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Abstract: Estimating camera pose is one of the key steps in computer vison, photogrammetry and
SLAM (Simultaneous Localization and Mapping). It is mainly calculated based on the 2D–3D
correspondences of features, including 2D–3D point and line correspondences. If a zoom lens is
equipped, the focal length needs to be estimated simultaneously. In this paper, a new method of fast
and accurate pose estimation with unknown focal length using two 2D–3D line correspondences
and the camera position is proposed. Our core contribution is to convert the PnL (perspective-
n-line) problem with 2D–3D line correspondences into an estimation problem with 3D–3D point
correspondences. One 3D line and the camera position in the world frame can define a plane, the
2D line projection of the 3D line and the camera position in the camera frame can define another
plane, and actually the two planes are the same plane, which is the key geometric characteristic in this
paper’s estimation of focal length and pose. We establish the transform between the normal vectors
of the two planes with this characteristic, and this transform can be regarded as the camera projection
of a 3D point. Then, the pose estimation using 2D–3D line correspondences is converted into pose
estimation using 3D–3D point correspondences in intermediate frames, and, lastly, pose estimation
can be finished quickly. In addition, using the property whereby the angle between two planes is
invariant in both the camera frame and world frame, we can estimate the camera focal length quickly
and accurately. Experimental results show that our proposed method has good performance in
numerical stability, noise sensitivity and computational speed with synthetic data and real scenarios,
and has strong robustness to camera position noise.

Keywords: pose estimation; line correspondences; unknown focal length; camera position;
normal vector

1. Introduction

Camera pose estimation is an important step in computer vision, SLAM and pho-
togrammetry [1–5], and the corresponding methods are mainly divided into two categories.
The first category is based on deep learning using large training sets, which has become
popular recently [6–9]. The second category is the traditional pose estimation method,
which uses a small number of precise inputs for accurate estimation [10–15]. The former
category is difficult to apply in high-precision measurements, and, in some real scenarios,
such as weapon tests, it is difficult to obtain a large training set. The method proposed in
this paper belongs to the latter, which uses a small number of precise inputs for pose estima-
tion, and the most commonly used inputs here are 2D–3D point correspondences [16] and
2D–3D line correspondences [17]. Point and line features are common in real scenarios and
are easy to obtain by humans; hence, there are many point-based pose estimation methods,
called PnP (perspective-n-point) solvers [18–20], and line-based pose estimation methods,
called PnL (perspective-n-line) solvers [21–24]. Moreover, there are some methods that
estimate pose using both points and lines [25], but they are not applied widely. In addition,
there are some specific methods using line correspondences that are parallel lines [26].
These parallel lines in the image plane would intersect at a point that is called the vanishing
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point. The specific methods seemingly use line correspondences, but, actually, we could
also say that they use point correspondences (i.e., vanishing point). However, parallel lines
do not always exist in real scenarios and they are also not applied widely, as with PnP or
PnL solvers. Hence, here, we mainly introduce PnP and PnL solvers.

For PnP solvers, a 2D–3D point correspondence provides two constraints [27]. When
all the intrinsic parameters are known and all the extrinsic parameters are unknown, at least
three 2D–3D point correspondences are needed to estimate the camera pose, which is called
a P3P solver [28], with up to four solutions, and an additional constraint (e.g., one more
2D–3D point correspondence) is needed to determine the unique solution. When there
are four 2D–3D point correspondences, the camera pose and an intrinsic parameter (e.g.,
the focal length) can be simultaneously estimated, which is called P4Pf [29,30]. When five
2D–3D point correspondences are present, the camera pose and three intrinsic parameters
(e.g., the focal length and radial distortion) can be simultaneously estimated, which is
called P5Pfr [31]. All the above methods are nonlinear. When there are at least six 2D–3D
point correspondences, the camera pose can be estimated linearly, which is called DLT
(Direct Linear Transformation) [32,33]. In addition, there are some methods that use partial
parameters of pose as prior knowledge, such as the known vertical direction [34–36] or
camera position [37,38], and these methods can use fewer 2D–3D point correspondences,
simplify the problem and increase the efficiency.

In some cases, no point features but line features are present. Similar to 2D–3D point
correspondences, 2D–3D line correspondences are also widely used in pose estimation. The
method proposed in this paper is an estimation method based on 2D–3D line correspon-
dences. Similarly, a 2D–3D line correspondence can give two constraints. If all the intrinsic
parameters are known and the six parameters of the pose are all unknown, at least three
2D–3D line correspondences are needed to estimate the pose, which is called P3L [39–41],
and up to eight solutions can be obtained by solving nonlinear equations, and then another
constraint is given to determine the unique solution. If some intrinsic parameters are
unknown, more 2D–3D line correspondences are needed [42–44]. When there are four
2D–3D line correspondences, the focal length can be obtained, while the pose is estimated.
When there are five 2D–3D line correspondences, the focal length and principal point (or
radial distortion) can be obtained, while the pose is estimated. When there are at least
six 2D–3D line correspondences, the camera pose can be linearly estimated [45]. As we
can see, more parameters can be estimated using more 2D–3D line correspondences, and
the computational complexity decreases (from nonlinear to linear estimation). However,
sufficient 2D–3D line correspondences may not exist in the FOV (field of view), and a great
deal of work is needed to measure the lines accurately. In this case, we need to finish
the pose estimation with a smaller number of 2D–3D line correspondences, and this is
the motivation for our work in this paper. If less than three 2D–3D line correspondences
are required, some pose parameters need to be known. Some methods use IMU-based
techniques to obtain the vertical direction [46]; that is, two angles are known, and then
two 2D–3D line correspondences are used to estimate the pose. Similarly, based on this
idea, we can measure the camera position in advance, which also reduces the number of
2D–3D line correspondences. With the development of technology, various tools are used
to measure the camera position with high accuracy, such as total station and RTK (real-time
kinematics). Therefore, in this paper, we propose a new method to simultaneously estimate
the pose and focal length using two 2D–3D line correspondences and the camera position.

In this paper, two known 2D–3D line correspondences and the known camera position
are used. In many cases, the camera position could be known as prior knowledge. In missile
testing range and rocket launch applications, for example, the attitude measurement based
on fixed cameras with a zoom lens is an important test. These cameras are fixed and the
positions can be measured as prior knowledge by RTK or total station. The accuracy of
the RTK and total station is high. In addition, with the growing prominence of the social
security problem, VMCs (visual monitoring cameras) are used widely. In general, the
position of the VMC is fixed and the lens orientation can be changed. In these cases, where
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the camera position is known, the presented method can be applied to estimate the focal
length and pose using line correspondences. Each 3D line and camera position in the world
frame can determine a plane, and then we can obtain two known planes in the world frame
because two 3D lines are given. The angle between these two planes in the world frame can
be calculated. Similarly, we can obtain two known planes in the camera frame because two
2D lines are given. Then, the angle with an unknown focal length, between these two planes
in the camera frame, can be calculated. According to the principle of camera imaging, the
two angles are equal and, consequently, an equation can be given with one parameter (i.e.,
focal length). Hence, the focal length can be estimated by using this geometric characteristic.
In addition, the plane that contains the 3D line and camera position in the world frame,
and the plane that contains the corresponding 2D line and camera position in the camera
frame, are the same plane in space. Then, the unit normal vectors of the two planes can
correspond through the rotation matrix, and, lastly, the unit normal vector correspondences
are transformed into point correspondences under two intermediate frames with the same
origin. Now, the pose estimation using line correspondences is transformed into pose
estimation using point correspondences, and then we can efficiently estimate the camera
pose using this characteristic. It can be seen that our proposed method uses only two
2D–3D line correspondences and the camera position to estimate the focal length and
pose simultaneously, which improves the efficiency and expands the applicability of the
proposed method while reducing the number of lines. Experimental results show that,
compared with several existing pose estimation methods, our proposed method can achieve
better performance in numerical stability, noise sensitivity and computational speed, both
in synthetic data and real scenarios. In addition, our proposed method also has strong
robustness to camera position noise.

The rest of this paper is as follows. Section 2 describes the materials and methods,
and proposes the specific theoretical derivation of our proposed method. In Section 3, the
numerical stability, noise sensitivity and computational speed of the proposed method
and some other SOTA (state-of-the-art) methods are compared. Section 4 is the discussion;
Section 5 is the conclusions.

2. Proposed Method

Two 3D lines L1, L2 and camera position Oc are known in the world frame Sw1
(Ow_XwYwZw). The projections of the two 3D lines are denoted as l1, l2 on the image
plane and l1, l2 are known in the camera frame Sc1 (Oc_XcYcZc), as shown in Figure 1.
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Line Li (i = 1, 2) and camera position Oc can determine a plane and then we can obtain
two planes that are denoted as π1, π2 in this paper. Because the lines and camera position
are known in the world frame, the planes π1, π2 are known in the world frame and then
we can obtain two unit normal vectors of the two planes, denoted as nw1 and nw2, and
they are known in the world frame Sw1 (Ow_XwYwZw). Similarly, by extracting two lines
l1, l2 on the image plane, we can obtain two unit normal vectors nc1 and nc2 in the camera
frame Sc1 (Oc_XcYcZc), but both contain an unknown variable, which is the focal length.
The angle between the two normal vectors in the camera frame is equal to the angle in the
world frame. Therefore, an equation can be established based on this relation among the
angles. The equation contains only one unknown variable, namely the focal length, and
then the focal length can be solved.

In addition, a vector in the world frame can be transformed into another vector in the
camera frame with the camera rotation matrix. Hence, the unit normal vector nwi in world
frame Sw1 (Ow_XwYwZw) can be transformed into nci in camera frame Sc1 (Oc_XcYcZc) using
nci = Rnwi; here, R is the camera rotation matrix, and contains all the pose information.
According to this rotation relationship, we translate the origin of the world frame Sw1
(Ow_XwYwZw) to the camera position, and the new world frame Sw2 (Ow2_Xw2Yw2Zw2) is
obtained. In this way, the projection relationship of unit normal vectors can be changed
into the relationship between the point nwi in the world frame Sw2 (Ow2_Xw2Yw2Zw2), and
the point nci in the camera frame Sc1 (Oc_XcYcZc) through the rotation matrix R. R here
is the rotation matrix between world frame Sw2 (Ow2_Xw2Yw2Zw2) and camera frame Sc1
(Oc_XcYcZc), and also the rotation matrix between world frame Sw1 (Ow_XwYwZw) and
camera frame Sc1 (Oc_XcYcZc). After this, the problem with line correspondences has been
converted into the problem with point correspondences, which means that the PnL problem
in this paper has changed into the PnP problem. It is a useful transformation that makes
the calculation process fast and efficient. The specific calculation process is as follows.

2.1. Focal Length Estimation

The expression of Li is (Vi, Pi) in this paper, and Vi is the unit direction vector of the
line, while Pi is an arbitrary point on the line. Then, Li in the world frame can be written as

Li = Pi + kVi (1)

Here, k is an arbitrary scale factor, unknown. Then, in the world frame, the unit normal
vector nwi of the plane πi passing through the line Li and the camera position Oc is

nwi =
Vi ×
→
PiOc

‖Vi ×
→
PiOc ‖

(2)

The angle α between the unit normal vectors of the plane π1 and π2 can be obtained using

α = arccos
nT

w1 × nw2

‖nw1‖·‖nw2‖
(3)

Assume that the pixel coordinates of the two endpoints of the line li in the image plane
of the corresponding Li are given as

(
u2i−1 v2i−1

)
,
(
u2i v2i

)
, which are known; the focal

length of the camera is f, unknown; then, the normal vector of π1 and π2 in the camera
frame is

nc1 =
[

v1 − v2 u2 − u1
u1v2−u2v1

f

]
=
[

a1 b1
c1
f

]
nc2 =

[
v3 − v4 u4 − u3

u3v4−u4v3
f

]
=
[

a2 b2
c2
f

] (4)
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Since the angles between the normal vectors in the world frame and camera frame,
respectively, are the same, then

cos α =
nc1·nT

c2
‖nc1‖‖nc2‖

=
a1a2 + b1b2 +

c1c2
f 2√

a2
1 + b2

1 +
c2

1
f 2

√
a2

2 + b2
2 +

c2
2

f 2

=
m1 f 2 + m2√

m3 f 2 + c2
1

√
m4 f 2 + c2

2

(5)

Let cos α = m5 and then we can obtain a new equation(
m3m4m2

5 −m2
1

)
f 4 +

(
m3m2

5c2
2 + m4m2

5c2
1 − 2m1m2

)
f 2 + m2

5c2
1c2

2 −m2
2 = 0 (6)

In Equation (6), f 2 is regarded as a parameter, and the above equation is a quadratic
equation of one variable f 2 with two solutions. According to the restriction that f > 0
and f 2 > 0, the unique solution of focal length can be obtained. Now, the focal length
estimation is finished. Then, the unit normal vectors in the camera frame can be given using

nc1 = nc1
‖nc1‖

nc2 = nc2
‖nc2‖

(7)

Next, we will estimate the camera pose.

2.2. Pose Estimation

As can be seen from Section 2.1, the unit normal vectors nw1, nw2, nc1, nc2 are all known
at present, and then we can obtain

nc1 = R·nw1
nc2 = R·nw2

(8)

Here, R is the rotation matrix between the world frame and camera frame. According
to the camera projection relationship, a point Pw in the world frame can be transformed to
a point Pc in the camera frame using

Pc = R·Pw + t (9)

Here, t is the translation vector from the world frame to the camera frame. If we
translate the origin of the world frame to the origin of the camera frame, t is zero and then

Pc = R·Pw (10)

This is consistent with Equation (8) between the unit normal vectors. Inspired by this
relationship, this paper regards the rotation relationship between the unit normal vectors
as the rotation relationship between the points after the origins of the camera frame and
the world frame coincide, and the coordinates of the corresponding points are the values of
the unit normal vectors in the same frame, as shown in Figure 2.
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Figure 2. The geometry of our proposed method for pose estimation.

Here, a new world frame Sw2 (Ow2_Xw2Yw2Zw2) is established after translating the
origin of the original world frame Sw1 (Ow_XwYwZw) to the origin of the camera frame Sc1
(Oc_XcYcZc). The relationship between the two world frames is as follows.

Sw2 = Sw1 −Oc (11)

Now, the two points Pc1 and Pc2 in the camera frame Sc1 are identical to the two
points Pw1 and Pw2 in the world frame Sw2. Then, we establish another camera frame Sc2
(Oc2_Xc2Yc2Zc2) and world frame Sw3 (Ow3_Xw3Yw3Zw3), as shown in Figure 3.
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The origin Oc2 of the new camera frame Sc2 (Oc2_Xc2Yc2Zc2) is located at the camera
position Oc, and the unit direction vectors of each axis are calculated using

→
Oc2Xc2 =
→

OcPc1

‖
→

OcPc1 ‖
→
Oc2Zc2 =
→
Oc2Xc2 ×
→

OcPc2

‖
→
Oc2Xc2 ×
→

OcPc2 ‖→
Oc2Yc2 =
→
Oc2Zc2 ×
→
Oc2Xc2

(12)

Then, the camera frame Sc1 can be transformed into the camera frame Sc2 using

Sc2 = Tc_c2·Sc1

Tc_c2 =
[→

Oc2Xc2
→
Oc2Yc2
→
Oc2Zc2

]T (13)

Similarly, we establish the new world frame Sw3 (Ow3_Xw3Yw3Zw3), and the origin of
the world frame Ow3 is also located at the camera position Oc. The unit direction vectors of
each axis are calculated using

→
Ow3Xw3 =

→
OcPw1

‖
→
OcPw1 ‖

→
Ow3Zw3 =
→
Ow3Xw3×
→
OcPw2

‖
→
Ow3Xw3×
→
OcPw2 ‖→

Ow3Yw3 =
→

Ow3Zw3 ×
→

Ow3Xw3

(14)

Then, the world frame Sw2 can be transformed into the world frame Sw3 using

Sw3 = Tw2_w3·Sw2

Tw2_w3 =
[→

Ow3Xw3
→
Ow3Yw3
→

Ow3Zw3

]T (15)

Since the two points Pc1 and Pc2 in the camera frame are the same as the two points
Pw1 and Pw2 in the world frame, camera frame Sc2 (Oc2_Xc2Yc2Zc2) and world frame Sw3
(Ow3_Xw3Yw3Zw3) are the same frame. Now, the transformations between all the frames
are determined, as shown in Figure 4.
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From Figure 4, we can obtain the relationship between the camera frame Sc1 and the
world frame Sw1 using

Sc1 = Tw_c·Sw1 + tw_c
Tw_c = T−1

c_c2·Tw2_w3

tw_c = −T−1
c_c2·Tw2_w3·Oc

(16)

Now, the pose estimation is finished.
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3. Experiments and Results

First, the proposed method and some other existing state-of-the-art solvers (i.e.,
P3P [16], RPnP [13], GPnPf [47], DLT [48] and P3L [24] here) with excellent performance are
comprehensively tested with synthetic data, including numerical stability, noise sensitivity
and computational speed, in terms of the focal length and pose estimation.

Second, the proposed method in this paper uses the prior knowledge of the camera
position, but the prior knowledge cannot be absolutely correct, and an error in the camera
position may bring a large error to the final pose and focal length estimation. Therefore,
here, we also need to analyze the robustness of the pose and focal length estimation method
to camera position noise.

Finally, the proposed method and some other existing state-of-the-art solvers are
indirectly tested with real images, which shows that the proposed method can also achieve
good performance in the real scenarios.

3.1. Synthetic Data

We synthesize a virtual perspective camera with 1280 × 800 resolution. Its principal
point is the center of the image, the pixel size is 14 µm, and the focal length is 50 mm.
The camera is located at (2, 2, 2) in meters in the world frame. All the methods are
tested on synthetic data with a perfect pinhole camera to ensure that the comparison in
computational performance is fair. For our proposed method and the P3L solver, 2D–3D
line correspondences are needed, and for the P3P, RPnP, GPnPf and DLT solvers, 2D–3D
point correspondences are needed. Hence, 3D points and lines are placed in the FOV of the
virtual camera. In this paper, three thousand 3D points and three thousand 3D lines (their
lengths are all 5 m) are randomly generated in a box of [(−20, 20)× (−20, 20)× (180, 220) in
meters in the world frame. Through the virtual camera, three thousand 2D points and three
thousand 2D lines are generated. Then, we obtain the synthetic data, consisting of three
thousand 2D–3D point correspondences and three thousand 2D–3D line correspondences.

In this section, two 2D–3D line correspondences and three 2D–3D line correspondences
from the synthetic data are randomly chosen for our proposed method and the P3L solver,
respectively, for each trial. Three, four, five and six 2D–3D point correspondences from the
synthetic data are randomly chosen for the P3P, GPnPf, RPnP and DLT solvers for each
trial, respectively. Here, P3P, GPnPf, RPnP, DLT and P3L are used to estimate the pose that
includes the orientation and translation, and the GPnPf is also used to estimate the focal
length when we analyze the performance of our proposed method.

3.1.1. Robustness to Camera Position Noise

The camera position is given by the RTK or total station in this paper, where the
accuracy of RTK is better than 3 cm, and the accuracy of total station is better than 0.5 cm [49].
Therefore, the camera position has noise, which may affect the pose estimation. In this
section, we need to analyze the robustness to the camera position noise, and then Gaussian
noise, whose deviation level varies from 0 to 3 cm, is added to the camera position. Here,
10,000 random trials for each noise level are conducted independently, and the mean errors
of rotation, translation, reprojection and focal length for each noise level are reported in
Figure 5.

From Figure 5, it can be seen that as the camera position noise increases, so do the
rotation error, the translation error, the reprojection error and the relative focal length.
When the noise is 3 cm, the errors reach the maximum values, which are 0.08 degrees,
2.72 cm, 0.28 pixels and 0.008%, respectively. The results show that even if there are errors
in rotation, translation, reprojection and focal length caused by camera position noise, they
are still small, and we can say that our proposed method has strong robustness to camera
position noise in terms of pose estimation.
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3.1.2. Numerical Stability

In this section, we test our proposed method in terms of numerical stability for pose
estimation. In total, 10,000 independent trials are conducted using synthetic data with no
noise added. We also compare our proposed method with P3P, RPnP, GPnPf, DLT and P3L,
and the results are reported in Figure 6.

From Figure 6, it can be seen that all six methods have good numerical stability
for pose estimation. Specifically, in terms of the rotation error, DLT obtains the best
result, and our proposed method has the second. In terms of the translation error, our
proposed method achieves the best and DLT achieve the second-best result. In terms of
the reprojection error, P3P obtains the best result, RPnP obtains the second, DLT obtains
the third and our proposed method obtains the fourth. As a whole, DLT has the best
performance and our proposed method has the second-best performance for rotation,
translation and reprojection.
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Our proposed method also estimates the focal length, but the P3P, RPnP, DLT and P3L
methods do not. Here, to analyze the numerical stability of the focal length estimation,
we tested our proposed method compared with the GPnPf solver, which is one of the
state-of-the-art solvers used to estimate the focal length, as shown in Figure 6 (bottom
right). It can be seen that our proposed method and the GPnPf method both have good
numerical stability, and our proposed method performs better than GPnPf. This result
shows that our proposed method has better performance regarding numerical stability in
terms of focal length estimation.

3.1.3. Noise Sensitivity

In this section, we test our proposed method in terms of noise sensitivity using
synthetic data with zero-mean Gaussian noise added onto the 2D points and lines. The
noise deviation level varies from 0 to 1 pixel and 10,000 independent trials are conducted
for each noise level. We also compare our proposed method with P3P, RPnP, GPnPf, DLT
and P3L, and the mean errors of rotation, translation, reprojection and focal length are
reported in Figure 7.
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From Figure 7, it can be seen that all six methods have good noise sensitivity for
pose estimation. Moreover, as the noise increases, so do the rotation error, the translation
error, the reprojection error and the focal length error. Specifically, in terms of the rotation
error, our proposed method, DLT and P3L perform similarly, and they achieve the best
performance. GPnPf shows the second-best result. In terms of the translation error, our
proposed method is the best and DLT is the second-best. In terms of the reprojection
error, P3P has the best result, our proposed method has the second-best, and DLT is
fourth. As a whole, our proposed method has the best performance for rotation, translation
and reprojection.

Our proposed method also estimates the focal length, but the P3P, RPnP, DLT and P3L
methods do not. Here, to analyze the noise sensitivity of focal length estimation, we tested
our proposed method compared with the GPnPf solver, which is one of the state-of-the-art
solvers used to estimate the focal length, as shown in Figure 7 (bottom right). It can be seen
that our proposed method and the GPnPf method both have good noise sensitivity, and our
proposed method performs better than GPnPf. This result shows that our proposed method
has better performance regarding noise sensitivity in terms of focal length estimation.

3.1.4. Computational Speed

Sections 3.1.1–3.1.3 show that our proposed method has good performance in terms
of accuracy and stability. However, to fully evaluate a method, it is necessary to test the
computational speed, because some methods achieve better results only when they use
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more complex computational processes, at the expense of computational speed. There-
fore, we need to demonstrate the complexity of our proposed method by evaluating the
computational speed.

In this section, 10,000 independent trials are conducted on a 3.3 GHz two-core lap-
top for all the methods, respectively, to test the computational speed. Then, the mean
computational times are calculated, as reported in Table 1.

Table 1. Computational time.

Method Our Proposed Method P3P RPnP GPnPf DLT P3L

Computational time 0.46 ms 1.72 ms 2.03 ms 6.88 ms 0.77 ms 1.56 ms

From Table 1, it can be seen that our proposed method has the fastest computational
speed according to the computational time. Specifically, the computational speed of our
proposed method is 3.7 times, 4.4 times 15.0 times, 1.7 times and 3.4 times that of the latter
five methods, respectively.

3.2. Real Images

In this section, our proposed method is indirectly tested with real images to show
that it can work well with real scenarios. Simultaneously, we compare the performance
of our proposed method with that of the other methods (i.e., P3P, RPnP, GPnPf, DLT and
P3L solvers).

In real scenarios, the ground truth of the camera pose is unknown and hence we cannot
directly compare the value of the pose estimation with the ground truth. However, the
positions of the spatial point and line are easily measured with high accuracy using some
common tools (e.g., RTK, total station and ruler). Hence, the position can be used to test
our proposed method indirectly in real images. In fact, pose estimation is preparation for
practical applications, such as SfM, SLAM and photogrammetry. One important application
is to measure the spatial positions of objects in photogrammetry, where two or more cameras
after pose estimation are used to finish the measurement, namely stereo vision. It can be
seen that the accuracy of the position of the point is affected by the pose estimation and,
hence, the accuracy of the position can reflect the accuracy of pose estimation.

Here, two rectangular boxes are placed on a checkerboard, whose sizes are known.
Many points and lines exist in this scenario, and their positions are all known as ground
truth. Two mobile phone cameras are used to capture real images from two different
perspectives, as shown in Figure 8.
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The focal length of the camera is 4.71 mm, the resolution is 4000 × 3000, and the pixel
size is 1.6µm. The positions of the two cameras are given by the total station. Then, two
lines are randomly chosen to estimate the pose for our proposed method, three lines for
the P3L method, three points for the P3P method, four points for the GPnPf method, five
points for the RPnP method and six points for the DLT method. After pose estimation using
the six methods, the positions of the remaining points can be given as measured values by
stereo vision [50]. Here, the measured values are denoted as Pi, (1 ≤ i ≤ n), where n is the
number of remaining points for the checkerboard. Because the size of the checkerboard is
known, the positions of these points are known as the ground truths, which are denoted as
P′i . We use the mean relative position errors Eposition, between the measured value and the
ground truth, to indicate the accuracy of all six methods, and the formula is written as

Eposition =

n
∑

i=1

|Pi−P′i |
P′i

n
(17)

The mean relative position errors between the measured value and the ground truth
are reported in Table 2.

Table 2. Relative errors of position.

Method Our Proposed Method P3P RPnP GPnPf DLT P3L

Mean relative error % 0.43 0.51 1.79 1.06 0.56 0.62

From Table 2, it can be seen that our proposed method has the lowest error, the P3P
method has the second-lowest and the RPnP method has the highest. This is consistent
with the results for the synthetic data and shows that our proposed method can work well
with synthetic data and real images.

In addition, we also test our proposed method in terms of computational speed in
real images, and the experiment is conducted on a 3.3 GHz two-core laptop for all the
methods. Specifically, the mean computational speed of our proposed method is 3.4 times,
3.9 times 16.2 times, 1.5 times and 3.7 times that of the latter five methods, respectively.
This is basically consistent with the results for the synthetic data.

Last, we compare the projection of the known 3D line using the estimated pose to
the corresponding line segment on the real images, and then we can intuitively observe
whether they match, as shown in Figure 9.
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The projection is affected by the pose estimation, and, hence, the error between the
projection and the corresponding line segment on the real images can intuitively reflect the
error of pose estimation. From Figure 9, it can be seen that the error between the projection
and the corresponding line segment on the real images is low, which shows, from another
perspective, that our proposed method has good performance in real scenarios.

4. Discussion

In this paper, we propose a fast and accurate method to estimate the focal length and
pose using two 2D–3D line correspondences and the camera position. Our core contribution
is to convert the PnL problem with 2D–3D line correspondences into the estimation problem
with 3D–3D point correspondences. To the best of our knowledge, this is the first study
to use the camera position and line correspondences simultaneously to estimate the focal
length and pose. Using the camera position as the prior knowledge, two planes can be
obtained in the camera frame and world frame, respectively. Then, two angles between the
two planes in the camera frame and world frame, respectively, can be obtained. Since there
is only a rigid body transformation, the angle remains the same in either frame. Hence,
the two angles are equal, and, using this information, we can estimate the focal length
efficiently and independently.

When we estimate the camera pose, another geometric characteristic is used, where
we establish the transform between the unit normal vectors of the two planes with this
characteristic, and this transform can be regarded as the camera projection of the 3D point.
Then, the pose estimation using line correspondences is converted into pose estimation
using 3D–3D point correspondences in intermediate frames, and the latter pose estima-
tion can be finished quickly using traditional point-based solvers. The differences and
advantages of our proposed method are discussed as follows.

4.1. Differences and Advantages

Compared with other existing methods using 2D–3D line correspondences, the first
difference is to use the camera position as prior knowledge, which can simplify the problem
of the focal length and pose estimation. The known camera position can reduce the number
of 2D–3D line correspondences, improve the efficiency and expand the applicability. The
real scene might not have sufficient line correspondences, and, in this case, our proposed
method, with fewer 2D–3D line correspondences, can work better with the scenario. In
addition, if the scene has mass line correspondences and outliers exist, generally, the
RANSAC (RANdom SAmple Consensus) is used to eliminate the outliers. The RANSAC
has a key parameter, which is the minimal set of correspondences for estimating pose. The
smaller the minimal set, the faster the computational speed of eliminating the outliers.
Hence, the RANSAC with our proposed method is faster than that with other existing
methods when the scene has mass line correspondences and outliers exist.

When the focal length is estimated, only a quadratic equation of one variable is used.
We can solve the focal length directly, not using iterations and nonlinear algorithms, which
is the main reason that our proposed method has better numerical stability and noise
sensitivity in terms of focal length estimation. In addition, using the characteristic whereby
the focal length is greater than zero, a single solution can be obtained, and unlike some
existing methods, no other constraint is needed. The two characteristics described above
are one reason that our proposed method has faster computational speed. When the camera
pose is estimated, the main calculation process only involves multiplication, division and
matrix operation, and there is also no nonlinear computation. This is the main reason
that our proposed method has good performance in terms of numerical stability, noise
sensitivity and computational speed in terms of pose estimation.

In addition, because our proposed method does not involve nonlinear computation
and iteration, there is no multi-solution phenomenon. This is another reason that our pro-
posed method performs better than the other existing methods in terms of computational
speed, as described in Section 3.1.4. It can be also seen that our proposed method and the
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DLT solver perform best in terms of numerical stability, noise sensitivity and computa-
tional speed compared to the other four methods. The main reason is that our proposed
method and the DLT solver do not both involve nonlinear computation, but the other four
methods do.

The level of simplification using prior knowledge is different, which means that the
benefit might be high or low for different methods. As described in Section 3.1.1, our
proposed method has good robustness to camera position noise, and this means that any
error in the camera position does not bring a significant error for focal length and pose
estimation. This is also a reason that our proposed method has higher accuracy.

Briefly, the proposed method has the following differences and advantages. (1) It is
the first method to use the camera position and only two 2D–3D line correspondences
simultaneously to estimate the focal length and pose; (2) it has strong robustness to prior
knowledge, i.e., the known camera position; (3) no multi-solution phenomenon exists both
for focal length and pose estimation; (4) it has better performance in terms of numerical
stability, noise sensitivity and computational speed; (5) it can work well with synthetic data
and real scenarios. However, the main disadvantage is that the camera position needs to be
known in advance and many cases might not have the necessary conditions to measure the
camera position.

4.2. Future Work

In the future, we will extend the idea in this paper to continue two main tasks. First,
we will use more 2D–3D line correspondences and known camera positions to estimate
more intrinsic parameters (e.g., radial distortion), rather than only the focal length and
pose, which will expand the usable range of our proposed method. Second, as described
in Section 4.1, the RANSAC + our proposed method will be used to estimate the camera
pose from mass 2D–3D line correspondences, even if the line correspondences have some
outliers. Our ultimate goal is to use RANSAC + our proposed method to work with real
scenarios, e.g., SfM and SLAM. In addition, our method and the other methods in this
paper used good lines. If imperfect lines exist, we could use the combination of a line
detection algorithm and manual intervention to further extract and optimize the imperfect
lines. This might be done in the future.

5. Conclusions

We proposed a fast and accurate method to estimate the focal length and pose using
only two 2D–3D line correspondences and the camera position. The geometric characteristic
whereby the angle between two planes is not changed in different frames is used to estimate
the focal length. Then, another geometric characteristic, whereby the pose estimation using
2D–3D line correspondences in this paper can be converted into pose estimation using
3D–3D point correspondences in intermediate frames, is used to estimate the pose. The
two calculation processes do not involve nonlinear computation and both have no multi-
solution phenomenon. Experimental results show that our proposed method has better
performance in terms of numerical stability, noise sensitivity and computational speed in
synthetic data and real images compared to several state-of-the-art pose estimation solvers.
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