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Abstract: Biopotential imaging (e.g., ECGi, EEGi, EMGi) processes multiple potential signals, each
requiring an electrode applied to the body’s skin. Conventional approaches based on individual
wiring of each electrode are not suitable for wearable systems. Cooperative sensors solve the wiring
problem since they consist of active (dry) electrodes connected by a two-wire parallel bus that can
be implemented, for example, as a textile spacer with both sides made conductive. As a result, the
cumbersome wiring of the classical star arrangement is replaced by a seamless solution. Previous work
has shown that potential reference, current return, synchronization, and data transfer functions can
all be implemented on a two-wire parallel bus while keeping the noise of the measured biopotentials
within the limits specified by medical standards. We present the addition of the power supply
function to the two-wire bus. Two approaches are discussed. One of them has been implemented
with commercially available components and the other with an ASIC. Initial experimental results
show that both approaches are feasible, but the ASIC approach better addresses medical safety
concerns and offers other advantages, such as lower power consumption, more sensors on the
two-wire bus, and smaller size.

Keywords: biopotential imaging; body surface potential; active electrode; dry electrode; cooperative
sensor; wearables; medical device

1. Introduction

The technology of biopotential measurements has been known for decades [1] and
is widely used to measure ECG (electrocardiogram), EEG (electroencephalogram), EMG
(electromyogram), etc. Today, most products are still based on adhesive gel electrodes applied
to specific areas of the body’s skin and connected in a star arrangement to a central unit
(e.g., a recorder or monitor) by shielded cables. Another solution, less commercialized but
scientifically well known, features active electrodes [2]. Active electrodes have amplification
electronics at the electrode to achieve a high input impedance and low output impedance.
Although they do not require shielded cables, each electrode still requires at least two wires
to be connected to the central unit in a star arrangement [3].

Implementing biopotential sensors in medical wearables is difficult for a few funda-
mental reasons. One of them results from the preferential use of dry electrodes. For dry
electrodes to provide good quality signals, a higher input impedance of the amplification
circuit (cables and amplifier) is required [4–6]. Active electrodes are a good solution to
meet this requirement, but they must be powered. However, powering them from the
central unit via their leads is not trivial in the context of medical devices. The basic safety
standards [7–9] for MEDICAL ELECTRIC EQUIPMENT (words in small capitals have a defined
meaning in the standards) require a maximum PATIENT LEAKAGE CURRENT of 10 µA d.c.
(or 10 mV across the 1 kΩ taken by the standards for skin) for ECG medical devices. In
addition, the standards specify two MEANS OF PATIENT PROTECTION [7]. Reliable DOUBLE
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INSULATION of conductive tracks in wearables is difficult to achieve, especially due to
the possible presence of body fluid (e.g., sweat, urine, etc.). To be considered as one mean,
for WORKING VOLTAGES lower than 60 V, solid insulation must pass the test of dielectric
strength at a voltage of 500 V rms during 1 min under the worst expected condition (i.e.,
with body fluids and at the end of the EXPECTED SERVICE LIFE) [7]. Therefore, for wearable
devices, other MEANS OF PATIENT PROTECTION than solid insulation, such as the electronic
detection and active limitation of tiny PATIENT LEAKAGE CURRENTS, are desirable.

Another reason that wearables are difficult to design, especially for devices requiring
many electrodes (e.g., >100) such as for electrographic imaging (e.g., ECGi [10], EEGi [11],
EMGi [12]), is the ‘star arrangement’ of conventional wiring approaches. In addition to the
complexity of routing many cables, connecting them to the central unit where they meet
results in expensive and cumbersome connectors, which is a major integration challenge
for waterproof and reliable wearables. To solve these problems, an architecture where
each electrode includes electronics to be interfaced in parallel with a bus is attractive
because such an architecture is virtually independent of the number of electrodes. Buses
with a small number of lines, such as one or two at most, are the most desirable, but
more difficult because the bus must perform several functions (potential reference, current
return, synchronization, communication, and power supply). Cooperative sensors [13–19],
defined as active electrodes connected to a parallel bus of up to two wires, have been
proposed to address these challenges, except for the power supply. Adding the power
supply function—without interfering with the other functions and addressing the medical
safety issue in wearables—is the main contribution of this paper.

Section 2 presents the previously known cooperative sensor technique characterized
by a dedicated power supply (battery) per sensor and a bootstrap circuit allowing high
input impedance. This section is essential to understand the functions that must remain
unaltered despite the introduction in Section 3 of the power supply on the same wires. Two
solutions are presented, one called ‘Legacy approach with 500 Hz powering and off-the-shelf
components’ (because directly built on the cooperative sensors of Section 2) and the other
named ‘Approach addressing the safety issue with powering at 1 MHz and ASIC for 250 sensors’.
Section 4 provides implementation details and experimental results for both approaches.
The paper ends with a conclusion (Section 5).

2. State-of-the-Art Cooperative Sensors

Active electrodes connected by up to two wires in a parallel bus arrangement are
called cooperative sensors—‘cooperative’ because co-operation of at least two sensors, each
measuring one biopotential, is required to obtain a difference of potential (such as how
two fingers, at least, must cooperate to pick up a golf ball). Compared to conventional
approaches [1–3,20,21], cooperative sensors benefit from a parallel bus arrangement, which
contributes to the scalability of the system. Moreover, unlike the multi-wire bus of direct
multiplexing [22], the complexity of their connection is reduced to a minimum (only two
wires for all functions).

2.1. Basic Circuit and Their Interconnections

Figure 1 shows a patented generic mechanism [13,14] for synchronization and control
of the cooperative sensors and for transferring the acquired signal to the central unit. To
measure the voltage e, a current electrode (left in Figure 1), a potential electrode for potential
reference (middle in Figure 1), and one potential electrode per independent biopotential
channel (right in Figure 1) are required. The current electrode is often referred to in the
classical technique [1] as right-leg electrode and its purpose is to provide a path for currents
capacitively coupled to the electronics (central unit and cables) from the environment
(e.g., 50 Hz or low-frequency currents resulting from motion in the earth’s electric field).
The central unit sends synchronization information and other commands simultaneously
to all cooperative sensors with the voltage source U. The received signal is picked up
by the cooperative sensors with the voltage across their current source, i.e., the voltage
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between the two bus wires, and feeds the clock recovery and sync block S. The cooperative
sensors use their current source to communicate their measured potential vi (or other
signals) to the central unit by means of a modulation M. The central unit receives the
composite information from all the sensors by detecting the current in one of the bus
wires. The demodulation D allows to recover the individual signals. Note that there are
many possible modulations M. Amplitude modulation of a frequency carrier is a simple
example. Digitization combined with phase shift keying could be another. The dark gray
box symbolizes the power supply (e.g., a battery) of the cooperative sensors.
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washability. Symbol legend in Appendix A. 
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Figure 1. Cooperative sensors are active electrodes equipped with electronic circuits that allow them
to be connected to a parallel bus of up to two wires. They are synchronized by the central unit to
which they transmit their measured biopotential. For devices that do not need to be defibrillator-proof,
the 2-wire bus can be made of a fabric with both sides made conductive. Insulation of the bottom side
is not necessary because the voltage between the bottom side and the body is close to zero due to the
G controller. The top side can easily be insulated with an additional layer of fabric (e.g., a regular
garment), providing that excess of leakage currents is electronically detected. The small cooperative
sensors are attached and connected to the fabric, making the assembly seamless while maintaining
the usual properties of the fabric, i.e., flexibility, stretchability, breathability, and washability. Symbol
legend in Appendix A.

Since the total gain of the acquisition chain (from the potential vi to the demodulated
signal v′i) may be slightly different from sensor to sensor, the common-mode rejection when
performing the difference v′i − v′j might be insufficient. The problem can be neatly solved
by the method described in [15], which relies on online identification of the v′i/vi transfer
functions through an excitation common-mode voltage added to the voltage source driven
by the G controller.

Figure 1 also shows that the two wires could be implemented as a textile spacer with
both sides made conductive. Note that these conductive surfaces also implicitly act as ‘body
shield’, in contrast to the classical approach where the shield must be explicitly added [23].
One side of the cooperative sensor is used as dry electrode and the other as bottom contact
with the fabric. The upper contact is made on the other side of the fabric by the sensor
attachment. Due to the integrated electronics (e.g., ASIC), the cooperative sensors can be
very small (e.g., 4 × 4 mm2) while the dry electrode and the contacts to the fabric can be
larger and flexible. As a result, the assembly of the sensors with the fabric is virtually
cable-free and seamless, making it easier to meet the wearability constraints (flexibility,
breathability, stretchability, washability).

The G controller ensures that the voltage between the lower wire and the body is
approximately zero. As long as this voltage is always less than 10 mV for ECG and less
than 100 mV for other biopotentials, e.g., EMG—which is the case—no insulation is needed,
because the standards require ECG devices to be TYPE CF (limit to 10 mV) and other devices
TYPE BF (limit to 100 mV) [7]. By default, the other side is not in contact with the skin
and can only be touched intermittently, for example with the hand. This problem can be
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solved by electronic detection (see below). However, the detection of leakage currents will
stop the operation of the device. Therefore, one may consider adding a layer of fabric to
insulate the top conductive side in most situations and relying on electronic detection only
for exceptional situations. Optionally, the outer side of this additional layer can be made
conductive and connected to the skin to provide one MEAN OF PATIENT PROTECTION in the
same idea as CLASS I MEDICAL ELECTRICAL EQUIPMENT [7]. This conductive layer also
shields the middle conductive layer with respect to EMC emission and immunity.

2.2. Floating Supply and Bootstrapping

Figure 2 shows in more detail an implementation of cooperative sensors [16–18]
for biopotential measurement (the cooperative sensors described in [17,18] also measure
bioimpedance for EIT, electrical impedance tomography, but in this paper, we focus only on
biopotentials for simplicity). In this implementation, each cooperative sensor is powered
by a battery. All batteries can be recharged simultaneously via the two-wire bus when the
system is not worn. The safety issue related to the maximum leakage current of 10 µA d.c.
is not applicable when the system is not worn by the patient—the connector to the charger
is made so that it is impossible for the patient to wear the system during charging. Once
in the sensor, the stored charges are prevented from leaving the sensor by diodes. Thus,
there is no possible harm resulting from insulation failure, for example, due to body fluid.
Note that communication is not a problem because at higher frequencies, higher leakage
currents are allowed, and communication requires lower voltages (which reduces possible
leakage currents).
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Figure 2. Implementation of cooperative sensors with extremely high input impedance achieved
with a simple bootstrap circuit taking advantage of floating sensor batteries. The patient is protected
against sensor leakage currents by diodes (not shown) that prevent stored charges from accidently
leaving the sensors but allow the 2-wire bus to be used to simultaneously recharge all batteries when
the system is not worn. Symbol legend in Appendix A.

The input impedance of the cooperative sensors is significantly increased by a power
supply bootstrapping approach [19] that takes advantage of the degree of freedom provided
by the floating power supplies of cooperative sensors. The measured potential connected
to the negative input and the middle potential of the supply connected to the positive input
are made equal by the operational amplifier. This bootstrapping strategy is preferred to
other well-known solutions, such as positive feedback [24], because the performance is
higher and the risk of instability is lower. The electrode and its connection to the operational
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amplifier are shielded with the middle potential of the power supply in a manner equivalent
to the driven shielding of classical techniques.

3. Method

Cooperative sensors, with their very high input impedance suitable for dry electrodes
(thanks to bootstrapping) and their connection via a 2-wire parallel bus, solve the integra-
tion difficulties related to wiring and the scalability issues of star-arrangement connections,
thus paving the way for biopotential imaging wearables comprising many electrodes. Like
any active electrode, cooperative sensors require power. Safety constraints resulting from
poor and unreliable insulation in wearables due to wear and tear, as well as the possible
presence of body fluids, make remote power from the central unit a real challenge for
medical devices where the maximum leakage current is 10 µA d.c. [7]. The cooperative
sensor approach in Figure 2 avoided this problem by using one battery in each sensor
and implementing a recharging strategy using the 2-wire bus when the vest is not worn
(e.g., when placed on a hanger modified as a charger). However, one battery per sensor is
expensive, heavy, and cumbersome.

This section presents two solutions for remote powering of cooperative sensors. The
first solution (Section 3.1) solves the difficulty of adding the power supply function to the
bus without increasing the noise of the measured biopotentials beyond the limit required
by the standards, and without interfering with the synchronization and bidirectional
communication between the sensors and the central unit. The second one (Section 3.2)
also aims to solve the safety issue mentioned above, significantly reduce the volume of the
sensors (e.g., from 7.5 cm3 to 0.3 cm3) and the power consumption (e.g., from 5.8 mA to
150 µA), operate with more sensors (e.g., from 20 to 250), and implement a bootstrap that
does not require floating batteries as in Figure 2.

3.1. Legacy Approach with 500 Hz Powering and Off-the-Shelf Components

Figure 3 shows the circuit in Figure 2 with modifications to allow for remote powering.
The cooperative sensors ‘harvest’ their energy from the 2-wire bus powered by the voltage
source U of the central unit. Capturing power from the bus is symbolized in the first
cooperative sensor (middle of Figure 3) by a current source whose current is in phase with
the voltage U (power is consumed when current and voltage have the same sign, as with
a resistance).
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Figure 3. Remotely powered cooperative sensors for biopotential measurement with dry electrodes,
with digital communication at 1.28 Mb/s in both directions (full duplex), and remote power supply
at 500 Hz. Symbol legend in Appendix A.
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The resistance of the bus wire is low but the supply current high, and the resulting
voltage drop on the lower wire is in series with the potential e to be measured. Therefore,
the supply and measurement must be in separate frequency bands to minimize interfer-
ence with the measurement. The first-order bandwidth of biopotentials is, for instance,
0.05–150 Hz for ECG. Therefore, constant current sensors will give a disturbance spectrum
theoretically at 0 Hz, but even if they are carefully designed with active control to keep
the current constant, it is very difficult to avoid overlap with the ECG band. To avoid this
interference and to easily obtain a bipolar supply in the sensors (see below), the voltage
U was chosen as a square wave at 500 Hz corresponding to the Nyquist frequency of
the 1 kHz sample rate. Interference with the fundamental (500 Hz) is first avoided by
fine-tuning the phase of the supply square wave (at the Nyquist frequency, a sinewave
has all its samples equal to zero; only the cosine has non-zero samples). Any remaining
energy of the fundamental—in practice, it is impossible to have the same adjusted phase
for all sensors—is removed with a first-order notch filter by signal processing (i.e., moving
average of two consecutive samples). The harmonics (1 kHz, 1.5 kHz, 2 kHz, . . . ) must be
removed before sampling, otherwise they create aliases at 0 (even harmonics) and 500 Hz
(odd harmonics). An ideal square wave has energy at the odd harmonics and the 500 Hz
notch filter is, therefore, necessary. To remove the even harmonics from a non-ideal square
wave (an unavoidable situation in practice due to the asymmetry of power consumption
for positive and negative currents), a third-order delta-sigma analog-to-digital converter
was chosen, because the digital antialiasing filter of a delta-sigma converter is a comb filter
with notches at multiples of 1 kHz (sample frequency).

The harmonics of a 500 Hz power supply are also low enough in the MHz range that
they do not significantly disrupt the digital communication (modified to 1.28 Mb/s, in
both directions, to conform to the frequency required by the delta-sigma converter). The
bits just past the edges of the 500 Hz supply are disturbed and, thus, removed from the
communication payload (in our prototype, 110 bits are removed, i.e., 17%).

In Figure 2, the upstream channel (from the central unit to the sensors) is realized
as a voltage source and the downstream channel (from the sensors to the central unit) as
current sources. An alternative is to interleave the two channels, each with its own time
slots. In this way, both the up and down channels can use voltages (or currents). In Figure 3,
the current sources have a resistance in parallel. Thevenin’s equivalent, a voltage source
with the resistance in series, is easier to implement since the voltage source is simply a
digital output. The capacitance and inductance are chosen so that their resonance is at
2.56 MHz, and the resistance so that the RLC triplet implements the first-order bandpass
filter used first to prevent the communication band from overlapping the biopotential band
and second to avoid EMC problems that sharp edges in the digital signal can cause. Note
that the RLC triplet is a parallel assembly of R, L, and C in both the central unit (voltage
source U at 0) and in the sensors (the capacitance in series with the inductance is chosen
so that its impedance is negligible at communication frequencies). The received signal is
the voltage on the RLC triplet. After its reconstruction with a high-pass filter and Schmitt
trigger, the digital signal is demodulated in the D-block to obtain v′i.

Since the LC blocks any current at the communication frequency, the voltage on the
RLC triplet is the result of a voltage divider consisting of the emitter resistance and all other
resistances (of the receivers) in parallel. The consequence is that the received voltage is the
emitter voltage divided by the number of units (i.e., sensors and central unit). Therefore,
this approach limits the number of units in practice to approximately 20.

The 500 Hz supply square wave is provided by the voltage source U, which is easily
realized with switching transistors. The impedance of the central unit and sensor induc-
tances is negligible for the supply current. Therefore, the supply square wave is rectified by
diodes in the sensors to provide a positive and a negative voltage on the storage capacitors.
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3.2. Approach Addressing the Safety Issue with Powering at 1 MHz and ASIC for 250 Sensors

The approach of Figure 3 solves the problem of remote power supply with respect to
interference with biopotential measurement and communication on the 2-wire bus, but does
not solve the safety problem for medical devices, because the allowed PATIENT LEAKAGE

CURRENT at 500 Hz is also 10 µA for ECG devices that must be TYPE CF [8]. For other
biopotentials, there is already an appreciable advantage over d.c., since the devices can
be TYPE BF and the allowed PATIENT LEAKAGE CURRENT is ten times higher (i.e., 100 µA).
Assuming a per sensor consumption of 8 mA (see next section) and 25 sensors, the supply
current on the bus is 200 mA. Detecting a 100 µA leak from monitoring the supply current
at the central unit is a difficult task (1 part in 2000). In addition, all sensors must have a
buffer current source that makes closed-loop adjustments to its current to ensure that the
current of any sensor is exactly 8 mA (again with high accuracy).

To better address the safety issue, including the ten-fold increase in ECG requirement,
and to increase the number of sensors by a factor of 10, i.e., to up to 250, we need to reduce
the power consumption of the sensors (say, by a factor of 20, i.e., to 400 µA) and move the
power supply frequency to 1 MHz where the standards allow a patient leakage current of
up to 10 mA (which is also the absolute maximum). This will make detecting a leakage
current much easier (1 part in 10).

Note that the 8 mA and 400 µA mentioned above are the current of a sensor as
measured in the bus. The sensor itself consumes half of this current, i.e., 4 mA and 200 µA,
respectively. The factor of two comes from energy conservation, i.e., the bus supply voltage
U is ±VCC/2 with a current of ±2I (rms value 2I for square waves) which allows sensors
with the dual half-wave rectifier (assuming perfect diodes) to have a VCC supply and I
current for the electronics.

To reduce power consumption by a factor of 20, we developed an ASIC (application-
specific integrated circuit) that optimized each electronic function. In addition, we elimi-
nated the digitization (analog-to-digital converter). The transmission of analogue values
instead of bits has also increased the throughput (required for 10 times more sensors). The
1 MHz power supply is now interleaved with the communication, i.e., every other period
the power supply is replaced by the communication [25]. Figure 4 shows the principle of
this implementation. The inductances are no longer needed (which is good because they
cannot be integrated into silicon as passive components). A switch reroutes the 1 MHz
square-wave signal either to the rectifier diodes and storage capacitors (harvesting period)
or to the communication current source. Before transmission, the biopotential is amplified
and filtered. A high-pass filter prevents the transmission of the electrode offset that can be
as high as 300 mV according to the standards, and thus improves the signal-to-noise ratio
of the analogue communication. The M modulator simply selects the right time slot for
the sensor to transfer its value. All sensors sample their biopotential at the same time. The
value to be transmitted is stored in a capacitor until transmission.

Bootstrapping is achieved with the regulated supply rails VCCF and GNDF (specific
for each sensor) following the electrode potential (with offsets). This is obtained by the
follower controlling the reference of the LDO voltage regulators. Assuming an LDO gain g
(i.e., the LDO outputs a current i = gu where u is the voltage error of the LDO output), the
input impedance of the open loop circuit is magnified by gz at low frequencies. High gain
at low frequencies can be achieved if z behaves like a capacitance at low frequency. At
higher frequencies, for stability reasons, it is preferable for z to behave like a resistance. The
open loop input impedance is essentially the input impedance of the follower (typically
10 pF). The bootstrap magnifies this impedance by gz, allowing the circuit to have a very
high input impedance at low frequencies [25]. Compared to Figure 3 where bootstrapping
is not implemented, this bootstrap also makes shielding of the sensor input more efficient
and natural, as the ground and power rail planes provide implicit (driven) shielding.
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Figure 4. Remotely powered cooperative sensors for measuring biopotentials with dry electrodes,
with digital communication at 500 000 samples per second and remote supply U voltage at 1 MHz.
Left: schematic overview of the central unit circuit; middle: schematic overview of a sensor circuit;
right: detailed circuit diagram of a sensor. Symbol legend in Appendix A.

This paper only describes the measurement of biopotentials. However, the developed
ASIC is also capable of measuring bioimpedance (for EIT) and can be interfaced with an
electret to pick up body sounds (stethoscope).

3.3. Comparison to Existing Work

Table 1 shows a comparison with existing work to further highlight the significance of
the presented work. Compared to the closest state of the art, remotely powered cooperative
sensors do not require a local power supply (e.g., a battery per sensor) which allows them
to be miniaturized, among other things. Being able to monitor the leakage currents allows
wearables to be safe (in the context of medical standards) without relying on the insulation
of conductors in a garment and without the need for waterproof connectors.

Table 1. Comparison to existing work (the main contribution of the paper is highlighted in grey).

Technique/Features [Ref], Section Comment

Conventional star arrangement Not suitable for wearables with many electrodes

Passive electrodes, shielded cables [1] Widespread

Active electrodes, two-wire cables [2,3,20,21] Well-known in the literature, but little used

Parallel bus arrangement Scalable (connector size independent of nb. of electr.)

Bus with more than 2 wires [22] Not easily flexible, stretchable, breathable, washable

Two-wire bus (cooperative sensors) Section 2 Simplest connection

Locally powered Section 2.1 Easy to comply with safety (medical standards)
Bootstrapping Section 2.2 Suitable for dry electrodes
Remotely powered Section 3/Section 4 Sensors can be miniaturized

No monitoring of leakage currents Requires reliable waterproof double insulation
No bootstrapping

Section 3.1/Section 4.1
Not ideal for dry electrodes

Monitorable leakage currents Suitably flexible, stretchable, breathable, washable
Bootstrapping

Section 3.2/Section 4.2
Suitable for dry electrodes
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4. Results
4.1. Legacy Approach with 500 Hz Powering and Off-the-Shelf Components
4.1.1. ECG Study Prototype

Figure 5 shows a study prototype with 224 sensors for ECGi based on the approach
shown in Figure 3 with a 500 Hz power supply and commercially available components.
The device is CF and is defibrillation-proof between two electrodes (verified according
to [8]). The central unit has recording and wireless communication capabilities and is
powered by IEC 62,133 batteries. A close look at Figure 5a shows that the sensors are not
connected on a single two-wire bus. This is because the approach in Figure 3, as described
in the previous section, cannot have more than approximately 20 sensors on the same bus.
Instead, columns of eight sensors are each connected by a two-wire bus to repeaters, which
in turn are connected to a two-wire bus with 14 repeaters, and the system is doubled with
left and right banks from the central unit. So, it is not a fully parallel bus topology but a
tree arrangement comprising 2 × 14 × 8 = 224 sensors. The sensors are equipped with
a CPLD (complex programmable logic device) to implement the PLL and internal clock
reconstruction, a lossless compression scheme to reduce the 24 bits of delta sigma to 10 bits,
and information exchange with the bus.
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Figure 5. Remotely powered cooperative sensors based on the approach of Figure 3: (a) study proto-
type made of 224 sensors for ECGi with defibrillation protection between all electrodes; (b) onesubject
trial to compare dry stainless steel electrodes with adhesive Ag/Ag+Cl− gel electrodes showing
identical noise level for both electrode types (measured from adjacent leads).
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The study prototype passed all hardware performance tests [8], including tests related
to defibrillator protection. The device was designed to have lower noise than required by
ECG standards because its intended use is ECGi. The measured rms value of ECG noise is
2.5 µV and the peak-to-peak value 20 µV over 10 s. The recovery time after defibrillation is
less than 300 ms (standards require a maximum of 5 s). The study prototype at this phase
of development was not built to be worn. However, Figure 5b shows the signals measured
on a subject with two pairs of electrodes on either side of the chest. One pair consisted of
dry stainless-steel electrodes and the other of Ag/Ag+Cl− gel electrodes. For both signals,
noise is barely visible. Note that the two signals are not identical because they result from
close but different electrode positions.

Figure 6 shows a simplified electronic schematic of the entire device (the safety and
defibrillator protections are not shown) implementing the principle of Figure 3. The central
unit (left) is connected to one of the 14 repeaters (middle) of the right bank, which in turn
is connected to one of the eight cooperative sensors (right). The voltage source U of the
central unit (see Figure 3) is implemented with switch transistors alternatively connecting
the battery (4.6 V) or a bypass (0 V). The repeaters, cooperative sensors, and central unit
harvest energy from the two-wire bus using dual half-wave rectifiers. A capacitor connected
just before the half-wave rectifiers removes the offset of U (2.3 V) and provides a bipolar
VCC/GND supply (±2.3 V) which is symmetrical with respect to REF, the potential of
the lower line of the two-wire bus. The LCR triplet consists of an inductor, a parasitic
capacitance and two resistors in parallel directly connected to digital outputs of a CPLD
(Logic) operating in push-pull mode to send a signal. The edges of the received signal is
regenerated by a Schmitt trigger.
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Figure 6. A possible implementation of the principle shown in Figure 3 (as prototyped in the device
shown in Figure 5). Symbol legend in Appendix A.

In the implementation of Figure 6, to keep it simple, the central unit has two electrodes.
Therefore, the G controller is analogue (the operational amplifier) since the v1 signal comes
from the extra electrode of the central unit. The repeater receives the digital signal on one
side and retransmits it on the other side. This is achieved at the cost of a one-bit delay, which
is not a problem because the shift is taken into account by the communication protocol.
The same communication principle as described in [18] is used. The sensor electrode is
connected to the positive input of an operational amplifier. Two resistances define the gain
of the first amplification stage and an RC circuit at the output of the operational amplifier
implements the coarse antialiasing filter required by the delta-sigma converter.

To measure skin impedance (e.g., for a lead-off detection function), the RC circuit
connected to the electrode provides a simple way to inject a tiny current of ±1 nA at 500 Hz
(square wave) with a digital output. The phase is chosen to be 90◦ offset from the sample
times (cosine), because a sinewave at the Nyquist frequency has all its samples equal to zero.
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The capacitance is chosen to have a corner frequency just below 500 Hz to maximize the
input impedance at lower frequencies where the biopotential is measured. The voltage drop
resulting from the injection of this current through the skin impedance is superimposed
to the biopotential signal. However, it can be isolated by taking the difference of two
consecutive samples and ‘demodulated’ by taking only the even samples (down sampling
by two). This processing is conducted in the CPLD of each sensor before the data are
transferred to the central unit. Taking the difference of two consecutive samples (filter with
transfer function 1 − z−1) also allows to efficiently ‘compress’ the bipotential signal (for
example, on the 24 bits of the delta-sigma converter, only 10 bits are enough to ‘encode’ a
medical ECG). For the biopotential, the decompression is performed in the central unit by
the inverse filter 1/(1 − z−1). This compression scheme is lossless (except at 0 Hz, but 0 Hz
is outside the bandwidth of biopotential signals). The notch filter at 500 Hz (sum of two
consecutive samples, i.e., the filter with the transfer function 1 + z−1) needed to remove
the supply disturbance is also realized in the sensor CPLDs. Therefore, the central unit
must apply this corresponding inverse filter, i.e., 1/(1 + z−1), to recover the skin-impedance
signal. Again, this decompression is lossless, except for the frequency exactly at 500 Hz.
Therefore, the 500 Hz current for measuring skin impedance is turned on and off every 1 s
to make a differential measurement (corresponding in the frequency domain to a frequency
line at 499 Hz that is not affected by the lossless compression/decompression process). The
entire processing scheme is shown in Figure 7.
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Figure 7. Processing scheme for the transmission of the signal from the cooperative sensor to the
central unit. The sum of the biopotential e and the voltage drop across the skin impedance z is filtered
by 1 − z−2 = (1 − z−1)(1 + z−1) to compress the biopotential signal (1 − z−1) and eliminate the supply
disturbance at the Nyquist frequency (1 + z−1). The current i injected through the skin impedance Z
is obtained from a carrier c (square wave at Nyquist frequency) modulated by the signal m (typically
a square wave at 1 Hz). Decompression (lossless in the biopotential band, e.g., 0.05 to 150 Hz) with
the filter 1/(1 − z−1) provides the measured biopotential e′ for further processing by the central unit.
In parallel, the received signal is subsampled by 2 and demodulated by multiplying it by the signal m
and filtering it with the low-pass filter LP to obtain the skin impedance signal Z′. Symbol legend in
Appendix A.

4.1.2. EEG Study Prototype

Figure 8 shows another study prototype based on the development presented in
Figure 5 but reworked to handle dry electrode EEG. The modifications are mainly a higher
gain for lower noise (0.7 µV rms, 5.4 µV pp over 10 s), a narrower bandwidth (0.5–50 Hz,
1st order), and a device limited to eight sensors. The noise is within the limit (6 µV pp
over 10 s) accepted by the standard [26]. The obtained power spectra are displayed on the
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right and show the expected changes in power at certain frequencies resulting from the
closed eyes.
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Figure 8. Remotely powered cooperative sensors based on the approach shown in Figure 3: (a) study
prototype consisting of 8 EEG sensors; (b) power spectra for each electrode showing the increase in
power at certain frequencies resulting from closed eyes (orange) versus open eyes (blue).

The implementation circuit is similar to that in Figure 6, but does not include the
repeaters, and the central unit connects only a two-wire bus with eight cooperative sensors.
Table 2 gives the measured noise on the prototype resulting from digital processing of the
difference in potentials (sensor 1 as reference) in the EEG bandwidth of 0.5–50 Hz specified
by the standard [26].

Table 2. Acquisition chain noise (bandwidth 0.5–50 Hz).

Sensor Peak-to-Peak Noise over 10 s (µV) Rms Noise (µV)

1 (potential reference) (potential reference)
2 4.01 0.59
3 4.65 0.60
4 5.18 0.66
5 4.90 0.64
6 4.88 0.66
7 5.41 0.67
8 4.40 0.66

4.2. Approach Addressing the Safety Issue with Powering at 1 MHz and ASIC for 250 Sensors
4.2.1. ASIC Architecture

The ASIC can be mainly divided into two sections, as shown in Figure 9. The first
section, in red, provides the interface to the two-wire bus. At startup, the power manage-
ment unit uses the power square wave generated by the central unit to turn on all internal
power supplies. After this is accomplished, a delay-locked loop in the clock and timing
recovery block listens for the sync marker in the 1 MHz square wave. The sync marker
is a periodicity break that marks the beginning of a sequence of 1,000,000 periods, i.e.,
there is sync marker every 1 s (see the illustration in Figure 10). The power management
harvests current from the bus only every other period. The other periods are used for
communication. Only the ASIC whose ID corresponds to a given communication slot
transmits its acquired sample to the central unit.
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The second section of the ASIC, shown in green in Figure 9, provides the signal chains
for a biopotential electrode and additional sensing functionality that can be integrated
into a sensor. In the example in Figure 9, the additional functionality is a stethoscope. In
addition, a current injection block is used to check the contact impedance of the electrode.

The biopotential acquisition chain starts with a unity gain buffer, as shown in Figure 9.
The output of the reference buffer is used as a ‘floating reference’, that is, it is used as a
ground reference for a positive supply rail and a negative supply rail that feed the reference
buffer itself (see Figure 11). With this bootstrapping approach, the buffer supply perfectly
follows the (a.c.) biopotential to be measured. As a result, the voltage on the parasitic
capacitances at the input is asymptotically close to zero and, thus, virtually no current
flows. This is equivalent to a drastic increase in the input impedance.

The vcc and vee supply rails in Figure 11 follow the floating reference determined by
the buffer itself fed by vcc and vee. Positive feedback is possible and to avoid instability, the
loop gain must be kept below unity. In the ASIC, this is achieved by a single-stage design
that has a large power supply rejection ratio (PSRR) for vcc and vee within the bandwidths
of the low dropout regulators (LDOs) generating these power supplies.

After the high input impedance follower, the ECG signal is chopped at a frequency
of 1–12.5 kHz to avoid flicker noise during amplification. Then it is filtered and sampled
before the transmitter sends the analog signal to the central unit via the bus.
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Figure 11. Transistor-level circuit of the floating reference buffer. The output of the unity gain buffer
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4.2.2. Central Unit Architecture

The central unit implementation based on the approach shown in Figure 4 is presented
in Figure 12. The two wires A and B of the bus are powered by the voltage source U—a
square wave at 1 MHz with a voltage of ±Vh. Every other 1 MHz period, the sensors
are not powered by the bus. Instead, one of them—as determined by its address—sends
into the transimpedance capacitor, during the period when U = Vh, a quantity of electrical
charge proportional to the measured potential. The voltage at the terminals of this capacitor
is then sampled by the ADC to be demodulated by the microcontroller. After sampling, the
transimpedance capacitor is reset by shorting its terminals with a switch. The controller G
in Figure 4 is implemented with a pass-through as in Figure 6.
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4.2.3. Implementation Results

Figure 13a shows the ASIC package mounted on a micro-PCB (7 × 7 mm2). On
the other side of the PCB (not shown in Figure 13), there are some capacitors and other
components that were not practical to be part of the ASIC. However, their footprint is very
small, and since the chip itself is only approximately 2 × 2 mm2 and the number of pins
can be reduced to ≤20, a final sensor implementation of 4 × 4 mm2 could be targeted. The
first integration test setup is shown in Figure 13b. The central unit development board is
on the left and is connected via the two-wire bus to a cooperative sensor (i.e., the ASIC).
This setup acquired the signal of an ECG simulator applied between the sensor and GND.
Figure 13c shows the acquired signal for an ECG of 2 mV (peak R).
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Figure 13. Remotely powered cooperative sensors based on the approach in Figure 4: (a) developed
ASIC (mounted on a 7 × 7 mm2 micro PCB); (b) experimental setup during the integration process
with (bottom left) the central unit and (middle) the ASIC of one sensor; (c) 2 mV ECG of simulator
measured by a sensor.

Another important step demonstrating the feasibility of the proposed approach is
shown in Figure 14 where two ASICs (see Figure 13a) were applied to stainless-steel dry
electrodes on the body, as shown in Figure 14. Despite the use of an optocoupler (DLN-4SE),
some 50 Hz problem remained, but at a low enough level to allow acquisition of a clear
ECG (see Figure 14). The 50 Hz problem should be fully resolved when the central unit
will have been made ‘wearable’ with a floating power supply and when a few other defects
discovered during this exploration phase have been corrected.
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5. Conclusions

The two developments presented in this paper have demonstrated the feasibility of
cooperative sensors for medical imaging wearables for biopotentials. The main contribution
is the disclosure of circuits that allow remote powering of cooperative sensors via their
two-wire bus.
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Cooperative sensors are ideal for biopotential imaging wearables because they can
be deployed in large numbers (>100) without suffering from the wiring complexity of
conventional star arrangements. In an initial development, we demonstrated that high-
quality ECG signals can be acquired from up to 224 defibrillator-proof dry electrodes
connected via a two-wire bus (or rather, a tree of two-wire buses).

A second development designed for up to 250 dry electrodes on a two-wire bus (not a
tree of two-wire buses) in the form of high-frequency remotely powered ASICs to enable
detection of hazardous leakage current has been demonstrated. So far, the demonstration is
limited to 2 sensors on the body and 15 sensors on the test bench. A next iteration to correct
some implementation errors and defects is needed to address more sensors. However,
the tree arrangement strategy used in the first development could also be considered as a
backup solution for the ASICs, if we have difficulties to reach the goal of 250 sensors on a
single two-wire bus.

In addition to the challenge of combining remote power supply, microvolt biopo-
tential measurements, synchronization, and communication on the same two-wire bus,
a significant difficulty addressed in this paper is compliance with medical standards for
leakage currents in the context of wearables that can hardly provide reliable waterproof
double insulation of electrical connections. Although leakage current detection was not
implemented during this development, the design was made to address this issue by
proposing power at frequencies where a leakage current can be detected by the central unit
by monitoring the current.

6. Patents

The work presented in this paper is based on patent [25].

Author Contributions: Conceptualization, O.C.; methodology, B.B., B.S., A.F., M.R. and O.C.; valida-
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diode, C3: power supply block, C4: LDO (low-dropout regulator), C6: electrode, D1: operational 
amplifier, D2: switch, D3: power supply including a battery, D4: battery, D5: connection to positive 
power-supply rail, D6: clock recovery and sync block, D7: down sampling by 2, E1: follower, E2: 
Schmitt trigger, E3: power supply block harvesting energy with controlled current, E5: common 
ground, E6: modulator, E7: demodulator. 
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Figure A1. Symbol legends used in figures. A1: resistance, A2: impedance, A3: voltage source,
A4: controlled voltage source, A5: voltage (between two conductors), A6: summator, A7: multi-
plicator, B1: inductance, B2: shielded cable (e.g., coaxial cable), B3: current source, B4: controlled
current source, B5: current (in a conductor), B6: transfer function, B7: low-pass filter, C1: capacitance,
C2: diode, C3: power supply block, C4: LDO (low-dropout regulator), C6: electrode, D1: operational
amplifier, D2: switch, D3: power supply including a battery, D4: battery, D5: connection to posi-
tive power-supply rail, D6: clock recovery and sync block, D7: down sampling by 2, E1: follower,
E2: Schmitt trigger, E3: power supply block harvesting energy with controlled current, E5: common
ground, E6: modulator, E7: demodulator.

References
1. Webster, J.G.; Clark, J.W. (Eds.) Medical Instrumentation: Application and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010.
2. Boehm, A.; Yu, X.; Neu, W.; Leonhardt, S.; Teichmann, D. A Novel 12-Lead ECG T-Shirt with Active Electrodes. Electronics 2016,

5, 75. [CrossRef]
3. Guerrero, F.N.; Spinelli, E.M. A Two-Wired Ultra-High Input Impedance Active Electrode. IEEE Trans. Biomed. Circuits Syst. 2018,

12, 437–445. [CrossRef] [PubMed]
4. Zipp, P.; Ahrens, H. A model of bioelectrode motion artefact and reduction of artefact by amplifier input stage design. J. Biomed.

Eng. 1979, 1, 273–276. [CrossRef]
5. Meziane, N.; Webster, J.G.; Attari, M.; Nimunkar, A.J. Dry electrodes for electrocardiography. Physiol. Meas. 2013, 34, R47–R69.

[CrossRef] [PubMed]
6. Godin, D.T.; Parker, P.A.; Scott, R.N. Noise characteristics of stainless-steel surface electrodes. Med. Biol. Eng. Comput. 1991,

29, 585–590. [CrossRef] [PubMed]
7. IEC 60601-1; Medical Electrical Equipment—Part 1: General Requirements for Basic Safety and Essential Performance. IEC:

Geneva, Switzerland, 2020.
8. IEC 60601-2-25; Medical Electrical Equipment—Part 2–25: Particular Requirements for the Basic SAFETY and essential Perfor-

mance of Electrocardiographs. IEC: Geneva, Switzerland, 2011.
9. IEC 60601-2-47; Medical Electrical Equipment—Part 2–47: Particular Requirements for the Basic Safety and Essential Performance

of Ambulatory Electrocardiographic Systems. IEC: Geneva, Switzerland, 2012.
10. Pereira, H.; Niederer, S.; Rinaldi, C.A. Electrocardiographic imaging for cardiac arrhythmias and resynchronization therapy. EP

Eur. 2020, 22, 1447–1462. [CrossRef] [PubMed]
11. Gevins, A.; Smith, M.E.; McEvoy, L.K.; Leong, H.; Le, J. Electroencephalographic imaging of higher brain function. Phil. Trans. R.

Soc. Lond. B 1999, 354, 1125–1134. [CrossRef] [PubMed]

http://doi.org/10.3390/electronics5040075
http://doi.org/10.1109/TBCAS.2018.2796581
http://www.ncbi.nlm.nih.gov/pubmed/29570069
http://doi.org/10.1016/0141-5425(79)90165-1
http://doi.org/10.1088/0967-3334/34/9/R47
http://www.ncbi.nlm.nih.gov/pubmed/24137716
http://doi.org/10.1007/BF02446089
http://www.ncbi.nlm.nih.gov/pubmed/1813753
http://doi.org/10.1093/europace/euaa165
http://www.ncbi.nlm.nih.gov/pubmed/32754737
http://doi.org/10.1098/rstb.1999.0468
http://www.ncbi.nlm.nih.gov/pubmed/10466140


Sensors 2022, 22, 8219 18 of 18

12. Urbanek, H.; van der Smagt, P. iEMG: Imaging electromyography. J. Electromyogr. Kinesiol. 2016, 27, 1–9. [CrossRef] [PubMed]
13. Chételat, O. Synchronization and Communication Bus for Biopotential and Bioimpedance Measurement Systems. EP Patent

2567657 B1, 13 March 2013.
14. Chételat, O.; Correvon, M. Measurement Device for Measuring Bio-Impedance and/or a Bio-Potential of a Human or Animal

Body. US Patent 2015/0173677 B2, 25 June 2015.
15. Rapin, M.; Regamey, Y.-J.; Chételat, O. Common-mode rejection in the measurement of wearable ECG with cooperative sensors.

at-Automatisierungstechnik 2018, 66, 1002–1013. [CrossRef]
16. Rapin, M.; Proença, M.; Braun, F.; Meier, C.; Sola, J.; Ferrario, D.; Grossenbacher, O.; Porchet, J.-A.; Chételat, O. Cooperative

dry-electrode sensors for multi-lead biopotential and bioimpedance monitoring. Physiol. Meas. 2015, 36, 767–783. [CrossRef]
[PubMed]

17. Rapin, M.; Wacker, J.; Chételat, O. Two-Wire Bus Combining Full Duplex Body-Sensor Network and Multilead Biopotential
Measurements. IEEE Trans. Biomed. Eng. 2018, 65, 113–122. [CrossRef] [PubMed]

18. Rapin, M. A Wearable Sensor Architecture for High-Quality Measurement of Multilead ECG and Frequency-Multiplexed EIT.
Ph.D. Thesis, ETH, Zürich, Switzerland, 2018. [CrossRef]

19. Chételat, O.; Carós, J.M.S.i. Floating front-end amplifier and one-wire measuring device. US Patent 8427181 B2, 16 September
2009.

20. Guermandi, M.; Bigucci, A.; Scarselli, E.F.; Guerrieri, R. EEG Acquisition System Based on Active Electrodes with Common-mode
Interference Suppression by Driving Right Leg Circuit. In Proceedings of the Engineering in Medicine and Biology Society
(EMBC), 2015 37th Annual International Conference of the IEEE, Milan, Italy, 25–29 August 2015; pp. 3169–3172. Available online:
http://ieeexplore.ieee.org/abstract/document/7319065/ (accessed on 10 October 2017).

21. Ko, W.H. Active Electrodes for EEG and Evoked Potential. In Proceedings of the 20th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering towards the Year 2000 and Beyond (Cat. No.
98CH36286), Hong Kong, China, 1 November 1998; Volume 4, pp. 2221–2224. [CrossRef]

22. Rowlandson, G.I.; Xue, J.Q.; Henderson, R.E.; Rao, C.S. System and Apparatus for Collecting Physiological Signals from a
Plurality of Electrodes. US Patent 8326394 B2, 4 December 2012.

23. Prot, P.; Frouin, P.-Y. Textile Device for Measuring the Electro-Physiological Activity of a Subject. US Patent 2019/0380613 A1, 19
December 2019.

24. Chételat, O.; Bonnal, B.; Fivaz, A. Low Power active Electrode ICs for Wearable EEG Acquisition; Springer: Berlin/Heidelberg,
Germany, 2018.

25. Xu, J.; Yazicioglu, R.F.; Hoof, C.V.; Makinwa, K. Remotely Powered Cooperative Sensor Device. US Patent 2021/0169543 A1,
10 June 2021.

26. IEC 60601-2-26; Medical Electrical Equipment—Part 2–26: Particular Requirements for the Basic Safety and Essential Performance
of Electroencephalographs. IEC: Geneva, Switzerland, 2012.

http://doi.org/10.1016/j.jelekin.2016.01.001
http://www.ncbi.nlm.nih.gov/pubmed/26852113
http://doi.org/10.1515/auto-2018-0061
http://doi.org/10.1088/0967-3334/36/4/767
http://www.ncbi.nlm.nih.gov/pubmed/25798790
http://doi.org/10.1109/TBME.2017.2696051
http://www.ncbi.nlm.nih.gov/pubmed/28436841
http://doi.org/10.3929/ethz-b-000302712
http://ieeexplore.ieee.org/abstract/document/7319065/
http://doi.org/10.1109/IEMBS.1998.747053

	Introduction 
	State-of-the-Art Cooperative Sensors 
	Basic Circuit and Their Interconnections 
	Floating Supply and Bootstrapping 

	Method 
	Legacy Approach with 500 Hz Powering and Off-the-Shelf Components 
	Approach Addressing the Safety Issue with Powering at 1 MHz and ASIC for 250 Sensors 
	Comparison to Existing Work 

	Results 
	Legacy Approach with 500 Hz Powering and Off-the-Shelf Components 
	ECG Study Prototype 
	EEG Study Prototype 

	Approach Addressing the Safety Issue with Powering at 1 MHz and ASIC for 250 Sensors 
	ASIC Architecture 
	Central Unit Architecture 
	Implementation Results 


	Conclusions 
	Patents 
	Appendix A
	References

