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Abstract: With the rapid development of the Internet and information technology (in particular,
generative adversarial networks and deep learning), network data are exploding. Due to the misuse
of technology and inadequate supervision, deep-network-generated face images flood the network,
and the forged image is called a deepfake. Those realistic faked images launched a serious challenge
to the human eye and the automatic identification system, resulting in many legal, ethical, and
social issues. For the needs of network information security, deep-network-generated face image
identification based on different color spaces is proposed. Due to the extremely realistic effect of
deepfake images, it is difficult to achieve high accuracy with ordinary methods for neural networks,
so we used the image processing method here. First, by analyzing the differences in different color
space components in the deep learning network model for face sensitivity, a combination of color
space components that can effectively improve the discrimination rate of the deep learning network
model is given. Second, to further improve the discriminative performance of the model, a channel
attention mechanism was added at the shallow level of the model to further focus on the features
contributing to the model. The experimental results show that this scheme achieved better accuracy
in the same face generation model and in different face generation models than the two compared
methods, and its accuracy reached up to 99.10% in the same face generation model. Meanwhile, the
accuracy of this model only decreased to 98.71% when coping with a JPEG compression factor of 100,
which shows that this model is robust.

Keywords: deepfake; color space; attention mechanisms; generative adversarial networks; image
processing; deep learning

1. Introduction

In recent years, with the development of the artificial intelligence technology repre-
sented by deep learning, artificial intelligence synthesis techniques have made significant
progress in the field of automatic content generation. In the previous image generation
field, image generation was usually accomplished with variable autoencoders (VAEs) [1] or
autoregressive models [2], but since GAN models have made a big splash in the genera-
tion field, variable autoencoders and autoregressive models usually produce poor-quality
images compared to GAN, and such generation models limit their applications for gen-
erating images, so most of the state-of-the-art generation models are trained with GAN.
Currently, the generative adversarial network (GAN) proposed by Goodfellow [3] has
been developed from the original GAN model to more advanced GAN models such as
DCGAN [4], ProGAN [5], and StyleGAN [6], and these techniques have been applied
in various fields of social life, such as webcasting, film and television creation, artwork
design, and so on. However, poor regulation and the misuse of technology have led to
the use of various types of generated images and videos with realistic effects, which have
spread on the Internet. The emergence of new technologies for the human eye, automatic
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recognition systems, and the long iteration times of devices that cannot easily identify such
artificial intelligence attacks have posed serious challenges to the human eye and automatic
recognition systems and raised many legal, ethical, and social issues. Compared to other
image and video content generation, the faces generated by deep networks are inherently
difficult to recognize by the human eye, which leads to serious potential harm and is most
likely to cause a social trust crisis. For example, REGIUM replaced real human face images
with those generated by AI technology and raised USD 33,111 in eight days.

2. Related Works

It is true that many technology companies and academics are responding to the
“generation” problem by developing “countermeasures” technologies. McCloskey and
Albright [7] discriminated generated images based on the presence of underexposure or
overexposure in real face images, and an AUC value of 0.92 was obtained in the classi-
fication of ProGAN and Celeba. Matren et al. [8] used the visual artifacts that appear in
the eyes, teeth, and facial contours of the generated face images for recognition, and AUC
values of 0.852 and 0.843 were obtained for the ProGAN, Glow, and Celeba classifications.
Zhang et al. [9] theoretically analyzed the existence of the spectral replication of artifacts in
the frequency domain and trained a classifier based on spectral rather than pixel inputs
to achieve the effective detection of generated artifacts. The corresponding experimental
results on CycleGAN obtained an average accuracy of 97.2. Mo et al. [10] used filters with
residuals to design deep learning network models to achieve 96.3% detection accuracy
in the corresponding dataset. Dang et al [11] captured the features of the generated face
images by setting a specific CGFace layer with an accuracy of 90.1% for the corresponding
dataset. In addition to feeding images directly into deep learning models, some work has
attempted to improve detection performance by incorporating domain-specific knowledge.
Nataraj [12] trained a network to detect generated artifacts by extracting the co-occurrence
matrix from the pixel domain images in RGB space, and it obtained an accuracy of 93.78%
after the images were detected by JPEG compression. In a Hsu [13] paper, a new two-stream
network structure was proposed by using the simplified DenseNet [14] network structure.
This network allows for pairwise learning. Specifically, pairwise learning is used to solve
the problem that deep learning network models cannot effectively identify deep-network-
generated images that are not included in the training process. In addition, different depth
features are extracted in the proposed network structure, and the experimental results
were obtained on DCGAN and Celeba with a classification accuracy of 97.2% and a recall
accuracy of 91.6%. In a study by Zhuang [15], as in [13], to solve the problem that in
order to solve the deep learning network the model cannot effectively identify the deep-
network-generated images that are not included in the training process, pairwise learning
was used, and, based on this, triplet-state loss was used to learn the relationship between
the deep-network-generated images and real images. They also proposed a new coupled
network to extract features of different depths of the target image, and the experimental
results were obtained on DCGAN and Celeba, with a classification accuracy of 98.6% and a
recall accuracy of 98.6%. In a study by Carvalho [16], deep-network-generated faces were
detected by finding the differences between real and deep-network-generated faces in the
eyes. Specifically, when the eyes’ specular highlights were removed from both real and
deep-network-generated faces, the deep-network-generated face presented more artifacts.
The bottleneck features obtained using the processed human eyes were extracted using
VGG19 [17] for feature extraction. Finally, the eyes were fed into the SVM classifier to
classify the deep-network-generated and real faces, and the experimental results obtained
an AUC value of 0.88 on the corresponding HD face data.

In summary, the discrimination methods for generating images from generative adver-
sarial networks can be divided into two types: one is to feature the visual artifact defects
(e.g., visual artifacts in the eyes, teeth, and facial contours of the generated face images) that
exist in the generated images themselves to finally achieve classification discrimination, and
the other is to design a specific deep neural network model to achieve the discrimination of
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the generated face images. Among the related papers mentioned above, papers [7–9,16],
belong to the first category, using the information of the generated image itself for feature
extraction and as an input to the classifier for classification. Papers [10–13,15], belong to
the category of designing specific deep neural network models that are used to implement
the classification of the generated face images. The model used in this paper belongs to
the second category, where a new image processing method is utilized and then input to a
specific neural network for classification.

In this paper, we propose to use different color space channel recombinations on
the basis of the existing neural network model to effectively discriminate the generated
face graphics. First, by analyzing the differences in different color space components
in the deep learning network model for face sensitivity, a combination of color space
components that can effectively improve the discrimination rate of the deep learning
network model is given. Second, considering the wide application of attention mechanisms
in image processing, natural language processing, and speech recognition in recent years,
we introduced a channel attention mechanism to the model [18]. When the model has the
attention mechanism module at the appropriate location, it enables the model to effectively
extract the distinguishable features of real and generated face images. The results of this
experiment show that this proposed scheme can effectively solve the recognition problem
of face images generated by deep networks. The classification accuracy reached 99.10% on
the relevant dataset, and the model possesses good robustness.

3. Classification of Neural Network and Attention Mechanism Selection
3.1. Classification of Neural Network Selection

Among many mainstream deep learning network models, Xception [19] was chosen
as the deep learning network model in this paper.

First, in the analysis literature of mainstream deep learning network models, in the
paper by Blanco and Simone [20], the accuracy of Xception belonged to the first echelon
and is a lightweight deep learning network model. Second, in the paper on style migration
identification using generative adversarial networks by Marra [21], Xception was effective
in detecting photos that were not propagated by network compression, and finally, when
the test dataset was compressed by the JPEG algorithm, the classification accuracy of the
model did not show substantial degradation.

The Xception deep learning network model is divided into three parts: entry flow,
middle flow, and exit flow. The convolutional kernel size of each layer of the convolutional
layer of the entry flow is 3 × 3, and the number of convolutional layer channels gradually
increases from 3 to 728. The size of the convolution kernel of each layer of the middle flow
is 3 × 3, the number of channels is all 728, and the data tensor is repeated eight times in the
intermediate stream. The size of the convolution kernel of the exit flow is 3 × 3, and the
number of channels is increased from 728 to 2048 for the final full concatenation. There are
residual operations between each convolutional layer. In the structure of Xception, Conv
denotes the ordinary convolution operation, SeparaConv is the depth separable convolution
(the number of parameters and the cost of operation are relatively low compared to the
conventional convolution operation), ReLU is the activation function, MaxPooling is the
maximum pooling layer, and GlobalAveragePooling is the global average pooling layer.
The simplified structure of Xception is shown in Figure 1.
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Figure 1. The Xception deep learning network model is divided into three parts: entry flow, middle
flow, and exit flow.

3.2. Attention Mechanism Selection

Humans have a visual field interaction bottleneck because the brain has a limited
processing speed. The human eye does not interact with everything in the visual field; it
selects the objects it wants to interact with by way of attention. Therefore, humans can
respond quickly to the object of attention despite their limited processing speed. The
embodiment of attentional mechanisms in neural learning networks is a framework that is
not itself a specific network model. The attention mechanisms are very flexible, such as
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the common channel attention mechanism module SENet block, and the space attention
module CBAM block [22]. In this paper, the channel attention module was chosen, and its
structure is shown in Figure 2.
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Figure 2. The channel attention module.

The channel attention operation is performed by squeezing the X1 at Fsq() with the
given number of channels as C1. The global information is generated by performing
operations on each channel. Next, the channel activation operation is performed at Fex(w),
and the weight assignment of each channel is performed by the parameter W. Finally, the
weights from the previous step are multiplied by the original feature channels in Fre() to
achieve a special focus on important features.

4. Deep-Network-Generated Face Image Identification Scheme Design
4.1. Deep-Network-Generated Face Dataset

The hardware environment required for this experiment was a Dell T7920 graphics
workstation desktop with two Xeon Silver 4210R CPUs, 32 GB of running memory, and an
RTX3060 GPU.

In this paper, DCGAN, StyleGAN, and ProGAN were chosen as face image generation
models. The training data for generating faces were obtained from the open dataset
CelebA of the Chinese University of Hong Kong, which contains 202,599 face images with
178 × 218 pixels.

Because the background noise has an impact on the model accuracy, the original
CelebA face dataset was used for face interception using the Face_Recognition face recogni-
tion library of Python, and the images were intercepted as in Figure 3.
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Figure 3. Face interception.

After the face interception, the intercepted face photos of different sizes were repro-
cessed according to 64 × 64 and 128 × 128 graphic resolutions using the thumbnail method
in the Python image package to obtain C64 and C128.

In order to fairly compare the discrimination rates of face images generated by different
GAN models, the resolutions of the face images generated by the three GAN models were
set to 128 × 128 and 64 × 64 and are noted as GD128 from DCGAN, GS128 from StyleGAN,
GP128 from ProGAN, GD64 from DCGAN, GS64 from StyleGAN, and GP64 from ProGAN.
A random sample of 1000 images from the generated faces was evaluated using the face
quality evaluation network in Tencent Youtu Open Source [23], and the obtained scores
were all above 0.9. Generated faces are shown in Figure 4. The left image of Figure 4
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contains 128 × 128 resolution face images produced by StyleGAN, and the right image
contains 64 × 64 face images generated by ProGAN.
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Figure 4. Deep-network-generated face image (left: 128 × 128 and right: 64 × 64).

In this experiment, the mainstream models in the Blanco and Simone paper were used
for comparison, including VGG-19 with deeper network depth and a larger number of
parameters as well as AlexNet [24] and the residual network ResNet152 [25].

4.2. Color Space Channel Processing

An image of a real human face was converted by a camera into an image of electronic
data using a light-sensitive charge-coupled device or a complementary metal oxide semi-
conductor sensor, and the objective scene was recorded digitally in memory. In contrast,
deep networks generate face images by continuously training the target dataset with a
single model and letting the model generate data with the same distribution as the given
target dataset.

In the generator of the generative adversarial network, the latter layers convert multi-
ple ‘latent vectors’ into a tensor with three channels, where the three channels represent the
R, G, and B channels of the generated image. The channel mapping is shown in Figure 5.
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Figure 5. Image generation process.

During the image generation process, the generative adversarial network introduces
coherence features into the generated images. In contrast to real faces, the color channels
of real face images are decomposed and digitized from the real world. This means that
real pixels should be intrinsically associated in a different way rather than feature-mapped
as in the generated image. In Li’s [26] paper, the HSV and YCbCr color space channels
are selected instead of RGB color space channels for the feature training SVM classifier to
achieve real face and deep-network-generated face image discrimination.

Before an image was input to the deep learning network model, we processed both
the CelebA face dataset and the generated faces in color space, RGB to HSV, and YCbCr
color space conversion using R, G, and B components according to the following formulas:

RGB to HSV formula conversion:

V = max(R, G, B) (1)

S = (V − min(R, G, B))× 255/V (2)

H =


(G − B)× 60/S V = R

180 + (B − R)× 60/S V = G
240 + (R − G)× 60/S V = B

(3)
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If H < 0, H = H + 360.
RGB to YCbCr formula conversion:

Y = 0.257 × R + 0.564 × G + 0.098 × B + 16 (4)

Cb = −0.148 × R − 0.291 × G + 0.439 × B + 128 (5)

Cr = 0.439 × R − 0.368 × G − 0.071 × B + 128 (6)

In the extraction of single-channel data after transforming the color space, the two
remaining channels needed to be zeroed first (to obtain the H channel in HSV requires the
S and V channels to be zeroed). The processed channels were put into an empty matrix
prepared in advance, and the single-channel component was obtained. The single-channel
extraction is shown in Figure 6.
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Figure 6. Single-channel acquisition process.

After the single-channel acquisition of different color spaces, a three-channel image
with the same width and height as the original image was created, and then the three-
channel reassignment was performed. After that, different color space channels could be
fused as required.

4.3. Xception Model Optimization

In order to speed up the convergence of the deep learning network model, a pixel
value normalization operation was applied to normalize the original channel color value
range from [0, 255] to [–1, 1].

This experiment was a binary classification model, so the parameters of this deep
learning network were updated using the minimization cross-entropy function. For any
output, the binary classification cross-entropy loss function was defined as:

L = − 1
n

n

∑
i=1

[yi × ln(pi) + (1 − yi)× ln(1 − pi)] (7)

In the above equation, i is the sample; yi is the label of I; when yi is 1, it is the real face;
when yi is 0, it is the face generated by the deep learning network; and pi is the probability
that sample i is predicted to be a natural face.

4.4. Image Channel Recombination

After converting RGB to HSV and YCbCr, the channel combinations were selected
by R, G, B, H, S, V, Y, Cb, and Cr. The recombined images of the three channels were
input into the Xception model to select the top five accuracy combinations of real faces and
deep-network-generated faces. Some samples of the transformations are shown in Figure 7.
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Before training, the dataset was divided into original images and images with recom-
bined color channels for separate training. A total of 10,000 real face graphics in C128
and 10,000 generated faces in GS128 were randomly selected as the training set, and then
10,000 each of C128 and GS128, which were used for the above data differently, were used
as the library test set for testing.

5. Results
5.1. Deep Learning Network Model Test

A total of 10,000 real face graphics in C128 and 10,000 generated faces in GS128
were randomly selected as the training set, and then the above data were tested using
10,000 images each of different C128 and GS128 faces as the database test set. Different
model tests results shown in Table 1.

Table 1. Accuracy of each model.

Deep Learning Networks Accuracy

Xception 94.46%
ResNet152 91.74

VGG-19 92.32
AlexNet 87.95%

The above results show that Xception is competent in this task.

5.2. Attentional Mechanisms and Image Channel Preprocessing Ablation Experiments

For a deep learning network model, due to the optimal size of the receptive field
in one layer of the network, adding modules to expand or reduce the receptive field
in the corresponding layer can have side effects. Therefore, different position insertion
attention mechanism modules were performed to verify that the best embedding position
was obtained.

In order to compare the effect of embedding attention at different locations on the
accuracy of the model, the attention mechanism was added to the second layer of the
entry flow, the second layer of the middle flow, and the fourth layer of the exit flow of the
Xception network. The training dataset was the same as in Section 5.1. The effect is shown
in Table 2.

Table 2. Channel attention test in different positions.

Network Depth Accuracy Improvement

Entry flow 96.82%
Middle flow 89.42%

Exit flow 91.74%
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From Table 2, it can be seen that more global information about the face could be
noticed when the attention mechanism was at a shallow level of the network. Above, it
was concluded that the model accuracy was best when the input stream was embedded in
the channel attention mechanism.

The combinations of the three-color spaces with different channels were input to the
Xception network without channel attention. The combination with the top five accuracy
values was taken, and in addition, the original color space was taken again. The training
dataset was the same as in Section 5.1. The obtained results are shown in Table 3.

Table 3. Experimental results of different channel combinations (model network without channel
attention module).

Channel Recombination Test Set Accuracy

H, S, Cb 97.32%
H, S, Cr 96.41%

H, Cb, Cr 95.79%
Cb, Cr, H 95.70%
Cb, Cr, S 95.43%

HSV 95.37%
YCbCr 95.32%
RGB 94.46%

Table 3 shows that the highest accuracy was obtained by combining the HSV and
YCbCr color spaces, unlike the native RGB space, which was not as effective as the HSV
and YCbCr color spaces. This is also consistent with the results shown in Li’s paper, in that
HSV and YCbCr contributed much more to the model in the color space than the original
RGB space.

The results obtained by recombining the image channels as H, S, and Cb and then
feeding the images to Xception, which has a channel attention mechanism module. The
training dataset was the same as in Section 5.1. The results are shown in the following
Table 4.

Table 4. Channel attention combined with image preprocessing.

The Above Two Methods Test Set Accuracy

H, S, Cb 99.10%

The above results show that the channel attention method and the image channel
recombination method mutually enhanced each other in this ablation experiment.

5.3. Comparison of Methods

In this section, we compare the proposed approach with the network model structure
in papers [5] (MO) and [6] (Dang).

In total, 10,000 real face graphics in C128 and 10,000 generated faces in GS128 were
randomly selected as training sets, and then the above data were tested using different
selected images (10,000 in C128 and 10,000 in GS128) as the database test sets. Then, there
were GD128, GP128, GD64, GS64, and GP64, each corresponding to C128, C128, C64, C64,
and C64 data that were mutually exclusive with the training set, and the number of each
was 10,000. The results are shown in Table 5.
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Table 5. Comparison of the results of different models.

Model GS128 GD128 GP128 GD64 GS64 GP64 Average

Mo 93.50% 90.32% 91.73% 86.52% 84.39% 80.21% 87.78%

Dang 95.43% 92.18% 96.37% 90.62% 80.24% 90.24% 90.85%

Proposed 99.10% 98.82% 99.05% 95.78% 90.32% 93.78% 96.14%

The accuracy performance results of the three methods on GS128 and C128 are shown
in the Figure 8.
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From the figure, it can be seen that the method proposed in this paper was superior to
the other two schemes in terms of convergence speed and accuracy, and this network is a
lightweight network that is easy to deploy industrially.

5.4. Robustness Testing

The model is affected by the specific image compression that is performed when
false images are uploaded on the Internet, so a test set was generated for a face image
compression operation to test the model’s robustness, while the weight training of the deep
learning network model was still trained by the uncompressed training set.

JPEG compression is often used for compression during network transmission, and to
test the model’s robustness, a test of image compression was performed by quality factors
ranging from 70 to 100 with an interval of 10. The training dataset was the same as in
Section 5.1. The results are shown in Table 6.

Table 6. Impact of different JPEG quality factor attacks on the model.

70 80 90 100

Dang 81.69% 90.34% 91.35% 93.54%
Mo 76.42% 79.95% 85.23% 90.21%

Proposed 85.38% 93.79% 97.64% 98.71%

As can be seen from Table 6, the robustness of the present model is excellent.

6. Discussion

In this proposed method, we used a new image preprocessing approach to discrimi-
nate the faces generated by deep learning networks, in that the pixel synthesis from the
deep-network-generated face images themselves is not the same as the real face synthesis
approach. Because generative adversarial networks do not represent many details in the
generated images as correctly as real images, this also leads to potential factors in the
generated images that can be explored. Therefore, it is these potential factors that are
different from the real face that we can use to assist our model in classification. In this
paper, the potential factor was that the images generated by the generative adversarial
network were expressed differently from the real images in different color spaces. In the
future, our work should also focus on this aspect: finding the differences between the faces
generated by deep learning networks and real faces.

The proposed method of image processing can also be used in other deepfake fields,
such as the statistical analysis of spectrograms of channel-recombined images to achieve
classification effects. Can this solve the problem of an insufficient number of samples?

Even though our proposed method achieved high classification accuracy in the cor-
responding DCGAN, ProGAN, and StyleGAN datasets and the model still had good
robustness against JPEG compression attacks, we find that the classification accuracy of
the model decreased when the training dataset for generating faces was GS128 and the test
dataset was not the same model. Its classification accuracy decreased from 99.10% to 95.55%
on average for some datasets (99.10% was removed), and it decreased more rapidly with
the [5] (MO) and [6] (Dang) methods, corresponding to average decreases of 89.93% and
86.62%. In the future, we will focus on the commonalities between the different generative
models, with the initial intention to work on domain migration.

7. Conclusions

For the problem of discriminating deep-network-generated faces and real face images,
this paper proposes a method based on color space combination. By the different sensitivi-
ties of the different color space components of faces, a color space component combination
method that can effectively improve the discrimination rate of deep learning network
models is given. Accuracy experiments with different mainstream models demonstrated
the advantages of Xception in discriminating between deep-network-generated faces and
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real faces. In addition, the attention mechanism affected the receptive field of the network,
leading to a change in the optimal perceptual field and thus reducing the model accuracy.
Therefore, in this paper, different depths of the network were assessed to insert attention
mechanisms to verify the location where the best embedded attention mechanism was ob-
tained, and it was concluded that the shallow insertion of channel attention in this Xception
network model contributed the most to the accuracy rate. Finally, the combination of color
components H, S, and Cb together with the attention mechanism obtained an accuracy of
99.10% for the test set, and the proposed scheme outperformed the other schemes in the
comparison of different methods.

Although the generated face images were visually indistinguishable by the human eye,
the method proposed in this paper could effectively identify that they represented many
intrinsic properties possessed by real images (e.g., properties in different color components)
that were not properly represented by the generative model. In future work, the generative
model will be further explored in the attributes that cannot be correctly expressed.
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