorithm for creating a transaction on the blockchain for data generated in Algorithm 2.
We finally show the algorithm for outsourcing data to the cloud server in Algorithm 3.

Sensors 2022, 22, 8083 14 of 23

Algorithm 1 Requesting for Warrant from RSU node

Require: IoVID, PKID, PSID, PSKID, RSUID,
1: IoVID signs warrant request message MRwi: WRi = sign (MRwi, PSID, PSKID)
2: IoVID sends WRi to nearest RSUID.
3: RSUID checks
4: →Condition 1: Verify (PKID, PSID, MRwi, WRi)
5: →Condition 2: Check if PSID or PKID is not revoked
6: if (Condition 1 && Condition 2) = True
7: →RSUID computes warrant
8: →→WARS = RSUID ‖ PSID ‖ TRS ‖ AuxRS
9: →→WRS = αRS · H(WARS)
10: →RSUID sends warrant (WRS, WARS) to IoVID
11: else return fail end if

Algorithm 2: Creating Transaction for Data Generated

Require: IoVID, PKID, PSID, PSKID, M, Endi, Comi
1: IoVID computes ciphertext C of the data generated M
2: IoVID extracts VBhasht
3: IoVID computes VBhasht ‖ h(RSUID) ‖ h(C ‖WARS ‖WRS)
4: IoVID sets transaction proposal Tx = VBhasht ‖ h(RSUID) ‖ h(C ‖WARS ‖WRS)
5: IoVID signs Transaction Proposal Tx: STx = sign (Tx, PSID, PSKID)
6: IoVID sends STx to endorsers Endi,
7: for Endi(1 ≤ i ≤ l) check
8: →Condition 1: Verify (PKID, Tx, STx)
9: →Condition 2: Execute chaincode CHC and check format of Tx
10: if (Condition 1 && Condition 2) = True
11: →Endi signs STx: STx′ = sign (STx, EndSKi)
12: →Send transaction proposal response STx′ to IoVID
13: else return fail end if
14: end for
15: IoVID sends STx′ to ordering service and wait for acknowledgment
16: for Comi(1 ≤ i ≤ m) check
17: →Condition 1: Verify (EndPKi, PKID, STx, STx′)
18: →Condition 2: Check Endorsement Policy EP
19: if (Condition 1 && Condition 2) = True
20: →Set the transaction status = valid
21: →Validate consensus and add transaction to block
22: →Send acknowledgment TxID to IoVID
23: else
24: →Set transaction status = invalid; →
25: →Send acknowledgment to IoVID
26: end if
27: end for

Algorithm 3: Outsourcing Data to the Cloud Server

Require: IoVID, PKID, PSID, PSKID, CS, C , WARS, WRS, TxID
1: IoVID signs and sends (VBhasht , C, WARS, WRS, TxID) to cloud server CS
2: CS checks
3: →Condition 1: Verify (PKID, sign(VBhasht , C, WARS , WRS , TxID))
4: →Condition 2: Verify transaction TxID validity
5: →Condition 3: Verify warrant; compute e(WRS, P) = e(H(WARS), PKRS)
6: if (Condition 1 && Condition 2 && Condition 3) = True
7: →CS, accept and store data (C, WARS, WRS , TxID)
8: else return fail end if

Sensors 2022, 22, 8083 15 of 23

6. Security Analysis
6.1. Security against Forgery and Modification Attacks

VBlock is secure against forgery attacks conducted by any adversary. It is not possible
for an adversary to modify a transaction in the blockchain for corresponding data, even if
the adversary forges IoV data. If a semi-trusted IoV node (user) tries to forge IoV data, it
may conduct the following attacks: 1. The IoV node will outsource its generated data to the
cloud server but attempts to convince the cloud server that the IoV data were generated by
another IoV node. 2. The IoV node tries to replace or modify existing IoV data with new
data by colluding with the cloud server.

For attack 1, in order to validate the data being outsourced by the IoV node, we
require the RSU nodes to generate a warrant to the IoV node to allow the IoV node to
outsource the data. The warrant includes the RSU node identity, IoV node pseudo-identity,
validity period, and other additional information recorded on the blockchain. The warrant
is unforgeable as it is constructed based on a secure signature scheme [43]. Hence it is
computationally impossible for the IoV node to conduct attack 1. For attack 2, the IoV data
generated by the IoV node is recorded as a transaction on the blockchain. If a node tries
to replace stored IoV data with new ones, the only feasible way is to fork the blockchain
and cause the majority of consensus nodes to accept the blockchain with the corresponding
transaction of the new IoV data generated. At this point, the security against forgery attacks
is based on the fundamental blockchain security. Even if there is collusion among the three
entities, the IoV node, a malicious RSU node and the cloud server, the IoV node cannot
succeed in conducting attack 2.

6.2. VBlock Guarantees the Timeliness of IoV Data

The timeline for every outsourced data corresponds to a transaction time on the
blockchain. In VBlock, each datum maps to one transaction in the blockchain. This makes
it possible to efficiently retrieve the time when the IoV data was generated and outsourced
to the cloud server. Hence there is a guarantee of timeliness of IoV data.

6.3. VBlock Guarantees Public Key Security

Since we integrate the public key information into the blockchain as transactions, this
makes it impossible for an adversary to tamper with the user’s public key considering the
current computing power and the adversary’s attack ability. Even if an attacker succeeds
in breaking the security of the KGC, the attacker cannot break that of the blockchain. In
summary, the computing power required for an attacker to decipher the VBlock’s model
exceeds the attacker’s deciphering ability. Hence the public key in the system is safe.

6.4. Necessity of Blockchain Integration

In the absence of blockchain, VBlock is unprotected from data forgery, modification,
and deletion attacks without noticing when there is collusion. Moreover, as the load on
the central KGC increases extremely, it may cause the system to fail. When the central
server or KGC is tampered with, it may cause huge problems for the system. However, in
VBlock, IoV data generated by the IoV node and the activities performed by the KGC and
RSU are all integrated into the blockchain as transactions. This forms the basic principle
of VBlock. Hence, provided the tamper-resistant nature of the blockchain is guaranteed,
the correctness, security and integrity of outsourced IoV data in VBlock is also guaranteed.
This makes the blockchain technology a key necessity in VBlock.

6.5. VBlock Is Resistant to Replay Attacks

A replay attack is the repeated process of transmitting valid data packets or messages
that have already been used in previous communications by a malicious mode. Attackers
use this mechanism to deceive the receiver of the packet or message into believing that the
malicious node is a legitimate node. This model uses the clock difference (threshold range)
and random number challenge to mitigate replay attacks on the network. Only messages

Sensors 2022, 22, 8083 16 of 23

within the threshold range and with the right response to the random number challenge
are considered valid, and hence resistant to replay attacks.

6.6. VBlock Ensures Data Access Control

VBlock access control intends to constrain the type of resources or data that members
of the network are authorized to see. The intended data security and privacy level setting
is achieved through channel configuration provided by the Hyperledger platform. Hyper-
ledger Fabric allows adjustment of data transparency levels to any desired use case via
channels setup or private data specification.

7. Performance Evaluation

We present the analysis and performance efficiency of our model with respect to com-
putation costs and simulation throughputs in this section. We also discuss the simulation
details of our proposed system.

7.1. Evaluation Metrics

We analyze the computational cost involved in our model and the basic metrics of the
Hyperledger Fabric setup, which include success rate, transaction latency, and transaction
throughput. We briefly explain these below.

• The number of successful transactions executed out of the total transaction is known
as the success rate.

• Latency refers to the time interval between the transaction initialization and the actual
transaction execution.

• Throughput is the number of successful transactions per second.

7.2. Computation Cost

The execution time of the cryptographic operation was computed using the experiment
in [42] with the Pairing Base Cryptography (PBC) Library. We used a computer with a
Linux environment running the Ubuntu 20.04.4 LTS operating system with Intel(R) Core
(TM) i9-10900K CPU @ 3.70 GHz @3.70 GHz and 32 GB RAM. We utilized bilinear pairing
e : G1 × G1 → G2 , a Type A pairing constructed from the elliptic curve y2 = x3 + x over a
finite field with 128 bits of security levels. Table 1 presents the running times and symbols
for the various operations. Table 2 shows the total computational cost in message exchanges
and outsourcing data to the cloud server in VBlock.

Table 1. Cryptographic operations running times.

Description Symbol Running Time (ms)

Encrypt message by certificateless encryption Tenc 2.3615
Exponentiation in G2 Tex2 0.987
Bilinear pairing operation Tbp 3.038
Hash function Th 0.0003
Point multiplication Tm 0.0193
Point addition Tpa 0.081
Open Function Transaction on Blockchain TxO 304.42
Query Function Transaction on Blockchain TxQ 5.005

Table 2. Computational Cost Estimation.

Nodes Message Exchanges Data Outsourcing/Storage

RSU 2Tm+2Th+Tbp+TxQ ≈ 14.5056 ms Th+TxO ≈ 304.4203 ms
IoV node 2Tm+3Th+Tbp ≈ 3.4249 ms 3Th+2Tm+Tenc+TxO ≈ 306.821 ms
Cloud Server 2Tm+4Th+2Tbp +TxQ ≈ 11.4682 ms None
KGC 2Tm+2Th+Tbp ≈ 3.4246 ms Th+TxO ≈ 304.4203 ms

Sensors 2022, 22, 8083 17 of 23

We further provide a computation cost comparison of our model with three other
high-impact published works that are most related and have the same entities as ours.
Table 3 shows the comparison of computation costs by the various entities in message
exchanges and data storage processes. Only our model and Ali et al. provide information
on the data storage process for the network. Our model achieves lower costs than some
other models. Although our model takes slightly more time than some of the other models,
it achieves all security attributes elaborated in this work. This is the trade-off we get in
achieving a complete collusion-resistant and tamper-proof model.

Table 3. Computational Cost Comparison.

Models Nodes Message Exchanges Data Outsourcing/Storage

[15]
RSU 2Tm+2Th+3Tpa ≈ 0.2822 ms −
IoV node Tm+Th+Tpa ≈ 0.1006 ms −
KGC Tm+Th+Tpa ≈ 0.1006 ms −

[16]
RSU 2Tex2+4Th ≈ 1.986 ms Th+TxO ≈ 304.4203 ms
IoV node 2Tex2+4Th ≈ 1.986 ms −
KGC/CA 2Tex2+4Th+TxQ ≈ 6.9802 ms Th+TxO ≈ 304.4203 ms

[21]
RSU Tm+2Th+Tbp+2TxQ ≈ 13.0679 ms −
IoV node 2Tm+3Th+Tbp ≈ 3.4249 ms −
KGC Tm+2Th+Tbp+2TxQ ≈ 13.0679 ms −

Ours
RSU 2Tm+2Th+Tbp+TxQ ≈ 14.5056 ms Th+TxO ≈ 304.4203 ms
IoV node 2Tm+3Th+Tbp ≈ 3.4249 ms 3Th+2Tm+Tenc+TxO ≈ 306.821 ms
KGC 2Tm+2Th+Tbp ≈ 3.4246 ms Th+TxO ≈ 304.4203 ms

7.3. Simulation

We simulated our model on Hyperledger Fabric with a network consisting of six peers,
owned and contributed to by three organizations. All the peers on the network run as
containers. All the containers run on an independent physical device on a Local Area
Network (LAN), with each physical device running the Ubuntu 20.04.4 LTS operating
system with Intel(R) Core (TM) i7-7700 CPU @3.60 GHz @3.60 GHz with 8 GB RAM
and Fabric V2.0 installed. A 1000Mbps Ethernet switch was used to connect all physical
devices. We use GO to implement our Fabric chaincode and Node.js for the Hyperledger
Fabric Client SDK. We use a crash fault-tolerant (CFT) ordering service called raft [44]
to achieve consensus in transaction ordering on the network. We used three peers as
endorsers and three peers as committers of the network. The conceptual representation of
the implemented model is shown in Figure 3. We installed and instantiated the chaincode
on the endorser peers. We used the default “N of N” policy as our endorsement policy
i.e., all three organizations are required to endorse a transaction to make it valid. To
measure the performance of our blockchain system, we used Hyperledger Caliper [45].
This is a blockchain benchmark tool that allows performance measurement on blockchain
implementations. We present the simulation and Hyperledger Caliper setup environment
in Table 4.

Table 4. Simulation and Hyperledger Caliper environment setup.

Component Description

CPU Intel(R) Core (TM) i9-10900K CPU @ 3.70 GHz 3.70 GHz
Memory 32 GB
Operating System Ubuntu 20.04.4 LTS
Node.js v14 LTS
Docker Version 20.10.11
CLI Tool Node-gyp
Fabric V2.2

Sensors 2022, 22, 8083 18 of 23

We designed two experiments to evaluate the performance of our model. We used five
sets of node categories ranging from 100, 200, 300, 400 and 500 nodes to query the system
and at the same time to make comparisons of the various experiments designed. Each ex-
periment category was tested five times to ascertain the average of the experimental results.

• Experiment 1 was designed to evaluate the transaction per second (TPS) and latency
of open functions (create, update, or delete) of the network. This is to measure the
process of outsourcing data to the cloud server.

• Experiment 2 was designed to evaluate the transaction per second (TPS) and latency
of query function of the network. This is to measure the performance of verifying
information from the blockchain network.

7.4. Results and Discussion

From Figure 8a, it can be seen that an average of 82 transactions per second (TPS) for
the node category with 100 nodes was recorded for the query function. The TPS consistently
increased, nearing the number of nodes querying the system. The latency recorded in
Figure 8b for nodes ranging from 100–400 stabilized around 12 ms. A slight increase in
latency is observed when the nodes increase to 500.

Sensors 2022, 22, 8083 19 of 23

(a) (b)

Figure 8. System (a) Transactions per second (TPS) of query function with varying node groups (b)
Latency of query function with varying node groups.

Figure 9a shows the evaluation of transactions per second (TPS) for open functions.
An average of 23 TPS was recorded for the 100 nodes category, 33 TPS for 200 nodes, 44
TPS for 300, 50 for 400 nodes, and 56 for 500 nodes. The TPS consistently increased as the
number of nodes requesting simultaneously also increased.

(a) (b)

Figure 9. System (a) Transactions per second (TPS) of open function with varying node groups (b)
Latency of open function with varying node groups.

Success rate: We obtain a 100% success on both open and query functions with sim-
ultaneous transactions on the same number of nodes categories.

Throughput: We observe that query function throughputs are higher than the open
function. Although both functions record an increase in throughput as the number of
transactions increases, they both show slight consistency in their throughputs. The con-
sistency in throughputs recorded demonstrates the availability and reliability of the Hy-
perledger network.

Latency: Figure 10 shows the average latencies of query functions and open func-
tions. The open function processes are generally higher than that of query functions. This
is due to the additional time needed to complete the endorsement, ordering and valida-
tion. The query function needs between 5 milliseconds to almost 13 milliseconds to

0

100

200

300

400

500

600

1 2 3 4 5

Nu
m

be
r O

f T
ra

ns
ac

tio
n/

Se
c

ORDINALS OF EXPERIMENT

Query Func t ion

100 nodes 200 nodes 300 nodes

400 nodes 500 nodes

0
2
4
6
8

10
12
14
16

1 2 3 4 5

La
te

nc
y

(m
s)

Ordinals Of Experiment

Query Func t ion

100 nodes 200 nodes 300 nodes

400 nodes 500 nodes

0

10

20

30

40

50

60

70

1 2 3 4 5

Nu
m

be
r O

f T
ra

ns
ac

tio
n/

Se
c

Ordinals Of Experiment

Open Func t ion

100 nodes 200 nodes 300 nodes

400 nodes 500 nodes

0
500

1000
1500
2000
2500
3000
3500
4000

1 2 3 4 5

La
te

nc
y

(m
s)

Ordinals Of Experiment

Open Func t ion

100 nodes 200 nodes 300 nodes

400 nodes 500 nodes

Figure 8. System (a) Transactions per second (TPS) of query function with varying node groups
(b) Latency of query function with varying node groups.

Figure 9a shows the evaluation of transactions per second (TPS) for open functions.
An average of 23 TPS was recorded for the 100 nodes category, 33 TPS for 200 nodes, 44 TPS
for 300, 50 for 400 nodes, and 56 for 500 nodes. The TPS consistently increased as the
number of nodes requesting simultaneously also increased.

Success rate: We obtain a 100% success on both open and query functions with
simultaneous transactions on the same number of nodes categories.

Throughput: We observe that query function throughputs are higher than the open
function. Although both functions record an increase in throughput as the number of trans-
actions increases, they both show slight consistency in their throughputs. The consistency in
throughputs recorded demonstrates the availability and reliability of the Hyperledger network.

Sensors 2022, 22, 8083 19 of 23

Sensors 2022, 22, 8083 19 of 23

(a) (b)

Figure 8. System (a) Transactions per second (TPS) of query function with varying node groups (b)
Latency of query function with varying node groups.

Figure 9a shows the evaluation of transactions per second (TPS) for open functions.
An average of 23 TPS was recorded for the 100 nodes category, 33 TPS for 200 nodes, 44
TPS for 300, 50 for 400 nodes, and 56 for 500 nodes. The TPS consistently increased as the
number of nodes requesting simultaneously also increased.

(a) (b)

Figure 9. System (a) Transactions per second (TPS) of open function with varying node groups (b)
Latency of open function with varying node groups.

Success rate: We obtain a 100% success on both open and query functions with sim-
ultaneous transactions on the same number of nodes categories.

Throughput: We observe that query function throughputs are higher than the open
function. Although both functions record an increase in throughput as the number of
transactions increases, they both show slight consistency in their throughputs. The con-
sistency in throughputs recorded demonstrates the availability and reliability of the Hy-
perledger network.

Latency: Figure 10 shows the average latencies of query functions and open func-
tions. The open function processes are generally higher than that of query functions. This
is due to the additional time needed to complete the endorsement, ordering and valida-
tion. The query function needs between 5 milliseconds to almost 13 milliseconds to

0

100

200

300

400

500

600

1 2 3 4 5

Nu
m

be
r O

f T
ra

ns
ac

tio
n/

Se
c

ORDINALS OF EXPERIMENT

Query Func t ion

100 nodes 200 nodes 300 nodes

400 nodes 500 nodes

0
2
4
6
8

10
12
14
16

1 2 3 4 5

La
te

nc
y

(m
s)

Ordinals Of Experiment

Query Func t ion

100 nodes 200 nodes 300 nodes

400 nodes 500 nodes

0

10

20

30

40

50

60

70

1 2 3 4 5

Nu
m

be
r O

f T
ra

ns
ac

tio
n/

Se
c

Ordinals Of Experiment

Open Func t ion

100 nodes 200 nodes 300 nodes

400 nodes 500 nodes

0
500

1000
1500
2000
2500
3000
3500
4000

1 2 3 4 5

La
te

nc
y

(m
s)

Ordinals Of Experiment

Open Func t ion

100 nodes 200 nodes 300 nodes

400 nodes 500 nodes

Figure 9. System (a) Transactions per second (TPS) of open function with varying node groups
(b) Latency of open function with varying node groups.

Latency: Figure 10 shows the average latencies of query functions and open functions.
The open function processes are generally higher than that of query functions. This is due
to the additional time needed to complete the endorsement, ordering and validation. The
query function needs between 5 milliseconds to almost 13 milliseconds to complete the
function whenever the server receives 500 requests. However, the open function needs
more time because it requires the addition of a new block to the ledger. The open function
needs between 300 milliseconds to 3500 milliseconds when the server receives 500 requests.
The general latency of both query and open function increase with a corresponding increase
in the number of nodes requesting at the same. It is worth noting that test patterns being
developed to improve smart contract execution time will reduce blockchain computation
costs [46].

Sensors 2022, 22, 8083 20 of 23

complete the function whenever the server receives 500 requests. However, the open func-
tion needs more time because it requires the addition of a new block to the ledger. The
open function needs between 300 milliseconds to 3500 milliseconds when the server re-
ceives 500 requests. The general latency of both query and open function increase with a
corresponding increase in the number of nodes requesting at the same. It is worth noting
that test patterns being developed to improve smart contract execution time will reduce
blockchain computation costs [46].

(a) (b)

Figure 10. System average latency for (a) Query function (b) Open function with varying number of
transactions.

In Figure 11, a very important observation recorded in the latencies of VBlock with
the blockchain is the considerable increase in latency for outsourcing data to the cloud
server, with a simultaneous increase in the number of nodes. This is a result of the trade-
off between attaining high security, tamper-proofing, and data provenance over low la-
tency.

Figure 11. Average latency of VBlock data outsourcing model with and without the blockchain.

Table 5 shows the comparison of our model to other existing models and the litera-
ture discussed in this paper. A careful analysis of the various metrics used indicates that
VBlock shows higher advantages over other systems proposed.

Table 5. Comparison of our model with other blockchain-based related existing systems.

0

2

4

6

8

10

12

14

1 100 200 300 400 500

La
te

nc
y

(m
s)

Number of transactions

Average Latency Query Function

0

500

1000

1500

2000

2500

3000

3500

4000

1 100 200 300 400 500

La
te

nc
y

(m
s)

Number of Transaction

Average Latency Open Function

0

1000

2000

3000

4000

5000

6000

1 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

La
te

nc
y

(m
s)

Number Of Nodes

Average La tency Compar i son

With Blockchain WIthout Blockchain

Figure 10. System average latency for (a) Query function (b) Open function with varying number
of transactions.

In Figure 11, a very important observation recorded in the latencies of VBlock with
the blockchain is the considerable increase in latency for outsourcing data to the cloud

Sensors 2022, 22, 8083 20 of 23

server, with a simultaneous increase in the number of nodes. This is a result of the trade-off
between attaining high security, tamper-proofing, and data provenance over low latency.

Sensors 2022, 22, 8083 20 of 23

complete the function whenever the server receives 500 requests. However, the open func-
tion needs more time because it requires the addition of a new block to the ledger. The
open function needs between 300 milliseconds to 3500 milliseconds when the server re-
ceives 500 requests. The general latency of both query and open function increase with a
corresponding increase in the number of nodes requesting at the same. It is worth noting
that test patterns being developed to improve smart contract execution time will reduce
blockchain computation costs [46].

(a) (b)

Figure 10. System average latency for (a) Query function (b) Open function with varying number of
transactions.

In Figure 11, a very important observation recorded in the latencies of VBlock with
the blockchain is the considerable increase in latency for outsourcing data to the cloud
server, with a simultaneous increase in the number of nodes. This is a result of the trade-
off between attaining high security, tamper-proofing, and data provenance over low la-
tency.

Figure 11. Average latency of VBlock data outsourcing model with and without the blockchain.

Table 5 shows the comparison of our model to other existing models and the litera-
ture discussed in this paper. A careful analysis of the various metrics used indicates that
VBlock shows higher advantages over other systems proposed.

Table 5. Comparison of our model with other blockchain-based related existing systems.

0

2

4

6

8

10

12

14

1 100 200 300 400 500

La
te

nc
y

(m
s)

Number of transactions

Average Latency Query Function

0

500

1000

1500

2000

2500

3000

3500

4000

1 100 200 300 400 500

La
te

nc
y

(m
s)

Number of Transaction

Average Latency Open Function

0

1000

2000

3000

4000

5000

6000

1 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

La
te

nc
y

(m
s)

Number Of Nodes

Average La tency Compar i son

With Blockchain WIthout Blockchain

Figure 11. Average latency of VBlock data outsourcing model with and without the blockchain.

Table 5 shows the comparison of our model to other existing models and the literature
discussed in this paper. A careful analysis of the various metrics used indicates that VBlock
shows higher advantages over other systems proposed.

Table 5. Comparison of our model with other blockchain-based related existing systems.

Models

Metrics

Blockchain
Based

Access
Control

Replay
Attack Re-

sistance

Tamper-
Proof
Audit

Forgery
Attacks

Resistance

Certificateless
PKI

Key
Revocation
Mechanism

Collusion-
Resisting

Attack

Warrant-
Based Data

Outsourcing

[15] NO YES YES NO NO YES YES NO NO
[16] YES NO YES NO YES NO YES YES NO
[17] YES YES NO NO YES NO NO YES NO
[18] YES YES NO NO YES NO NO YES NO
[19] YES NO YES YES YES NO YES NO NO
[20] YES NO YES YES YES NO YES YES NO
[21] YES YES YES NO NO YES YES NO NO
[22] YES NO YES YES YES NO YES YES NO
[23] YES YES YES YES NO NO YES NO NO
[24] YES NO NO YES YES NO NO YES NO

Ours YES YES YES YES YES YES YES YES YES

8. Conclusions

In this paper, we have presented VBlock, a secure data outsourcing model for IoV
networks that leverages the Blockchain to keep immutable records. The design utilizes
blockchain to effectively secure outsourced data from illegal modifications and ensures data
provenance and auditing. We introduced a key revocation mechanism to further secure
the IoV network from malicious or compromised nodes. We analyze the performance of
VBlock while comparing it to other proposed methods of IoV systems, as well as comparing
it with current cutting-edge solutions to data outsourcing to cloud service providers. The
security of VBlock can be guaranteed even if there is a collusion between the creator
of the outsourced data and the cloud server. VBlock is built on a Hyperledger Fabric
blockchain where access to the network is limited to only known nodes with increased
security and privacy. The correctness and security are also dependent on the security of
the Hyperledger Blockchain. The performance efficiency from our experimental results
shows good throughputs with low latencies, which makes this model practicable. By
implementing the proposed model, the future generation of a safe smart city can be

Sensors 2022, 22, 8083 21 of 23

achieved such that outsourced data by the IoV network can be fully trusted for usage in
smart city management and improvement. We envision expanding the data availability
from IoV networks in our future works.

Author Contributions: Conceptualization, C.S. and L.D.F.; methodology, C.S. and S.L.K.; software,
I.O.A. and I.A.-M.; validation, H.L., W.Q. and X.L.; writing—original draft preparation, C.S. and L.D.F.;
writing—review and editing, L.D.F., S.L.K. and I.A.-M.; visualization, I.O.A.; project administration,
H.L., W.Q. and X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Sichuan Science and Technology Program, Grant Number
2022YFG0315 and the National Key R&D Program of China, Grant Number 2018YFA0306703.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guerrero-Ibanez, J.A.; Zeadally, S.; Contreras-Castillo, J. Integration challenges of intelligent transportation systems with

connected vehicle, cloud computing, and internet of things technologies. IEEE Wirel. Commun. 2015, 22, 122–128. [CrossRef]
2. Ang, L.-M.; Seng, K.P.; Zungeru, A.M.; Ijemaru, G.K. Big Sensor Data Systems for Smart Cities. IEEE Internet Things J. 2017, 4,

1259–1271. [CrossRef]
3. Meneghello, F.; Calore, M.; Zucchetto, D.; Polese, M.; Zanella, A. IoT: Internet of Threats? A Survey of Practical Security

Vulnerabilities in Real IoT Devices. IEEE Internet Things J. 2019, 6, 8182–8201. [CrossRef]
4. Manvi, S.S.; Tangade, S. A survey on authentication schemes in VANETs for secured communication. Veh. Commun. 2017, 9,

19–30. [CrossRef]
5. Ali, I.; Hassan, A.; Li, F. Authentication and privacy schemes for vehicular ad hoc networks (VANETs): A survey. Veh. Commun.

2019, 16, 45–61. [CrossRef]
6. Li, M.; Lal, C.; Conti, M.; Hu, D. LEChain: A blockchain-based lawful evidence management scheme for digital forensics. Futur.

Gener. Comput. Syst. 2021, 115, 406–420. [CrossRef]
7. Upstream Security. Global Automotive Cybersecurity Report 2021. 2021. Available online: https://upstream.auto/2021Report/

(accessed on 20 May 2022).
8. Wazid, M.; Das, A.K.; Hussain, R.; Succi, G.; Rodrigues, J.J. Authentication in cloud-driven IoT-based big data environment:

Survey and outlook. J. Syst. Arch. 2018, 97, 185–196. [CrossRef]
9. Rak, M.; Salzillo, G.; Granata, D. ESSecA: An automated expert system for threat modelling and penetration testing for IoT

ecosystems. Comput. Electr. Eng. 2022, 99, 107721. [CrossRef]
10. Al-Riyami, S.S.; Paterson, K.G. Certificateless Public Key Cryptography. In Proceedings of the 9th International Conference on the

Theory and Application of Cryptology and Information Security, Taipei, Taiwan, 30 November–4 December 2003; Volume 2003,
pp. 452–473. [CrossRef]

11. Le, T.-V.; Hsu, C.-L.; Chen, W.-X. A Hybrid Blockchain-Based Log Management Scheme With Nonrepudiation for Smart Grids.
IEEE Trans. Ind. Informatics 2021, 18, 5771–5782. [CrossRef]

12. Agyekum, K.O.-B.O.; Xia, Q.; Sifah, E.B.; Gao, J.; Xia, H.; Du, X.; Guizani, M. A Secured Proxy-Based Data Sharing Module in IoT
Environments Using Blockchain. Sensors 2019, 19, 1235. [CrossRef] [PubMed]

13. Sharma, P.K.; Moon, S.Y.; Park, J.H. Block-VN A Distributed Blockchain Based Vehicular Network Architecture in Smart City. J.
Inf. Process. Syst. 2017, 13, 184–195. [CrossRef]

14. Yuan, Y.; Wang, F.Y. Towards blockchain-based intelligent transportation systems. In Proceedings of the 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 2663–2668.

15. Vallent, T.; Hanyurwimfura, D.; Mikeka, C. Efficient Certificate-Less Aggregate Signature Scheme with Conditional Privacy-
Preservation for Vehicular Ad Hoc Networks Enhanced Smart Grid System. Sensors 2021, 21, 2900. [CrossRef] [PubMed]

16. Liu, G.; Fan, N.; Wu, C.Q.; Zou, X. On a Blockchain-Based Security Scheme for Defense against Malicious Nodes in Vehicular
Ad-Hoc Networks. Sensors 2022, 22, 5361. [CrossRef] [PubMed]

17. Ma, X.; Ge, C.; Liu, Z. Blockchain-Enabled Privacy-Preserving Internet of Vehicles: Decentralized and Reputation-Based
Network Architecture. In Proceedings of the International Conference on Network and System Security 2019, Sapporo, Japan,
15–18 December 209; pp. 336–351. [CrossRef]

18. Kang, J.; Yu, R.; Huang, X.; Wu, M.; Maharjan, S.; Xie, S.; Zhang, Y. Blockchain for Secure and Efficient Data Sharing in Vehicular
Edge Computing and Networks. IEEE Internet Things J. 2019, 6, 4660–4670. [CrossRef]

http://doi.org/10.1109/MWC.2015.7368833
http://doi.org/10.1109/JIOT.2017.2695535
http://doi.org/10.1109/JIOT.2019.2935189
http://doi.org/10.1016/j.vehcom.2017.02.001
http://doi.org/10.1016/j.vehcom.2019.02.002
http://doi.org/10.1016/j.future.2020.09.038
https://upstream.auto/2021Report/
http://doi.org/10.1016/j.sysarc.2018.12.005
http://doi.org/10.1016/j.compeleceng.2022.107721
http://doi.org/10.1007/978-3-540-40061-5_29
http://doi.org/10.1109/TII.2021.3136580
http://doi.org/10.3390/s19051235
http://www.ncbi.nlm.nih.gov/pubmed/30862110
http://doi.org/10.3745/JIPS.03.0065
http://doi.org/10.3390/s21092900
http://www.ncbi.nlm.nih.gov/pubmed/33919114
http://doi.org/10.3390/s22145361
http://www.ncbi.nlm.nih.gov/pubmed/35891040
http://doi.org/10.1007/978-3-030-36938-5
http://doi.org/10.1109/JIOT.2018.2875542

Sensors 2022, 22, 8083 22 of 23

19. Javaid, U.; Aman, M.N.; Sikdar, B. DrivMan: Driving Trust Management and Data Sharing in VANETs with Blockchain and Smart
Contracts. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia,
28 April 2019–1 May 2019; pp. 1–5. [CrossRef]

20. Shi, K.; Zhu, L.; Zhang, C.; Xu, L.; Gao, F. Blockchain-based multimedia sharing in vehicular social networks with privacy
protection. Multimedia Tools Appl. 2020, 79, 8085–8105. [CrossRef]

21. Ali, I.; Gervais, M.; Ahene, E.; Li, F. A blockchain-based certificateless public key signature scheme for vehicle-to-infrastructure
communication in VANETs. J. Syst. Arch. 2019, 99, 101636. [CrossRef]

22. Su, T.; Shao, S.; Guo, S.; Lei, M. Blockchain-Based Internet of Vehicles Privacy Protection System. Wirel. Commun. Mob. Comput.
2020, 2020, 1–10. [CrossRef]

23. Malik, N.; Nanda, P.; Arora, A.; He, X.; Puthal, D. Blockchain Based Secured Identity Authentication and Expeditious Revo-
cation Framework for Vehicular Networks. In Proceedings of the 2018 17th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; pp. 674–679. [CrossRef]

24. Jabbar, R.; Kharbeche, M.; Al-Khalifa, K.; Krichen, M.; Barkaoui, K. Blockchain for the Internet of Vehicles: A Decentralized IoT
Solution for Vehicles Communication Using Ethereum. Sensors 2020, 20, 3928. [CrossRef]

25. Zhang, Y.; Xu, C.; Li, H.; Liang, X. Cryptographic Public Verification of Data Integrity for Cloud Storage Systems. IEEE Cloud
Comput. 2016, 3, 44–52. [CrossRef]

26. Zhang, Y.; Xu, C.; Li, H.; Yang, K.; Zhou, J.; Lin, X. HealthDep: An Efficient and Secure Deduplication Scheme for Cloud-Assisted
eHealth Systems. IEEE Trans. Ind. Inform. 2018, 14, 4101–4112. [CrossRef]

27. Kumar, R.; Sharma, R. Leveraging blockchain for ensuring trust in IoT: A survey. J. King Saud Univ. Comput. Inf. Sci. 2021.
[CrossRef]

28. Mollah, M.B.; Zhao, J.; Niyato, D.; Guan, Y.L.; Yuen, C.; Sun, S.; Lam, K.-Y.; Koh, L.H. Blockchain for the Internet of Vehicles
Towards Intelligent Transportation Systems: A Survey. IEEE Internet Things J. 2020, 8, 4157–4185. [CrossRef]

29. Seon, C. Blockchain for IoT-based smart cities: Recent advances, requirements, and future challenges. J. Netw. Comput. Appl. 2021,
181, 103007. [CrossRef]

30. Saxena, S.; Bhushan, B.; Ahad, M.A. Blockchain based solutions to secure IoT: Background, integration trends and a way forward.
J. Netw. Comput. Appl. 2021, 181, 103050. [CrossRef]

31. Armknecht, F.; Bohli, J.-M.; Karame, G.O.; Liu, Z.; Reuter, C.A. Outsourced Proofs of Retrievability. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AR, USA, 3–7 November 2014; pp. 831–843.
[CrossRef]

32. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Decentralized Bus. Rev. 2008, 21260. Available online: https:
//bitcoin.org/en/bitcoin-paper (accessed on 23 June 2022).

33. Wood, G. Ethereum: A Secure Decentralized Generalized Distributed Ledger. 2018, 151, pp. 1–32. Available online: https:
//gavwood.com/paper.pdf (accessed on 22 July 2022).

34. Hopwood, D.; Bowe, S.; Hornby, T.; Wilcox, N. Zcash Protocol Specification; GitHub: San Francisco, CA, USA, 2019; pp. 1–143.
35. Fromknecht, C.; Velicanu, D. A Decentralized Public Key Infrastructure with Identity Retention. IACR Cryptol. ePrint Arch. 2014,

803, 1–16.
36. Kodjiku, S.L.; Fang, Y.; Han, T.; Asamoah, K.O.; Aggrey, E.S.E.B.; Sey, C.; Aidoo, E.; Ejianya, V.N.; Wang, X. ExCrowd: A

Blockchain Framework for Exploration-Based Crowdsourcing. Appl. Sci. 2022, 12, 6732. [CrossRef]
37. IoTeX Team. IoTeX A Decentralized Network for Internet of Things Powered by a Privacy-Centric Blockchain. 2018. Available

online: https://iotex.io/research (accessed on 15 July 2022).
38. Labs, S. Storj: A Decentralized Cloud Storage Network Framework. 2018. Available online: https://www.storj.io/storj.pdf

(accessed on 15 July 2022).
39. Cao, S.; Zhang, G.; Liu, P.; Zhang, X.; Neri, F. Cloud-assisted secure eHealth systems for tamper-proofing EHR via blockchain. Inf.

Sci. 2019, 485, 427–440. [CrossRef]
40. Sey, C.; Lei, H.; Qian, W.; Li, X.; Fiasam, L.D.; Sha, R.; He, Z. FIRMBLOCK: A Scalable Blockchain-Based Malware-Proof Firmware

Update Architecture With Revocation For IoT Devices. In Proceedings of the 2021 18th International Computer Conference
on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 17–19 December 2021;
pp. 134–140. [CrossRef]

41. Sey, C.; Li, X.; Qian, W.; Fiasam, L.D.; Kodjiku, S.L.; Baffour, A.A.; Adjei-Mensah, I. TRADEBLOCK: Blockchain Based System For
Online Classified Advertisement Industries. In Proceedings of the 2021 18th International Computer Conference on Wavelet
Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 17–19 December 2021; pp. 127–133.
[CrossRef]

42. Elhabob, R.; Zhao, Y.; Sella, I.; Xiong, H. Efficient Certificateless Public Key Cryptography with Equality Test for Internet of
Vehicles. IEEE Access 2019, 7, 68957–68969. [CrossRef]

43. Boneh, D.; Lynn, B.; Shacham, H. Short Signatures from the Weil Pairing. In Proceedings of the International Conference on the
Theory and Application of Cryptology and Information Security, Gold Coast, Australia, 9–13 December 2001; pp. 514–532.

44. Hyperledger. Hyperldger Raft. Available online: https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_
service.html (accessed on 20 February 2022).

http://doi.org/10.1109/vtcspring.2019.8746499
http://doi.org/10.1007/s11042-019-08284-8
http://doi.org/10.1016/j.sysarc.2019.101636
http://doi.org/10.1155/2020/8870438
http://doi.org/10.1109/TrustCom/BigDataSE.2018.00099
http://doi.org/10.3390/s20143928
http://doi.org/10.1109/MCC.2016.94
http://doi.org/10.1109/TII.2018.2832251
http://doi.org/10.1016/j.jksuci.2021.09.004
http://doi.org/10.1109/JIOT.2020.3028368
http://doi.org/10.1016/j.jnca.2021.103007
http://doi.org/10.1016/j.jnca.2021.103050
http://doi.org/10.1145/2660267.2660310
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://gavwood.com/paper.pdf
https://gavwood.com/paper.pdf
http://doi.org/10.3390/app12136732
https://iotex.io/research
https://www.storj.io/storj.pdf
http://doi.org/10.1016/j.ins.2019.02.038
http://doi.org/10.1109/ICCWAMTIP53232.2021.9674092
http://doi.org/10.1109/ICCWAMTIP53232.2021.9674070
http://doi.org/10.1109/ACCESS.2019.2917326
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html

Sensors 2022, 22, 8083 23 of 23

45. Caliper, H. Hyperledger Caliper Architecture. Available online: https://hyperledger.github.io/caliper/v0.5.0/getting-started/
#architecture (accessed on 20 March 2022).

46. Górski, T. The k + 1 Symmetric Test Pattern for Smart Contracts. Symmetry 2022, 14, 1686. [CrossRef]

https://hyperledger.github.io/caliper/v0.5.0/getting-started/#architecture
https://hyperledger.github.io/caliper/v0.5.0/getting-started/#architecture
http://doi.org/10.3390/sym14081686

	Introduction
	Related Works
	Problem Statement
	Cloud-Based IoV Network
	Threat Model
	External Threat
	Internal Threat

	Design Goals

	Preliminaries
	Notations, Conventions, and Basic Theory
	Cryptographic Keys
	Blockchain
	Hyperledger Fabric Blockchain

	Architecture of VBlock
	Choice of Blockchain Platform
	Key Components
	Layers Design
	Communication Design
	Key Revocation
	Assumptions
	Construction of VBlock
	Setup
	Register
	Store
	Audit

	Algorithms

	Security Analysis
	Security against Forgery and Modification Attacks
	VBlock Guarantees the Timeliness of IoV Data
	VBlock Guarantees Public Key Security
	Necessity of Blockchain Integration
	VBlock Is Resistant to Replay Attacks
	VBlock Ensures Data Access Control

	Performance Evaluation
	Evaluation Metrics
	Computation Cost
	Simulation
	Results and Discussion

	Conclusions
	References

