
Citation: Liu, C.; Chen, H.; Wu, Y.;

Jin, R. MixNN: A Design for

Protecting Deep Learning Models.

Sensors 2022, 22, 8254. https://

doi.org/10.3390/s22218254

Academic Editor: Roberto Teti

Received: 30 September 2022

Accepted: 19 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

MixNN: A Design for Protecting Deep Learning Models
Chao Liu 1,†, Hao Chen 1,†, Yusen Wu 2 and Rui Jin 1,*,†

1 Department of Computer Science and Electrical Engineering, University of Maryland,
Baltimore, MD 21250, USA

2 Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
* Correspondence: rjin1@umbc.edu
† These authors contributed equally to this work.

Abstract: In this paper, we propose a novel design, called MixNN, for protecting deep learning model
structure and parameters since the model consists of several layers and each layer contains its own
structure and parameters. The layers in a deep learning model of MixNN are fully decentralized. It
hides communication address, layer parameters and operations, and forward as well as backward
message flows among non-adjacent layers using the ideas from mix networks. MixNN has the
following advantages: (i) an adversary cannot fully control all layers of a model, including the
structure and parameters; (ii) even some layers may collude but they cannot tamper with other honest
layers; (iii) model privacy is preserved in the training phase. We provide detailed descriptions for
deployment. In one classification experiment, we compared a neural network deployed in a virtual
machine with the same one using the MixNN design on the AWS EC2. The result shows that our
MixNN retains less than 0.001 difference in terms of classification accuracy, while the whole running
time of MixNN is about 7.5 times slower than the one running on a single virtual machine.

Keywords: deep learning; distributed system; privacy; mix network

1. Introduction

Privacy protection of deep learning (DL) models is important for guarding commercial
and intellectual property; for example, a financial company may hold a private model which
can facilitate stock investment; leakage of such a model causes huge loss [1]. Protecting DL
models contains both model structure and model parameters.

Privacy concerns of a DL model occur when deploying a model locally or on a cloud
server. Deploying DL models in a local machine very probably leaks all the details of models
to hackers and malicious colleagues. Meanwhile, machine learning as a service (MLaaS),
such as, Amazon Machine Learning services [2], Microsoft Azure Machine Learning [3],
Google AI Platform [4], and IBM Watson Machine Learning [5], enables customers to
use powerful DL tools and computation resources by deploying their DL models on the
cloud. Even though private data from a client can be protected by using Intel SGX [6] or
homomorphic encryption (HE) [7], an obvious problem is that the model may still be opened
to some providers. Another issue is that the malicious cloud controller can easily steal the
DL model by checking the codes, or can obtain a close model by generating querying results
and searching the DL model space [8,9]. In 2016, Tramer et al. [9] proposed the model
extraction attack. Attackers can use the “shadow training” method to train a new model
with the same functionality as the original model. In 2015, Fredrikson et al. [10] proposed
the estimation attack scheme. Attackers can estimate whether certain characteristic values
xi belong to certain training data sets. For example, in some applications that provide
information concerning users’ locations, attackers can learn about users’ private geographic
location and other information. Shokri et al. [11] proposed a member extraction attack.
Attackers can use black-box attack to identify whether the target model prediction is on the
training set or non-training set. There are many other attacks, such as model memorization
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attack, inference attack, feature estimation attack. It is a challenge to protect the privacy of
deep learning model.

Based on the above issues, we propose the MixNN to explain how to deploy a DL model
on a powerful AI platform while protecting model privacy.

Inspired by split learning [12], MixNN distributes each layer in a DL model on one
server. We assume that an adversary cannot control most of the layers. In this way, it
prevents an adversary from acquiring the whole model structure and model parameters.
We will discuss a special scenario where an adversary controls both the first layer and the
last layer in MixNN in Section 5.1. We consider MixNN only on a cascade topology where
forward and backward propagation must proceed through consecutive layers.

One problem in this design is that one server controlled by an adversary in this
cascade can figure out who the other servers are via decoding the message flow; then, this
malicious server could tamper with other honest servers by rewarding them (e.g., bitcoin)
for exchanging information. Another situation is that mutually acknowledged servers can
cooperate together to disclose the sensitive model and data for common interest. If we do
not have a way to hide the detailed physical address among these servers, an adversary can
easily acquire the information by passively listening to the channel among these mutually
acknowledged servers. Thus, the model structure and parameters of these layers on these
malicious servers are exposed.

To tackle this issue, we adapt a method from mix networks proposed by Chaum [13].
In mix networks [14], each message is encrypted to each mix node using public key
cryptography. The resulting ciphertext is layered like an onion. Each mix node strips off
its own layer of encryption to reveal where to send the message next. We use a layer to
denote one mix node in MixNN. In Figure 1, we take a communication process from layer
1 to layer n as an example, layer 2 only knows that it receives messages from layer 1. It
then uses its secret key to decrypt the message flow from layer 1 and obtains layer 3’s
physical address, and finally it sends the message to layer 3. Layer 2 has no knowledge
about the address from layer 4 to layer n, assuming no failures occur. In MixNN, we use
this approach to pack the message on the client slide to hide the detailed communication
process among non-adjacent layers. In summary, even some layers are controlled by an
adversary but it is hard for it to locate other honest layers in the network.

layer 1 layer 2 layer 3 layer n-1 layer n

Figure 1. MixNN design overview.

Training a DL model, however, is different from using mix networks to realize anony-
mous communication. The ith layer in the model should compute the input set Zi for
the next layer in the forward propagation, and update the parameter setWi in this layer
by gradient descent during the backward propagation. In MixNN, layer i decrypts the
Zi−1 from layer i− 1 to cause DL operations to proceed. It also decrypts the intermediate
gradient ∂l

∂zi
, where l represents the training loss and zi ∈ Zi, from layer i + 1 to update

Wi, and prepares the intermediate gradient ∂l
∂zi−1

for layer i− 1. We use the chain rule in
updating parameters and preparing gradients. Finally, layer i uses the next layer’s public
key to encrypt forward or backward propagation messages. Our MixNN fits a cascade
topology which is one of the structures [15] (cascade topology and free-routing topology)
in mix networks. An adversary who is listening to the channel cannot learn both the DL
computation result in layer i and any information of DL parameters and operations in other
non-adjacent layers.

In summary, MixNN not only distributes layers in a DL model on different servers
so that an adversary can hardly control the whole model structure and parameters, but
also hides the communication address, layer parameters and operations, and forward and
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backward message flow among non-adjacent layers. Figure 1 shows the MixNN’s design.
An adversary can control the server and passively listen to the channel between two servers.
The square with color means a layer in a DL model and this colored layer is deployed on
one server. All layers are constructed for one DL model. Some servers which do not have a
layer on them are dummy servers; we will explain this in Section 2.2.

1.1. Related Work

Existing works [16–20] for protecting model privacy have tried to avoid leaking the
model information to users by isolating users on the client side and the model on the server
side. They also provide different strategies to secure model prediction results between the
server and the client. Studies [20] and DeepSecure [17] protect model privacy by sending
encrypted results back to the client. However, these methods either modify neural networks
by replacing activation functions with polynomial approximations, or transform an original
neural network to a Boolean circuit. Thus, the complexity concerning implementation is
increased and the performance of the model might be discounted. Moreover, they take
no account of the situation when the server itself is an adversary who could steal the
whole model on the server side. Dowlin et al. proposed CryptoNets [18]. CryptoNets
can be applied to encrypted data by using homomorphic encryption (HE). However, HE
can be only used on arithmetic operations, such as multiplication and addition. Even
though the author used a square function instead of a sigmoid function, the inference
accuracy would be influenced. Liu et al. [21] introduced the MiniONN by using an
oblivious neural network. This work can transform an existing model to an oblivious
one, supporting privacy-preserving predictions. This protocol has two phases, an offline
precomputation phase and an online prediction phase. However, the user computation
overhead in the precomputation phase is linearly correlated with the number of neurons of
the neural network model. Mo et al. [22] have suggested a framework that uses an edge
device’s Trusted Execution Environment (TEE) in conjunction with model partitioning
to limit the attack surface against DNNs. Shokri et al. [23] proposed privacy-preserving
deep learning by sharing partial parameters during the training process. They focus on
training deep networks, emphasize the importance of privacy, and address communication
costs by only sharing a subset of the parameters during each round of communication;
however, they also do not consider unbalanced and non-identity data, and the empirical
evaluation is limited. The authors of [24] use additively homomorphic encryption for
model parameter aggregation to provide security against the central server. A study [25]
used the SMC framework for training machine-learning models with two servers and
semi-honest assumptions. Ma et al. [19] discuss a similar scenario but split the neural
network into two shares and place them in two servers. They use both HE and secure
two-party computation protocols between two servers to preserve model privacy against
attack on the server side. Ma et al. [19] and Rouhani et al. [17] focus only on inference
of a pre-trained model. Compared to these previous works, our proposed design instead
naturally protects model privacy from attack on the server side by decentralizing layers
into different servers and hiding the server’s physical position. It does not require any
modification or transformation of the neural network and is naturally applicable to the
training phase.

Other current studies on model privacy protection commonly allow model users on the
client side to keep certain layers of neural networks while servers keep the rest [12,26,27].
Although their primary target is to ensure data privacy on the client side, model privacy
protection is implicitly involved as the adversary on the server only controls parts of the
neural network. Nevertheless, model privacy is still at risk because the adversary can
infer the other part of the model by analyzing message flows or occupying them. The split
learning [12] mentioned the multi-hop configuration, which is similar to our decentralized
deployment. However, they neither give detailed methods to deploy such a DL model nor
focus on model privacy. Our proposed MixNN deploys layers in different servers and uses
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the method from mix networks to prevent the adversary from controlling the whole model
structure and model parameters.

1.2. Contributions

• MixNN is a novel design for protecting model structure and parameters. Compared
with previous works, MixNN decentralizes layers in a DL model on different servers
instead of two parties (some layers on the client side and the rest on the server side).
This distributed method decreases the possibility that an adversary will control the
whole structure and parameters of a model.

• MixNN is the first design to use the ideas from mix networks for hiding real “identities”
of non-adjacent layers in a cascade topology in DL structures. In this design, MixNN
actually isolates every layer in a black box. An adversary can hold some black boxes
and obtain parameters and operations but they cannot locate and control all of them.
When transferring a message layer by layer, each layer encrypts forward and backward
propagation messages to avoid leaking model information to the adversary who is
passively listening to the channel.

• We provide a detailed description for deploying MixNN. It explains how to decen-
tralize layers and how to use the method from mix networks to pack a message in
different DL phases. There are four phases in MixNN: model initialization, forward
propagation phase, backward propagation phase, and testing phase, separately. The
implementation follows the description of MixNN. Compared with the same neural
network deployed in a single server on AWS EC2, we show that the MixNN has less
than 0.001 difference in terms of classification accuracy, while the whole running time
is about 7.5 times slower than the one run in a single virtual machine.

2. MixNN Design
2.1. Adversary Model

There are two parties in the MixNN, namely the designer and servers. A designer is
the one who deploys the DL model and processes his or her private data. The servers hold
the model layers and provide computation tools and resources. Layers are distributed on
different servers and all layers are constructed as a DL model. We consider an adversary
who can control a subset of n layers in the system and its goal is to simulate a model
f ′(x) which is approximately the same as the initial function f (x). We assume each pair of
servers is connected by an authenticated point-to-point channel. An adversary who can
launch denial-of-service (DOS) attacks is not included in this paper. We also assume that a
designer who deploys his/her own DL model using his/her own private data is honest.

2.2. Setup

There are m servers running in a pool. The designer can acquire servers’ information,
such as location, configuration, communication speed, price per hour, and so on. The
designer can randomly select n servers for deploying the DL model from m (m � n).
Among the n servers, p of them contain actual layers (servers) who perform DL operations
and r are dummy servers, namely n = p + r. A way to choose these p servers could be
based on servers’ historical logs, for example, their crash history and performance. He/she
assigns p actual layers in p servers. Remaining dummy servers could perform “obscure”
operations, for example, transferring messages, or passing through the activation function,
e.g., Rectified Linear Unit (ReLU). The r dummy layers can be randomly distributed among
these p actual layers. Adding dummy layers among actual layers decreases the possibility
of an adversary controlling the actual layers and acquiring information for simulating the
same DL model.

m servers should register to an authority (this authority could be distributed). Every
server in the pool generates its own key pair pki/ski where pki is its public key and ski is
its secret key, and the server publishes its pki and keeps its ski secretly. The ith server owns
its unique Ai address in the system and Au stands for a designer’s address.
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The designer connects n servers as a fixed cascade. Only the designer in the system
can pack an IP address in the message. To achieve this, we let the designer send a loop
message to itself so that no one in the system can know all physical positions of the n
servers (layers).

Besides distributing r dummy servers among p actual servers, we use a similar method
called “loop message”, proposed in [28], in which a server (layer) in the system can send a
dummy message to another server (layer) in the system. In this way, an adversary cannot
know where the message comes from and what it is for.

2.3. Training Phase

The training phase contains three phases: model initialization phase, forward prop-
agation phase, and backward propagation phase. The model initialization is executed
only once at the beginning of the training. We set the training with multiple epochs and
each epoch includes several iterations. In every iteration, MixNN causes one forward
propagation and one backward propagation.

In MixNN, we set every package with the same length so that an adversary cannot tell
which type of package it is. A package includes four segments, (op, enm, enIP, padding). op
denotes which type of operation a layer carries out. It contains four types of operations:
(1) op = 0 means that the designer initializes every layer in a DL model and every layer has
to build its corresponding part of the model; (2) op = 1 stands for a forward propagation
message; (3) op = 2 denotes a backward propagation message; and (4) op = 3 indicates a
testing operation. enm means an encrypted message. enIP denotes an encrypted IP address,
and adding padding segments is used to keep the package in a consistent length.

In Figure 2a, when a cascade is constructed, only adjacent layers know the previous
and next layers’ IP address but they have no knowledge about other layers’ location. For
example, layer 2 only knows layer 1 and layer 3’s physical IP address and their public keys,
but it is hard for layer 2 to acquire layer i’s location since layer i’s location is wrapped in an
inner part of the package. Layer i’s location can be acquired in layer i− 1 assuming there
are no failures. For simplicity, we only show the scenario, n = p; that is, the DL model does
not include dummy layers in it.

layer 1 
pk1, sk1 

A1 

layer 2 
pk2, sk2 

A2 

layer n 
pkn, skn 

An 

layer i 
pki, ski 

Ai 

layer i-1 
pki-1, ski-1 

Ai-1 

(a)

layer i 
op = 0
parai 

model part i 
optimizer 

Designer

c

op = 0 
para1 

model part 1 
optimizer 

op = 0 
para2 

model part 2 
optimizer 

layer 1 layer 2 layer n layer i-1 
op = 0 
parai-1 

model part i-1 
optimizer 

op = 0
paran 

model part n 
optimizer 

(b)

op = 1 
Zi-1 

layer i-1 layer i 
op = 1 

Zi 

Designer

c

op = 1 
data 
Z1 
 

op = 1 
Z2 

Designerop = 1 
supervised signal 

loss

loss

layer 1 layer 2 layer n 

(c)

Figure 2. Cont.
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layer i-1 
op = 2 

layer i 
op = 2 

Designer op = 2 
 

op = 2 
Designer

op = 2 

c

layer 1 layer 2 layer n 

(d)

Figure 2. Training phase (c is the ciphertext). (a) A cascade is constructed. The designer distributes
layers on different servers and each layer generates its key pairs and its IP address. (b) Model
initialization phase. The designer deploys the size of parameters, parts of the model and optimizer on
the corresponding layers. (c) Forward propagation phase. The designer inputs data into the first layer
and the supervised signal into the last layer. Except for the last layer, each layer needs to compute Zi.
The last layer should compute the loss l. (d) Backward propagation phase. For layer i, layer i updates
its parametersWi using intermediate gradient ∂l

∂zi
from the previous layer, and prepares ∂l

∂zi−1
for the

next layer.

2.3.1. Model Initialization Phase

In the model initialization phase, the designer needs to distribute the DL model to p
servers. For the layers which conduct DL operations, the designer wraps the operation
type, size of parameters and IP address in a message. The designer packs the message as
below and sends c to the first layer.

c = (c1, A1),

c1 = Epk1(op = 0, para1, c2, A2),

c2 = Epk2(op = 0, para2, ci−1, Ai−1),

. . .

ci−1 = Epki−1
(op = 0, parai−1, ci, Ai),

ci = Epki
(op = 0, parai, cn, An),

. . .

cn = Epkn(op = 0, paran).

(1)

The Epki
(data) means that the encryption algorithm E uses public key pki to encrypt

data and the ciphertext can only be decrypted by the corresponding secret key ski with
decryption algorithm D (Dski

(Epki
(data)) = data). parai is the size of the parameters, and

Ai is ith layer’s address. We can also use the signcryption scheme [29,30].
After packing the message above, the designer sends c to layer 1 according to layer

1’s IP address A1. Layer 1 can use its secret key to decrypt the message received from the
designer, obtain the operation type op = 0, the size of parameter para1, a ciphertext c2, and
layer 2’s address A2. Layer 1 builds its corresponding part of the model and optimizer
and sets its own input size of parameter with para1. The parameters of the optimizer,
such as learning rate and momentum, are the same for all actual layers. We can also send
these parameters, but it is unnecessary here. Layer 2 to layer n operate the same model
initialization as layer 1. After finishing the model initialization phase, each layer in a DL
model is like what is shown in Figure 2b.

2.3.2. Forward Propagation Phase

The forward propagation phase is similar to the initialization phase. However, both
forward propagation and backward propagation should be iteratively executed within
multiple epochs. Before transmitting the message to the next layer, layer i needs to compute
Zi, encrypt it with the next layer’s public key, and pack it with ci. The designer packs the
forward propagation message as below and sends c to the first layer.
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c = (Epk1(data), c1, A1),

c1 = Epk1(op = 1, c2, A2),

c2 = Epk2(op = 1, ci−1, Ai−1),

. . .

ci−1 = Epki−1
(op = 1, ci, Ai),

ci = Epki
(op = 1, cn, An),

. . .

cn = Epkn(op = 1, supervised signals, Au).

(2)

Different from other phases in the training, we can see that the designer should pack
the data as well as the supervised signal, and send the package to layer 1. The data privacy
is not the core part of our paper but we discuss some methods to protect data privacy
in Section 5.

When layer 1 receives c from the designer, it decrypts the ciphertext and obtains the
data, operation type op = 1, ciphertext c1, and address A2. Layer 1 inputs data to the DL
operation in this layer to compute the result Z1. Then, layer 1 uses layer 2’s public key pk2
to encrypt Z1, packs it with c1, and sends (Epk2(Z1), c2) to layer 2. Layer 2 to layer n− 1
repeat the same steps as what layer 1 does; for example, after decrypting the ciphertext
from layer i− 2, layer i− 1 computes Zi−1 and sends ciphertext (Epki

(Zi−1), ci) to layer i.
Layer n calculates the training loss usingZn−1 and the supervised signal, then encrypts

the loss l and sends it back to the designer. The supervised signal is visible only at the last
actual layer as it is the most inner part of the package. The designer can also hold the loss
layer and supervised signals by him or herself, and hence supervised signals are protected
if required. The forward propagation phase is shown in Figure 2c.

2.3.3. Backward Propagation Phase

The backward propagation instead starts from layer n to layer 1, which is different
from the above two phases. We here only consider gradient descent-based methods in
updating the DL model parameter. Layer i receives the intermediate gradient ∂l

∂zi
computed

in layer i + 1, calculates the intermediate gradient ∂l
∂zi−1

for the next layer i− 1 using chain

rule ∂l
∂zi

( ∂zi
∂zi−1

), and sends it to the next layer. The parametersWi in layer i are updated by

first applying chain rule ∂l
∂zi

( ∂zi
∂wi

), and then performing gradient descent related operations.
In this phase, the designer only packs the IP address for communication as below. MixNN
does not pack any other information (e.g., data or supervised signals) in this phase, which
is different from the other phases. Finally, the designer sends c to layer n.

c = (cn, An),

cn = Epkn(op = 2, ci, Ai−1),

. . .

ci = Epki
(op = 2, ci−1, Ai−1),

ci−1 = Epki−1
(op = 2, c2, A2),

. . .

c2 = Epk2(op = 2, c1, A1),

c1 = Epk1(op = 2, Au).

(3)

Layer i receives a message from layer i + 1; it then decrypts the ciphertext and obtains
the operation type op = 2, intermediate gradient ∂l

∂zi
, ciphertext ci, and address Ai−1. Layer

i calculates ∂l
∂zi−1

and encrypts it with pki−1. Finally, layer i packs (Epki−1
( ∂l

∂zi−1
), ci−1) and

sends it to layer i− 1. The backward propagation is shown in Figure 2d.



Sensors 2022, 22, 8254 8 of 14

2.4. Testing Phase

When the training phase is finished, the designer can perform testing or inference
using his or her own metric. The procedure is pretty similar to the forward propagation
phase while an input to the metric is needed other than a loss from the model. The packing
message is shown below. The testing is only a one-way process, the designer sets the
operation type with op = 3 and decides on an ending layer to generate the corresponding
input. After one forward propagation, MixNN sends it back to the designer.

c = (Epk1(data), c1, A1),

c1 = Epk1(op = 3, c2, A2),

c2 = Epk2(op = 3, ci−1, Ai−1),

. . .

ci−1 = Epki−1
(op = 3, ci, Ai),

ci = Epki
(op = 3, cn, An),

. . .

cn = Epkn(op = 3, Au).

(4)

Take the classification task using probability as an example; the designer can let layer
n− 1 send the output of the softmax function back to the client and use it to judge the
classification performance using various metrics such as the confusion matrix, precision,
recall and F1 score.

3. Evaluation
3.1. Experiment Settings

We compare the performance and efficiency of a neural network with the same one
using MixNN design in the MNIST handwritten digits classification task. In total, 30k
training digits and 10k test digits are used for training and inference. The performance is
defined as the classification accuracy, which is the proportion of correct predictions of the
test dataset. The efficiency is measured using running time.

We employ a multilayer perceptron (MLP) with each layer’s configuration as listed in
Table 1. It is trained using negative log-likelihood (NLL) loss in server (layer) 5 with the
logarithm of probabilities (LogSoftmax) from server (layer) 4. We intentionally set servers
(layers) 4 and 5 with no parameter to simulate a more flexible situation, as our MixNN
allows designers to further split or merge operations in different layers of a DL model.
The optimization method is the stochastic gradient descent (SGD) with mini-batch size 64,
learning rate 0.01 and momentum 0.9. We use Pytorch to implement these settings.

Table 1. The configuration of MLP in decentralized servers.

Server Index Operations Input Dimension Output Dimension

1 Linear + ReLU 784 128
2 Linear + ReLU 128 64
3 Linear 64 10
4 LogSoftmax 10 10
5 NLLloss 10 1

The entire MixNN library is written using Python language. We use Python pycrypto
as our crypto library and the public key encryption scheme is RSA with 2048 key length.
We deploy MixNN on Amazon AWS. Each instance is run in Ubuntu 16.04 version 43.0 for
deep learning. We use t2.micro with one vCPU and 1 GB memory. We run all instances in
the same region (Virginia).
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3.2. Results and Analysis

We show the classification accuracy and running time of training with different
epochs. We name MLP and MixNN for two different settings in the results for simplicity.
In Figure 3a, we can observe that the differences between classification accuracy of MixNN
and MLP are always less than 0.001 in each epoch; thus, our MixNN keeps almost the same
performance in MLP in this task. The reason is obvious, as MixNN does not modify the
MLP during the training or inference, and we only have different parameter initialization
and data shuffling in two settings.

In Figure 3b, we can see that the running time of MixNN of each epoch is always
higher than its counterparts in MLP, and it is 7.5 times higher than the MLP case on average.
The reason is that MixNN spends more time on transmitting messages between layers
(servers) as well as encrypting and decrypting message flow, and the designer side needs
to pack the messages twice in an iteration.
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Figure 3. Classification accuracy and running time compared MixNN with MLP. (a) Classification
accuracy compared Mix-NN with MLP. (b) Running time compared MixNN with MLP.

4. Security Analysis

We explain how MixNN resists the following attacks.

4.1. Crash Failure

A layer on a server may crash. This degrades the performance of MixNN, especially
when the crash occurs in the training phase. We use the following method to defend against
this attack. We define t as the maximum communication time when transferring a message
between two servers, and δ as the average time at which a server proceeds with a message.
We denote n as the total number of servers (layers).

• A designer sets a time bound T (T >> nδ + (n − 1)t) when he or she sends the
message to the first server or the last server.

• If the designer does not receive the response within time T, the designer realizes that
a crash failure occurs.
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• The designer cannot locate crashed servers. A simple way is that the designer replaces
all servers in MixNN with other n servers.

Another method is that when a server in the cascade does not receive the response
from its adjacent server, the server can report the failure to the designer. There are two
scenarios here: (1) an honest server reports this failure; (2) a malicious server reports this to
achieve its goal such as decreasing the credits of an honest server. In MixNN, the designer
cannot distinguish between the two scenarios, and the simplest way is to replace both
the servers. MixNN can use the same approach proposed by Hemi et al. [31] to isolate
malicious servers before a cascade transfers the real message.

4.2. Byzantine Failure

An adversary dominates a server in a cascade. It can acquire one layer’s structure and
parameters in a model. Besides that, the adversary can also modify, add or delete the real
message [32] which should be transferred to other layers. Thus, the correctness of a model
is affected.

In MixNN, a designer cannot verify each layer’s input and output for locating the
faulty layer. Meanwhile, verifying each layer’s result in every iteration needs more time.
In order to guarantee the correctness of the model, we use a simple method whereby a
designer verifies the performance of the model in the testing phase. If he/she finds any
problems in that phase, the designer should replace the current n layers with new ones.

In our future work, we will consider whether non-interactive zero knowledge
proof [33,34] can be used to verify each layer’s input and output.

4.3. Model Privacy

Theorem 1. The MixNN satisfies the security definition of model privacy.

Proof. The definition of model privacy requires that adversary A cannot simulate a model
f ′(x) which is approximately the same as the initial model f (x). In the adversary model,
we have two assumptions: (1) the designer side is honest; (2) an adversary A controls most
of the layers in a DL model.

For assumption 1, we assume that an adversary A cannot acquire the private data
the way that a designer configures layers in a DL model, the number of layers in a DL
model, and the construction of cascade (the detailed physical address of these layers) on
the designer side. For assumption 2, we assume that an adversary A cannot control most
of layers in a DL model and adversary A cannot control both the first layer and the last
layer. There is no restriction with regard to how many layers are faulty, for example, 1/3 or
1/2 of total layers. Under these assumptions, we prove that our design satisfies the model
privacy in the training phase. We do not consider the model privacy in the testing phase
where an adversary can query the model.

We first consider that an adversary A controls one layer i (i ∈ 1, · · · , n) in a DL model. We
assume that operations with parameters are in σ(Wizi−1 + bi) format among all layers,
where σ represents the nonlinearity. In the training phase, adversary A can acquire the
input Zi−1 and output Zi of layer i, and intermediate gradient ∂l

∂zi
, where l represents the

training loss and zi ∈ Zi, and intermediate gradient ∂l
∂zi−1

. Then, the A is able to discover
the Wi and bi, the number of rows in Wi−1, the dimension of bi−1, and the number of
columns in Wi+1. Even though adversary A can acquire the above information from layer i,
it is hard for him/her to infer the other layers’ structures and parameters with our design.
When the number of layers increases, the probability of adversary A simulating an f ′(x)
is negligible.

We then focus on the situation in which f layers are occupied by the adversary A. We again
assume that all layers with parameters have the same type of operations mentioned above.
There are two cases below.

Case (i) The adversary A does not know the position of layers in a cascade.
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Apparently, to adversary A, f layers are distributed randomly in this case. A in-
deed knows the parameters in f layers and their adjacent layers’ parameter dimensions.
However, adversary A cannot figure out what these layers are and how to combine and
construct them as a DL model. When there are more layers in a DL model, knowing these
f layers is not very helpful for adversary A with regards to simulating an f ′(x).

Case (ii) Adversary A knows the position of layers in a cascade.
The most severe attack in this case is shown in Figure 4. Adversary A knows the

detailed position of a cascade which constructs a DL model in the model initialization phase
and successfully dominates layers 2, 4 and 6. In the training phase, adversary A knows
not only the structures and parameters of 2, 4 and 6 but also the size of the parameters in
layers 3 and 5 and the input as well as the output of these two layers. Therefore, adversary
A can find parameters in these two layers by model extraction methods [8,9]. This means
that adversary A knows n− 2 layers between the first layer and the last layer.

However, the model privacy is kept by the first layer and the last layer. The raw data
and loss are preserved secretly; hence, adversary A cannot obtain them or use them to
simulate an f ′(x). Without the loss layer, the adversary cannot know what this model is for.

This completes the proof of Theorem 1.

layer 1 layer 2 layer 3 layer 6 layer 7layer 4 layer 5

Data loss

Figure 4. The most severe attack in the second case in MixNN.

5. Discussion
5.1. Model Privacy

Although the MixNN decentralizes and hides model related information so that an
adversary cannot fully obtain them for simulating an approximate DL model, a more
serious case is that the adversary can successfully occupy the first and last layer, which
perform DL operations in the current structure. As the input to the model on the first layer
and loss as well as supervised signals on the last layer are exposed, the adversary can easily
simulate an approximate model using this information.

In order to avoid this case, the designer can keep one of these two layers or both of
them on his or her own hands. Therefore, the adversary cannot fully acquire the input, loss
or supervised signals.

5.2. Data Privacy

Federated learning [35] and split learning [12] facilitate distributed collaborative
learning without disclosing original training data. In MixNN, the designer should input the
data to the first layer in the forward propagation phase and testing phase. If the first layer
is unfortunately controlled by an adversary, the data can be accessed by that adversary.
Therefore, the data privacy is not preserved. In order to solve this issue, we provide the
following methods.

Distribute the first layer on the client side. This method is similar to the work mentioned
in [36], and it avoids the data being leaked to an adversary. However, when the training
is done, how to let other clients use this model is a problem since the first layer is on the
designer side. If other clients want to test their dataset, they still need to transmit their data
to the designer. A way to solve this is to use obfuscation [37] to obfuscate the first layer.
After the training of a DL model is done, the designer can upload the obfuscated layer to
his/her private cloud. Only authorized clients can access it, download it to his/her local
machine, and use this part of the code as the entrance to the model.

Trusted Execution Environments (TEEs). Another technique to protect confidentiality
is using a TEE such as Intel SGX [38] or ARM TrustZone [39]. For example, SGX helps
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to increase protections for sensitive data even when an attacker has full control of the
platform. The designer can send encrypted data into the SGX enclave and only the enclave
can decrypt the data. However, accelerators such as GPUs do not support TEE, and the
SGX has a limited memory size.

Homomorphic encryption scheme. Fully Homomorphic Encryption (FHE) [40] is a new
class of encryption scheme that allows computing on encrypted data without decryption.
FHE has been shown to be useful in many privacy-preserving applications such as image
classification [18,41]. In the MixNN, we can use the same methods as above but change
operations in each layer for processing the encrypted data. However, FHE suffers from two
main problems: (1) high computational overhead; (2) limited arithmetic set (only addition
and multiplication on encrypted data are naturally supported).

5.3. Efficiency Analysis

Compared with other works, such as [18,19,21,22], our design does not modify any
original deep learning structure. Therefore, our design has almost the same accuracy com-
pared with the original framework. However, as in study [18], which uses a homomorphic
encryption scheme, it can only be used on arithmetic operations, and thus its inference
accuracy is influenced. Study [21] transforms a model to an oblivious one and it has to
divide the model into two phases, precompuation phase and online phase. The advantage
of our work is in locating each layer in a black-box on different servers so that, if more
server providers are honest, the privacy is preserved.

However, the latency in terms of training a model is high in our work and we analyze
the issues and how to improve this in Section 5.4. We do not implement other DL models,
such as VGG-16, but they can be established on our current implementation. For example,
we have six layers in the current MLP implementation; that is to say, we use six servers to
hold those six layers. For VGG-16, we can simulate 2 or 3 layers on one server.

5.4. Improvement for the Design of MixNN
5.4.1. Another Configuration with MixNN Design

We only set one layer on one server in the current setting. For DL models with many
more layers than the case in the experiment, we do not want too much degradation on the
running time. One configuration is that we can randomly compose some adjacent layers on
one server. Our next step is to test VGG 16 [42] with this configuration.

5.4.2. Implementation

In the current implementation, every layer serves as both a server and a client. As a
server, this layer is bound with an IP address and a port number, and it is listening to this
channel via (IP, port) and waiting for the information. We do not use the multi-threading
method to implement it. Hence, when the communication is frequent and the request
buffer is full to this layer, it needs to wait for previous requests to be processed, and then it
can settle other messages. This is another reason why running time becomes longer.

6. Conclusions

MixNN is a novel design for protecting model privacy. It divides a whole DL model
into several parts; every part has its private part of models and parameters. This part in
MixNN is a layer in a DL model, and all layers are fully decentralized and constructed as a
cascade. Besides the structure above, MixNN utilizes the method from the mix network to
hide the detailed communication address. Meanwhile, layer parameters and operations,
and forward as well as backward message flow among a non-adjacent layer are also hidden.
In the experiment, we compare MixNN with MLP and show that MixNN retains almost
the same performance in terms of classification accuracy. Because MixNN spends time on
transferring messages between servers (layers), encrypting and decrypting messages with
a large size, and packing the messages into one iteration with two times, the running time
of MixNN becomes larger. MixNN considers protection of the privacy of a deep learning
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model in the training phase. However, we do not provide the techniques to defend against
the attacks in the inference phase, such as the model extraction attack. We also do not
consider how to allow the owner of the DL model to prove to others that the prediction of
a data sample is indeed calculated by the model without leaking any information about the
model itself.
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