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Abstract: A random matrix needs large storage space and is difficult to be implemented in hardware,
and a deterministic matrix has large reconstruction error. Aiming at these shortcomings, the objective
of this paper is to find an effective method to balance these performances. Combining the advantages
of the incidence matrix of combinatorial designs and a random matrix, this paper constructs a struc-
tured random matrix by the embedding operation of two seed matrices in which one is the incidence
matrix of combinatorial designs, and the other is obtained by Gram–Schmidt orthonormalization
of the random matrix. Meanwhile, we provide a new model that applies the structured random
matrices to semi-tensor product compressed sensing. Finally, compared with the reconstruction effect
of several famous matrices, our matrices are more suitable for the reconstruction of one-dimensional
signals and two-dimensional images by experimental methods.

Keywords: compressed sensing; semi-tensor product; measurement matrices; incidence matrices;
embedding operation; coherence

1. Introduction

In the era of data explosion, with the increasing amount of information, data acqui-
sition, transmission and storage devices are facing increasingly severe pressure. At the
same time, the data processing process will also be accompanied by the risk of information
disclosure. The loss of some data may threaten the safety of life and property, and now,
data disclosure is common. Therefore, in the era of big data, people urgently need to
find a new data processing technique to decrease the risk of data leakage during informa-
tion processing and release the pressure of hardware equipment such as internal storage
and sensors.

Compressed sensing (CS) theory can be used for signal acquisition, encoding and
decoding [1]. No matter what type of signals, sparse or compressible representations
always exist in the original domain or in some transform domains. During transmission,
the linear projection value that far lower than the traditional Nyquist sampling can be used
to realize the accurate or high probability reconstruction of the signal. For a discrete signal
x ∈ Rn, the standard model of CS is

y = Φx, (1)

where Φ ∈ Rm×n(m < n) is a measurement matrix, and y ∈ Rm is the corresponding
measurement vector.
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It shows that a vector x of n-dimensional can be compressed into a vector y of m-
dimensional by CS. Therefore, the compression ratio θ can be represented by θ = m

n .
If a measurement vector y is given, it is urgently important to reconstruct x by mea-

surement matrix Φ. However, this problem is usually NP-hard [2]. If there are less than
k(k � n) non-zero elements in a signal x, then the signal x is k-sparse. Candès and Tao
confirmed that if a signal x is k-sparse and Φ meets the restricted isometry property (RIP),
then y can accurately reconstruct x [3] by solving the following equation,

min
x∈Rn

||x||0 s.t. y = Φx, (2)

where ||x||0 = |{i|xi 6= 0}|.
Since l1-norm is a convex function, it is common method to replace ||x||0 with ||x||1 in

CS, i.e.,
min
x∈Rn

||x||1 s.t. y = Φx, (3)

where ||x||1 = |x1|+ |x2|+ · · ·+ |xn|.
For a k-sparse signal x ∈ Rn, and a matrix Φ ∈ Rm×n, if there exists a constant

0 ≤ δk < 1 such that
(1− δk)||x||2 ≤ ||Φx||2 ≤ (1 + δk)||x||2, (4)

where ||x||22 = x2
1 + x2

2 + · · ·+ x2
n, then the matrix Φ is said to satisfy the RIP of order k,

and the smallest δk is defined as the restricted isometry constant (RIC) of order k.
Another important standard is coherence [4] in measurement matrices of CS.
Let Φ = (Φ1, Φ2, · · · , Φn), where Φi is i-th column of Φ, 1 ≤ i ≤ n. Then, the

coherence of Φ can be expressed by the following equation

µ(Φ) = max
i 6=j

|〈Φi, Φj〉|
||Φi||2||Φj||2

, 1 ≤ i, j ≤ n, (5)

where 〈Φi, Φj〉 denotes the Hermite inner product of Φi and Φj.
There is a relationship between the coherence and RIP of a matrix as follows.
If Φ is a unit-norm matrix and µ = µ(Φ), then Φ is said to satisfy the RIP of order k

with δk ≤ µ(k− 1) for all k < 1
µ + 1.

Furthermore, for a matrix Φ with size m× n-dimensional, the coherence of Φ can be
represented by Welch bound as follows [5]

µ(Φ) ≥
√

n−m
m(n− 1)

. (6)

The main problem in CS is to find deterministic constructions based on coherence
which beat this square root bound.

In CS theory, measurement matrices are not only the vital step to guarantee the quality
of signal sampling but also the vital step to determine the difficulty of compressed sampling
hardware implementation. There are two main types of measurement matrices. One is
random matrices. Random matrices consist of Gaussian matrices, Bernoulli matrices, local
Fourier matrices and so on [6–11]. Although these matrices can reconstruct the original
signals well, they are hard to be implemented in hardware, and the matrix elements
require a lot of storage space. Some scholars have proposed using the Toplitz matrices to
construct the measurement matrices [12,13]. Although the Toplitz matrices can save some
storage space, it is still difficult to be implemented in hardware. Deterministic matrices can
improve the transmission efficiency and reduce the storage space [14,15], but they have
large reconstruction errors. When constructing this kind of matrices, as long as the system
and construction parameters are determined, the size and elements of the matrix will also
be determined. DeVore used polynomials over finite field Fp to construct measurement
matrices in [16]. Li et al. gave a construction method of a sparse measurement matrix based
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on algebraic curves in [17]. The main tools for constructing deterministic measurement
matrices are coding [18–22], geometry over finite fields [23–28], design theory [29–32],
and so on.

Compared with CS, for signals of the same size, the advantage of semi-tensor product
compressed sensing (STP-CS) is that the number of columns of the measurement matrices
can be a factor of CS, which greatly reduces the storage space of measurement matrices.
Therefore, we are more interested in the research of STP-CS. The main contribution of the
paper is to give a construction of structured random matrices and apply these matrices to
STP-CS. The structured random matrices can be obtained by the embedding operation of
two seed matrices in which one is determined, and the other is random. In addition, as long
as the system and constructed parameters generate structured random matrices, the size of
the matrix is determined, but the elements of the matrix are arranged in a structured random
manner. When transmitting and storing the matrix, the system, constructed parameters and
a random seed matrix need to be transmitted or stored, which can improve the transmission
efficiency and reduce the storage scale of a random matrix. Compared with random
matrices, the structured random matrices overcome the disadvantage of large storage space
of random matrices and is relatively convenient for hardware implementation. Compared
with deterministic matrices, the structured random matrices have good reconstruction
accuracy. Therefore, a structured random matrix has greater application value in STP-
CS model.

Aiming at existing shortcomings—a random matrix needs large storage space and
is difficult to be implemented in hardware, and a deterministic matrix has large recon-
struction error—the objective of this paper is to find an effective method to balance these
performances. The main contributions of our work are summarized as follows:

• A construction method of structured random matrices is given, where one is the
incidence matrices of combinatorial designs, and the other is obtained by the Gram–
Schmidt orthonormalization of random matrices.

• A STP-CS model based on the structured random matrices is proposed.
• Experimental results indicate that our matrices are more suitable for the reconstruction

of one-dimensional signals and two-dimensional images.

The difference between this paper and previous works [14,31] is as follows:

• The measurement matrices constructed in this paper are structured random matrices,
while the measurement matrices constructed in [14,31] are determined matrices.

• This paper studies STP-CS model, while [14] studies the block compressed sensing
model (BCS), and [31] studies CS model.

The details of each section are as follows. Section 2 introduces some related knowledge.
Section 3 proposes a new model, which applies the structured random matrices to STP-CS.
Section 4 gives simulation experiments, analyzes and compares the performance of our
matrices with several famous matrices.

2. Preliminaries

In this section, projective geometry [33], balanced incomplete block design [34], em-
bedding operation of binary matrix [35] and semi-tensor product compressed sensing [36]
are introduced.

2.1. Projective Geometry

Let Fq be the finite field with q elements. F(n+1)
q is the (n + 1)-dimensional row vector

space over Fq, where q is a prime power, and n is a positive integer. The 1-dimensional,

2-dimensional, 3-dimensional, and n-dimensional vector subspaces of F(n+1)
q are called

points, lines, planes, and hyperplanes, respectively. In general, the (r + 1)-dimensional
vector subspaces of F(n+1)

q are called projective r-flats, or simply r-flats (0 ≤ r ≤ n). Thus, 0-
flats, 1-flats, 2-flats, and (n− 1)-flats are points, lines, planes, and hyperplanes, respectively.
If an r-flat as a vector subspace contains or is contained in an s-flat as a vector subspace,
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then the r-flat is called incidented with the s-flats. Then, the set of points, i.e., the set of
1-dimensional vector subspaces of F(n+1)

q , together with the r-flats (0 ≤ r ≤ n) and the
incidence relation among them defined above is said to be the n-dimensional projective
space over Fq and is denoted by PG(n,Fq).

2.2. Balanced Incomplete Block Design

Definition 1. Let v, k, b, r, λ be positive integers, and v ≥ k ≥ 2. For a finite set x =
{x1, x2, · · · , xv}, a subset family B = {B1, B2, · · · , Bb} of x, where x1, x2, · · · , xv are called
points, B1, B2, · · · , Bb are called blocks, if

(1) There are k (k < v) points in each block;
(2) Each point in x appears in r blocks;
(3) Each pair of distinct points is contained in exactly λ blocks.
Then (x,B) is called a (v, b, r, k, λ) balanced incomplete block design or simply (v, b, r, k, λ)-

BIBD.

Definition 2. For a (v, b, r, k, λ)-BIBD, if b = v (or r = k or λ(v − 1) = k2 − k), then this
design is symmetric. Symmetric BIBD is simply denoted by SBIBD.

2.3. Embedding Operation of Binary Matrix

Definition 3. Let H = (h1, h2, · · · , hn), where hi is the i-th column of H, hi has d “1", 1 ≤ i ≤ n.
In addition, A is a matrix with size d× n1-dimensional, each element 1 in hi is substitute for a
distinct row of A, and each element 0 is substitute for the 1× n1 row vector (0, 0, · · · , 0). The result
matrix Φ is expressed as

Φ = H � A, (7)

and Φ is an m× n1-dimensional matrix, where “� ” denotes the embedding operation of the matrix
A in the matrix H.

The specific process of the above embedding operation is shown in Figure 1.

H A

H

A


Figure 1. The specific process of A as the embedding matrix in matrix H.

2.4. Semi-Tensor Product Compressed Sensing

Definition 4. Let x be a row vector with size np-dimensional and y = [Y1, · · · , Yp]T be a column
vector with size p-dimensional. Split x into p blocks, named x1, · · · , xp; the size of each block is
n-dimensional. The semi-tensor product (STP) is defined as

x n y =
p

∑
i=1

xiYi ∈ R1×n, (8)

Definition 5. Let A ∈ Rm×np and B ∈ Rp×q; then, the STP of A and B is defined as follows,

C = A n B, (9)
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C has m× q blocks as C = (ci,j) and each block is

ci,j = ai n bj, i = 1, 2, · · · , m, j = 1, 2, · · · , q, (10)

where ai is the i-th row of A and bj is the j-th column of B.

For a signal x ∈ Rp and a measurement matrix Φ ∈ Rm×n (m < n), the STP-CS
model [36] is as follows

y = Φ n x, (11)

where y ∈ R
mp
n and p = lcm(n, p).

Similarly, we can also define the STP-CS by using Kronecker product as follows

y = (Φ⊗ I p
n
)x, (12)

where I p
n

is a p
n ×

p
n -dimensional identity matrix, p

n is a positive integer, and “⊗ ” denotes
the Kronecker product.

Theorem 1. The measurement matrix Φ⊗ I p
n

has coherence

µ(Φ⊗ I p
n
) = µ(Φ). (13)

3. Construction of Structured Random Measurement Matrices in STP-CS

Compared with CS, for signals of the same size, the advantage of STP-CS is that the
number of columns of the measurement matrix can be a factor of CS, which greatly reduces
the storage space of measurement matrices. Compared with measurement matrices in
STP-CS, the structured random matrices only need to store two seed matrices instead of
the whole matrix. To sum up, the structured matrices have lower storage space in STP-CS.
In this section, we give a new model that applies the structured random matrices to STP-CS.

3.1. Construction of (q2 + q + 1, q + 1, 1)-SBIBD

The 1-dimensional projective space over Fq only has q + 1 points, so it is less inter-
esting. So, let us start our discussion with the 2-dimensional projective planes PG(2,Fq).
In PG(2,Fq), there are q2 + q + 1 points and q2 + q + 1 lines; every line contains q + 1 points
and every point passes through q + 1 lines; any two different points are connected by
exactly one line; any two different lines intersect in exactly one point. It is easy to find that

(i) A finite projective plane of order q is (q2 + q + 1, q + 1, 1)-BIBD. A block is called a
line in a finite projective plane.

(ii) For the parameter set v = q2 + q + 1, k = q + 1, λ = 1 of a BIBD, we must have
r = λ(v−1)

k−1 = n + 1 = k and, hence, b = v. So, (q2 + q + 1, q + 1, 1)-BIBD is necessarily
symmetric, and it is simply denoted by (q2 + q + 1, q + 1, 1)-SBIBD.

Based on this, for (q2 + q+ 1, q+ 1, 1)-SBIBD, we assume that x = {x1, x2, · · · , xq2+q+1}
is a set of points, and B = {B1, B2, · · · , Bq2+q+1} is a set of blocks. The incidence matrix of
(q2 + q + 1, q + 1, 1)-SBIBD is defined by

M = (mi,j)1≤i,j≤q2+q+1, (14)

whose rows are marked by x1, x2, · · · , xq2+q+1 and columns are marked by
B1, B2, · · · , Bq2+q+1, and

mi,j =

{
1, if xi ∈ Bj

0, otherwise
. (15)

Obviously, M has the same row-degree and column-degree, both of which are q + 1.
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Theorem 2. If the incidence matrix of (q2 + q + 1, q + 1, 1)-SBIBD is M. Then, the matrix M
has coherence µ(M) = 1

q+1 .

In the following, the relationship between some known projective planes and BIBD is
shown in Table 1.

Table 1. The relationship between some known projective planes and BIBD.

No. Order of Projective Planes Parameters of a BIBD Coherencev b r k λ

1 2 7 7 3 3 1 1/3
2 3 13 13 4 4 1 1/4
3 4 21 21 5 5 1 1/5
4 5 31 31 6 6 1 1/6
5 7 57 57 8 8 1 1/8
6 8 73 73 9 9 1 1/9
7 9 91 91 10 10 1 1/10
8 11 133 133 12 12 1 1/12
9 13 183 183 14 14 1 1/14

10 16 273 273 17 17 1 1/17
11 17 307 307 18 18 1 1/18
12 19 381 381 20 20 1 1/20
13 23 553 553 24 24 1 1/24
14 25 651 651 26 26 1 1/26
15 29 871 871 30 30 1 1/30

3.2. Gram–Schmidt Orthonormalization

Let A = (a1, a2, · · · , aq+1) be a random matrix, where ai ∈ R(q+1) denotes the i-th
column of A, 1 ≤ i ≤ q + 1. In order to ensure that the random matrix A has small
coherence, all columns in matrix A are Gram–Schmidt orthonormalization, and the process
is as follows

Let b1 = a1,
b2 = a2 − 〈a2,b1〉

〈b1,b1〉
b1,

...

bq+1 = aq+1 −
q
∑

i=1

〈aq+1,bi〉
〈bi ,bi〉

bi.

Then, b1, b2, · · · , bq+1 are normalized, i.e.,
ci =

bi
|bi |

,
In this way, we obtain a normalized orthogonal matrix C of matrix A.

Remark 1. According to Definition 3, let Φ = M� C ∈ R(q2+q+1)×(q3+2q2+2q+1); there are two
cases in the following

• If A is a deterministic matrix, then C must also be deterministic. Therefore, Φ is a determinis-
tic matrix;

• If A is a random matrix, then C must also be random. Therefore, Φ is a structured random matrix.

There are many researches on deterministic matrices and random matrices, but few
on structured random matrices. Combining the advantages of random matrices and the
incidence matrices of combinatorial designs, this paper constructs the structured random
measurement matrices and applied them in STP-CS.
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3.3. Sampling Model

In the following, we consider Φ = M� C as a measurement matrix in STP-CS. Let p
be a positive integer and satisfy p = lcm(q3 + 2q2 + 2q + 1, p). For a signal x ∈ Rp, a novel
semi-tensor product compressed sensing model by the embedding operation (STP-CS-EO)
is given in the following

y = Φ n x

= (Φ⊗ I p
q3+2q2+2q+1

)x

= [(M� C)⊗ I p
q3+2q2+2q+1

]x, (16)

then y ∈ R
p

q+1 .
According to Theorem 1, it finds that

µ(Φ) = µ[(M� C)⊗ I p
q3+2q2+2q+1

] = µ(M� C). (17)

Remark 2. Let x ∈ RN be a discrete signal, where N is a positive integer. For y ∈ Rm, we
present a comparison of CS, Kronecker product compressed sensing (KP-CS), block compressed
sampling based on the embedding operation (BCS-EO), STP-CS, Kronecker product semi-tensor
product compressed sensing (KP-STP-CS) and semi-tensor product compressed sensing based on
the embedding operation (STP-CS-EO). Table 2 lists the comparison of storage space and sampling
complexity of the measurement matrices corresponding to the above six sampling models. Sampling
complexity is defined by the multiplication times between a matrix and a vector in the sampling
process. For STP-CS, t is a positive integer and satisfies t|m, t|N. For signals of the same size,
the advantage of STP-CS is that the number of columns of the measurement matrix can be a
factor of CS. For KP-CS and KP-STP-CS, Ip is a p× p-dimensional identity matrix, where p is a
positive integer and satisfies p|m, p|N. For BCS-EO and STP-CS-EO, H1 and H2 have column-
degree d, and A1 and A2 have size d× d-dimensional, where d is a positive integer and satisfies
d|N. Compared with CS, KP-CS, BCS-EO, STP-CS and KP-STP-CS, the STP-CS-EO model

has lower storage space and lower sampling complexity if t < p, N < dt3 p
d−p2 , m > d3 p2t2

N(d−p2)
or if

t < p, N > dt3 p
d−p2 , m > dp2

t or t > p, N > d2 pt2

(d−p2)
, m > dp or t > p, N < d2 pt2

(d−p2)
, m > d3 p2t2

N(d−p2)
.

Table 2. The comparison of storage space and sampling complexity of the measurement
matrices corresponding to six sampling models.

Type Sampling Model Storage Matrix Sampling Complexity Storage Space

CS y = Φ1x Φ1 ∈ Rm×N mN mN
KP-CS y = (P1 ⊗ Ip)x P1 ∈ R

m
p ×

N
p mN

p2
mN

p

BCS-EO y = (H1 � A1)x H1 ∈ Rm× N
d

A1 ∈ Rd×d dN mN
d + d2

STP-CS y = Φ2 n x Φ2 ∈ R m
t ×

N
t

mN
t

mN
t2

KP-STP-CS y = (P2 ⊗ Ip)n x P2 ∈ R
m
pt×

N
pt mN

pt
mN
p2t2

STP-CS-EO y = (H2 � A2)n x H2 ∈ R m
t ×

N
td A2 ∈ Rd×d dN

t
mN
dt2 + d2

In the following, we calculate the coherence of the matrix M� C.

Theorem 3. Let M be the incidence matrix of (q2 + q+ 1, q+ 1, 1)-SBIBD and C = (cs,t)1≤s,t≤q+1
be a (q + 1)× (q + 1)-dimensional normalized orthogonal random matrix; then, there is a con-
struction of structured random measurement matrices for a (q2 + q + 1)× (q3 + 2q2 + 2q + 1)-
dimensional matrix Φ = M� C with coherence µ(Φ) = max |〈cs,t, cs1,t1〉|, where 1 ≤ s, s1 ≤
q + 1, 1 ≤ t, t1 ≤ q + 1.
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Proof of Theorem 3. According to Φ = M� C, then Φ has size (q2 + q + 1)× (q3 + 2q2 +
2q + 1)-dimensional. Let M = (m1, m2, · · · , mq+1), where mi is the i-th column of M,
i = 1, 2, · · · , q + 1. C = (cs,t)1≤s,t≤q+1 is a (q + 1) × (q + 1)-dimensional normalized
orthogonal random matrix. For any two columns Φj1 and Φj2 in Φ,

(1) If Φj1 and Φj2 correspond to the same column mi1 in M, then we have

|〈φj1 , φj2〉|
||φj1 ||2||φj2 ||2

= 0,

since C is a orthogonal matrix;
(2) If Φj1 and Φj2 correspond to two different columns mi1 and mi2 in M, then we have

|〈φj1 , φj2〉|
||φj1 ||2||φj2 ||2

= |〈cs,t, cs1,t1〉|,

since C is a normalized matrix, where cs,t and cs1,t1 are the elements of matrix C, 1 ≤ s, s1 ≤
q + 1, 1 ≤ t, t1 ≤ q + 1.

Therefore, Φ has coherence µ(Φ) = max |〈cs,t, cs1,t1〉|.

4. Experimental Simulation

In this section, our measurement matrices are compared with several famous ma-
trices. Simulation results show that our matrices can be regarded as an effective signal
processing method.

4.1. Reconstruction of 1-Dimensional Signals

Let x be a signal. We select the orthogonal matching pursuit (OMP) [37] algorithm
and the basis pursuit (BP) [38] algorithm to solve the l1-minimization problem, where
the solution is represented by x′. The definition of the reconstruction Signal-to-Noise Ratio
(SNR) of x is

SNR(x) = 10 · lg(
||x||22
||x− x′||22

)dB. (18)

For noiseless recovery, if SNR(x) ≥ 100dB, then the signal x is called perfect recovery.
For every sparsity order, we reconstruct 1000 noiseless signals to calculate the perfect
recovery percentage.

Example 1. Let M1 be the incidence matrix of (73, 9, 1)-SBIBD. Then, we construct three struc-
tured random measurement matrices Φ1 = M1 � C1, Φ2 = M1 � C2 and Φ3 = M1 � C3, where
C1, C2, C3 are a normalized orthogonal matrix of 9× 9-dimensional Gaussian, Bernoulli, and
Toeplitz matrix, respectively.

For measurement matrices Φ1 ⊗ I2, Φ1 ⊗ I3 and Φ1 ⊗ I4, Figure 2a–c show for different
sparsity orders the perfect recovery percentages of 1314× 1-dimensional, 1971× 1-dimensional and
2628× 1-dimensional sparse signals, respectively. It shows that the reconstruction effects of Φ1⊗ I2,
Φ1⊗ I3 and Φ1⊗ I4 are better than those of Gaussian(73× 657)⊗ I2, Gaussian(73× 657)⊗ I3
and Gaussian(73× 657)⊗ I4 under OMP obviously, respectively, and their reconstruction effects
are similar to those of Gaussian(73× 657)⊗ I2, Gaussian(73× 657)⊗ I3 and Gaussian(73×
657)⊗ I4 under BP, respectively.

For measurement matrices Φ2 ⊗ I2, Φ2 ⊗ I3 and Φ2 ⊗ I4. Figure 3a–c show for different
sparsity orders the perfect recovery percentages of 1314× 1-dimensional, 1971× 1-dimensional and
2628× 1-dimensional sparse signals, respectively. It shows that the reconstruction effects of Φ2⊗ I2,
Φ2⊗ I3 and Φ2⊗ I4 are better than those of Bernoulli(73× 657)⊗ I2, Bernoulli(73× 657)⊗ I3
and Bernoulli(73× 657)⊗ I4 under OMP obviously, respectively, and their reconstruction effects
are similar to those of Bernoulli(73× 657)⊗ I2, Bernoulli(73× 657)⊗ I3 and Bernoulli(73×
657)⊗ I4 under BP, respectively.
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For measurement matrices Φ3 ⊗ I2, Φ3 ⊗ I3 and Φ3 ⊗ I4. Figure 4a–c show for different
sparsity orders the perfect recovery percentages of 1314× 1-dimensional, 1971× 1-dimensional and
2628× 1-dimensional sparse signals, respectively. It shows that the reconstruction effects of Φ2⊗ I2,
Φ2⊗ I3 and Φ2⊗ I4 are better than those of Toeplitz(73× 657)⊗ I2, Toeplitz(73× 657)⊗ I3 and
Toeplitz(73× 657)⊗ I4 under OMP obviously, respectively, and their reconstruction effects are
similar to those of Toeplitz(73× 657)⊗ I2, Toeplitz(73× 657)⊗ I3 and Toeplitz(73× 657)⊗ I4
under BP, respectively.
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Figure 2. The relationship between the perfect recovery percentage and sparsity order of sparse
signals under OMP and BP. Φ1⊗ I2, Φ1⊗ I3 and Φ1⊗ I4 are the corresponding measurement matrices
in (a–c), respectively.
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Figure 3. The relationship between the perfect recovery percentage and sparsity order of sparse
signals under OMP and BP. Φ2⊗ I2, Φ2⊗ I3 and Φ2⊗ I4 are the corresponding measurement matrices
in (a–c), respectively.
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Figure 4. The relationship between the perfect recovery percentage and sparsity order of sparse
signals under OMP and BP. Φ3⊗ I2, Φ3⊗ I3 and Φ3⊗ I4 are the corresponding measurement matrices
in (a–c), respectively.
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Example 2. Let e ∈ Rp be the additive white Gaussian noise with SNR 50 dB. Figure 5 shows the
reconstruction SNR comparison of Φ1 ⊗ I2, Φ1 ⊗ I3 and Φ1 ⊗ I4 with Gaussian(73× 657)⊗ I2,
Gaussian(73 × 657) ⊗ I3 and Gaussian(73 × 657) ⊗ I4 under OMP and BP, respectively. It
shows that the reconstruction SNR effects of Φ1 ⊗ I2, Φ1 ⊗ I3 and Φ1 ⊗ I4 are better than those of
Gaussian(73× 657)⊗ I2, Gaussian(73× 657)⊗ I3 and Gaussian(73× 657)⊗ I4 under OMP,
respectively, and their reconstruction SNR effects are similar to those of Gaussian(73× 657)⊗ I2,
Gaussian(73× 657)⊗ I3 and Gaussian(73× 657)⊗ I4 under BP, respectively.

Figure 6 shows the reconstruction SNR comparison of Φ2 ⊗ I2, Φ2 ⊗ I3 and Φ2 ⊗ I4 with
Bernoulli(73× 657)⊗ I2, Bernoulli(73× 657)⊗ I3 and Bernoulli(73× 657)⊗ I4 under OMP
and BP, respectively. It shows that the reconstruction SNR effects of Φ2 ⊗ I2, Φ2 ⊗ I3 and Φ2 ⊗ I4
are better than those of Bernoulli(73× 657)⊗ I2, Bernoulli(73× 657)⊗ I3 and Bernoulli(73×
657)⊗ I4 under OMP, respectively, and their reconstruction SNR effects are similar to those of
Bernoulli(73× 657)⊗ I2, Bernoulli(73× 657)⊗ I3 and Bernoulli(73× 657)⊗ I4 under BP,
respectively.

Figure 7 shows the reconstruction SNR comparison of Φ3 ⊗ I2, Φ3 ⊗ I3 and Φ3 ⊗ I4 with
Toeplitz(73× 657)⊗ I2, Toeplitz(73× 657)⊗ I3 and Toeplitz(73× 657)⊗ I4 under OMP and BP,
respectively. It shows that the reconstruction SNR effects of Φ2⊗ I2, Φ2⊗ I3 and Φ2⊗ I4 are better
than those of Toeplitz(73× 657) ⊗ I2, Toeplitz(73× 657) ⊗ I3 and Toeplitz(73× 657) ⊗ I4
under OMP, respectively, and their reconstruction SNR effects are similar to those of Toeplitz(73×
657)⊗ I2, Toeplitz(73× 657)⊗ I3 and Toeplitz(73× 657)⊗ I4 under BP, respectively.

In applications, the original signal is always disturbed by channel noise. For noisy
recovery, the original signal x ∈ Rp is polluted by additive white Gaussian noise e ∈ Rp.
Therefore, if Φ ∈ R(q2+q+1)×(q3+2q2+2q+1) is a measurement matrix, then

y = Φ n (x + e)

= [Φ⊗ I p
q3+2q2+2q+1

](x + e), (19)

where y ∈ R
p

q+1 and p = lcm(q3 + 2q2 + 2q + 1, p). For every sparsity order, we calculate
the reconstruction SNR by reconstructing 1000 noisy signals.
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Figure 5. The relationship between the reconstruction SNR and sparsity order of sparse signals
under OMP and BP. (a) The reconstruction SNR comparison of Φ1 ⊗ I2, Φ1 ⊗ I3 and Φ1 ⊗ I4

with Gaussian(73× 657)⊗ I2, Gaussian(73× 657)⊗ I3 and Gaussian(73× 657)⊗ I4 under OMP,
respectively. (b) The reconstruction SNR comparison of Φ1 ⊗ I2, Φ1 ⊗ I3 and Φ1 ⊗ I4 with
Gaussian(73× 657)⊗ I2, Gaussian(73× 657)⊗ I3 and Gaussian(73× 657)⊗ I4 under BP, respectively.
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Figure 6. The relationship between the reconstruction SNR and sparsity order of sparse signals
under OMP and BP. (a) The reconstruction SNR comparison of Φ2 ⊗ I2, Φ2 ⊗ I3 and Φ2 ⊗ I4

with Bernoulli(73× 657)⊗ I2, Bernoulli(73× 657)⊗ I3 and Bernoulli(73× 657)⊗ I4 under OMP,
respectively. (b) The reconstruction SNR comparison of Φ2 ⊗ I2, Φ2 ⊗ I3 and Φ2 ⊗ I4 with
Bernoulli(73× 657)⊗ I2, Bernoulli(73× 657)⊗ I3 and Bernoulli(73× 657)⊗ I4 under BP, respectively.
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Figure 7. The relationship between the reconstruction SNR and sparsity order of sparse signals
under OMP and BP. (a) The reconstruction SNR comparison of Φ3 ⊗ I2, Φ3 ⊗ I3 and Φ3 ⊗ I4 with
Toeplitz(73× 657)⊗ I2, Toeplitz(73× 657)⊗ I3 and Toeplitz(73× 657)⊗ I4 under OMP, respectively.
(b) The reconstruction SNR comparison of Φ3 ⊗ I2, Φ3 ⊗ I3 and Φ3 ⊗ I4 with Toeplitz(73× 657)⊗ I2,
Toeplitz(73× 657)⊗ I3 and Toeplitz(73× 657)⊗ I4 under BP, respectively.

Furthermore, the original signals usually approach to sparse, and the measurement
vector may also be polluted by the noise in the measurement domain. Hence, we study the
noise recovery effect of our matrices in the actual STP-CS,

y = Φ n (x + ed) + em, (20)

where em ∈ R
p

q+1 denotes noise in the measurement domain, and ed ∈ Rp denotes noise
in the data-domain.
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Example 3. Let ed ∈ Rp, em ∈ R
p

q+1 be the additive white Gaussian noise with SNR 20–100 dB.
Figures 8–10 show the comparison average recovery SNR for Φ1 ⊗ I2, Φ2 ⊗ I2 and Φ3 ⊗ I2 with
Gaussian(73× 657)⊗ I2, Bernoulli(73× 657)⊗ I2 and Toeplitz(73× 657)⊗ I2 under OMP and
BP, respectively. The stable and robust empirical effects of Φ1⊗ I2, Φ2⊗ I2 and Φ3⊗ I2 are similar
to Gaussian(73× 657)⊗ I2, Bernoulli(73× 657)⊗ I2 and Toeplitz(73× 657)⊗ I2, respectively.
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Figure 8. For sparsity order k = 9, the relationship of average recovery SNR and noise in measurement
domain and data domain. (a) Average recovery SNR of Φ1 ⊗ I2 as the measurement matrix under
OMP. (b) Average recovery SNR of Gaussian(73× 657)⊗ I2 as the measurement matrix under OMP.
(c) Average recovery SNR of Φ1 ⊗ I2 as the measurement matrix under BP. (d) Average recovery SNR
of Gaussian(73× 657)⊗ I2 as the measurement matrix under BP.
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Figure 9. For sparsity order k = 9, the relationship of average recovery SNR and noise in measurement
domain and data domain. (a) Average recovery SNR of Φ2 ⊗ I2 as the measurement matrix under
OMP. (b) Average recovery SNR of Bernoulli(73× 657)⊗ I2 as the measurement matrix under OMP.
(c) Average recovery SNR of Φ2 ⊗ I2 as the measurement matrix under BP. (d) Average recovery SNR
of Bernoulli(73× 657)⊗ I2 as the measurement matrix under BP.
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Figure 10. For sparsity order k = 9, the relationship of average recovery SNR and noise in measure-
ment domain and data domain. (a) Average recovery SNR of Φ3 ⊗ I2 as the measurement matrix
under OMP. (b) Average recovery SNR of Toeplitz(73× 657)⊗ I2 as the measurement matrix under
OMP. (c) Average recovery SNR of Φ3⊗ I2 as the measurement matrix under BP. (d) Average recovery
SNR of Toeplitz(73× 657)⊗ I2 as the measurement matrix under BP.

4.2. Reconstruction of 2-Dimensional Images

In this subsection, we select the orthogonal matching pursuit (OMP) algorithm, basis
pursuit (BP) algorithm, iterative soft thresholding (IST) [39] algorithm and subspace
pursuit (SP) [40] algorithm for testing. When CS reconstructs a gray image, it is hard
to judge the distortion of the reconstructed image by the naked eye and other subjective
ways. Hence, it is necessary to give an important parameter to truly evaluate the quality
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of the reconstructed image; that is, the definition of peak signal-to-noise ratio (PSNR) is
as follows:

PSNR = 10 · lg( 2552

MSE
)dB, (21)

where MSE represents the normalized mean square error, that is

MSE =
1

M× N ∑ ∑[Ψ(x, y)−Ψ′(x, y)]2, (22)

where M × N represents the image size, and Ψ(x, y), Ψ′(x, y) are the gray values of the
original image and the reconstructed image at the point (x, y), respectively.

Example 4. Let M2 be the incidence matrix of (21, 5, 1)-SBIBD; we construct three structured
random measurement matrices Φ4 = M2 � C4, Φ5 = M2 � C5 and Φ6 = M2 � C6, where C4,
C5 and C6 are the normalized orthogonal matrix of a 5× 5-dimensional Gaussian matrix, Bernoulli
matrix, Toeplitz matrix, respectively. Therefore, Φ4, Φ5 and Φ6 are 21× 105-dimensional matrices.
We consider the matrices Φ4 ⊗ I2, Φ5 ⊗ I2 and Φ6 ⊗ I2 are used to reconstruct four images with
size 210× 210-dimensional, Φ4⊗ I3, Φ5⊗ I3 and Φ6⊗ I3 are used to reconstruct four images with
size 315× 315-dimensional, Φ4⊗ I4, Φ5⊗ I4 and Φ6⊗ I4 are used to reconstruct four images with
size 420× 420-dimensional in Figure 11. Tables 3–5 have listed the PSNRs and CPU time of four
images in the reconstruction process. It shows that the PSNRs of our measurement matrices are not
less than that of the Gaussian matrix, Bernoulli matrix and Toeplitz matrix, under OMP, BP, IST,
and SP, respectively. The CPU times of our measurement matrices are not longer than those of the
Gaussian matrix, Bernoulli matrix and Toeplitz matrix, under OMP, BP, IST, and SP, respectively.

 a  b

 c  d

Figure 11. Four test images randomly selected from MSCOCO dataset. (a) COCO_val2014_
000000000761. (b) COCO_val2014_000000004754. (c) COCO_val2014_000000008119. (d) COCO_
val2014_000000193121.
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Table 3. The PSNRs of four images and the CPU time of the measurement matrices Φ4(21× 105)⊗ I2,
Φ5(21× 105)⊗ I2 and Φ6(21× 105)⊗ I2 in the process of reconstruction.

Algorithm Measurement Matrix Image (a) Image (b) Image (c) Image (d)

OMP

Φ4(21× 105)⊗ I2 28.00|0.07 28.16|0.07 28.26|0.07 28.14|0.08

Gaussian(21× 105)⊗ I2 27.65|0.08 27.96|0.08 27.87|0.09 27.87|0.08

Φ5(21× 105)⊗ I2 28.19|0.07 28.34|0.07 28.59|0.07 28.46|0.07

Bernoulli(21× 105)⊗ I2 28.15|0.08 28.33|0.08 28.55|0.08 28.16|0.08

Φ6(21× 105)⊗ I2 28.06|0.07 28.13|0.07 28.39|0.07 27.92|0.07

Toeplitz(21× 105)⊗ I2 27.87|0.08 27.93|0.07 27.99|0.08 27.78|0.07

BP

Φ4(21× 105)⊗ I2 27.89|1.54 27.73|1.55 28.00|1.56 27.90|1.54

Gaussian(21× 105)⊗ I2 27.30|1.89 27.53|1.91 27.65|1.89 27.71|1.91

Φ5(21× 105)⊗ I2 28.17|1.54 28.42|1.55 28.47|1.55 28.15|1.93

Bernoulli(21× 105)⊗ I2 28.15|1.93 28.24|1.93 28.36|1.94 28.09|1.97

Φ6(21× 105)⊗ I2 28.03|1.52 27.90|1.51 28.02|1.56 28.03|1.57

Toeplitz(21× 105)⊗ I2 27.94|2.02 27.60|1.99 27.76|2.07 27.67|2.03

IST

Φ4(21× 105)⊗ I2 28.00|0.42 28.03|0.40 28.30|0.41 28.22|0.42

Gaussian(21× 105)⊗ I2 27.86|0.45 28.00|0.44 27.92|0.43 28.03|0.44

Φ5(21× 105)⊗ I2 28.12|0.39 28.17|0.39 28.82|0.41 28.28|0.39

Bernoulli(21× 105)⊗ I2 28.08|0.39 28.03|0.39 27.82|0.45 28.26|0.40

Φ6(21× 105)⊗ I2 27.98|0.41 28.21|0.40 28.10|0.41 28.16|0.41

Toeplitz(21× 105)⊗ I2 27.78|0.44 27.57|0.40 28.09|0.43 28.12|0.41

SP

Φ4(21× 105)⊗ I2 27.96|0.20 28.80|0.21 28.29|0.21 28.19|0.21

Gaussian(21× 105)⊗ I2 27.88|0.22 27.37|0.23 28.07|0.22 27.65|0.22

Φ5(21× 105)⊗ I2 27.87|0.23 28.14|0.22 27.92|0.22 28.23|0.23

Bernoulli(21× 105)⊗ I2 27.74|0.23 28.13|0.22 27.88|0.22 28.02|0.23

Φ6(21× 105)⊗ I2 28.05|0.21 28.07|0.20 28.06|0.22 28.09|0.21

Toeplitz(21× 105)⊗ I2 27.69|0.21 27.29|0.22 27.83|0.22 27.78|0.21
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Table 4. The PSNRs of four images and the CPU time of the measurement matrices Φ4(21× 105)⊗ I3,
Φ5(21× 105)⊗ I3 and Φ6(21× 105)⊗ I3 in the process of reconstruction.

Algorithm Measurement Matrix Image (a) Image (b) Image (c) Image (d)

OMP

Φ4(21× 105)⊗ I3 27.92|0.11 28.17|0.12 28.41|0.12 28.15|0.12

Gaussian(21× 105)⊗ I3 27.86|0.12 28.13|0.12 27.96|0.12 28.07|0.13

Φ5(21× 105)⊗ I3 27.96|0.12 28.11|0.12 28.27|0.12 28.11|0.11

Bernoulli(21× 105)⊗ I3 27.90|0.12 27.43|0.13 28.23|0.13 28.04|0.12

Φ6(21× 105)⊗ I3 28.07|0.12 28.17|0.12 28.29|0.12 28.36|0.12

Toeplitz(21× 105)⊗ I3 28.01|0.13 28.12|0.12 27.94|0.12 28.18|0.12

BP

Φ4(21× 105)⊗ I3 28.07|2.66 28.19|2.65 28.25|2.62 28.14|2.68

Gaussian(21× 105)⊗ I3 28.05|3.59 28.09|3.37 27.66|3.37 27.92|3.36

Φ5(21× 105)⊗ I3 28.29|2.66 28.29|2.99 28.19|2.57 28.28|3.26

Bernoulli(21× 105)⊗ I3 27.88|3.77 28.05|3.70 27.64|3.74 28.22|3.73

Φ6(21× 105)⊗ I3 28.20|2.77 28.28|3.04 28.24|2.56 27.96|2.63

Toeplitz(21× 105)⊗ I3 28.09|3.81 27.62|3.63 28.16|3.63 27.85|3.57

IST

Φ4(21× 105)⊗ I3 28.10|0.89 28.29|0.89 28.24|0.91 28.33|0.89

Gaussian(21× 105)⊗ I3 27.93|0.92 28.19|0.90 27.98|1.00 28.28|0.95

Φ5(21× 105)⊗ I3 28.00|0.88 28.34|0.84 28.21|0.85 28.10|0.83

Bernoulli(21× 105)⊗ I3 27.85|0.88 28.22|0.88 27.95|0.85 28.02|0.85

Φ6(21× 105)⊗ I3 28.06|0.88 28.12|0.88 28.33|0.90 28.17|0.89

Toeplitz(21× 105)⊗ I3 27.91|0.89 27.92|0.93 27.90|0.92 28.00|0.98

SP

Φ4(21× 105)⊗ I3 28.05|0.33 28.29|0.33 28.47|0.33 28.01|0.33

Gaussian(21× 105)⊗ I3 27.86|0.38 27.84|0.36 28.25|0.35 27.13|0.35

Φ5(21× 105)⊗ I3 27.83|0.34 28.16|0.35 27.81|0.33 27.93|0.34

Bernoulli(21× 105)⊗ I3 27.75|0.42 28.05|0.35 27.72|0.34 27.87|0.37

Φ6(21× 105)⊗ I3 27.99|0.34 28.19|0.34 27.92|0.33 27.96|0.34

Toeplitz(21× 105)⊗ I3 27.98|0.35 27.94|0.34 27.80|0.34 27.70|0.35
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Table 5. The PSNRs of four images and the CPU time of the measurement matrices Φ4(21× 105)⊗ I4,
Φ5(21× 105)⊗ I4 and Φ6(21× 105)⊗ I4 in the process of reconstruction.

Algorithm Measurement Matrix Image (a) Image (b) Image (c) Image (d)

OMP

Φ4(21× 105)⊗ I4 28.16|0.18 28.20|0.19 28.24|0.18 28.18|0.19

Gaussian(21× 105)⊗ I4 27.94|0.19 28.13|0.19 28.03|0.18 28.08|0.19

Φ5(21× 105)⊗ I4 28.17|0.17 28.20|0.17 28.38|0.18 28.10|0.16

Bernoulli(21× 105)⊗ I4 27.88|0.19 28.02|0.18 28.16|0.19 28.01|0.18

Φ6(21× 105)⊗ I4 28.13|0.18 28.14|0.18 28.27|0.18 28.25|0.18

Toeplitz(21× 105)⊗ I4 27.86|0.20 28.11|0.18 28.13|0.19 28.19|0.19

BP

Φ4(21× 105)⊗ I4 28.13|3.83 28.21|3.78 28.28|3.81 28.18|3.81

Gaussian(21× 105)⊗ I4 28.07|5.10 28.10|5.04 27.83|5.06 28.13|5.05

Φ5(21× 105)⊗ I4 28.18|4.33 28.17|4.26 27.97|4.23 28.10|3.81

Bernoulli(21× 105)⊗ I4 28.05|4.34 28.06|4.31 27.71|4.25 27.75|4.33

Φ6(21× 105)⊗ I4 28.04|3.72 28.21|3.59 28.21|3.70 28.22|3.82

Toeplitz(21× 105)⊗ I4 27.95|4.31 27.94|4.30 28.17|4.35 28.14|4.26

IST

Φ4(21× 105)⊗ I4 28.02|1.56 28.27|1.56 28.17|1.60 28.06|1.81

Gaussian(21× 105)⊗ I4 27.80|1.71 28.13|1.62 27.96|1.62 27.90|1.53

Φ5(21× 105)⊗ I4 28.15|1.63 28.09|1.58 28.01|1.58 28.12|1.63

Bernoulli(21× 105)⊗ I4 28.04|1.63 27.89|1.62 27.93|1.60 27.85|1.64

Φ6(21× 105)⊗ I4 28.10|1.58 28.23|1.61 28.18|1.55 28.09|1.58

Toeplitz(21× 105)⊗ I4 27.87|1.62 28.12|1.64 28.00|1.65 28.03|1.66

SP

Φ4(21× 105)⊗ I4 28.26|0.48 28.71|0.48 28.29|0.48 28.20|0.48

Gaussian(21× 105)⊗ I4 27.96|0.51 28.04|0.51 28.14|0.50 27.98|0.50

Φ5(21× 105)⊗ I4 28.10|0.52 28.04|0.49 28.24|0.50 28.24|0.52

Bernoulli(21× 105)⊗ I4 28.08|0.52 27.90|0.49 28.05|0.56 27.91|0.52

Φ6(21× 105)⊗ I4 28.14|0.49 28.27|0.49 28.24|0.49 28.13|0.50

Toeplitz(21× 105)⊗ I4 27.85|0.50 28.08|0.50 28.08|0.50 28.11|0.51

5. Conclusions

The construction of measurement matrices is not only the vital step to guarantee the
quality of signal sampling but also the vital step to determine the difficulty of compressed
sampling hardware implementation. Aiming at the present shortcomings—that a random
matrix needs large storage space and is difficult to be implemented in hardware, and a
deterministic measurement matrix has large reconstruction error—this paper constructs a
structured random matrix by the embedding operation of two seed matrices in which one
is the incidence matrix of (q2 + q + 1, q + 1, 1)-SBIBD, and the other is obtained by Gram–
Schmidt orthonormalization of a (q+ 1)× (q+ 1)-dimensional random matrix. Meanwhile,
we provide a new model that applies the structured random matrices to semi-tensor product
compressed sensing. Finally, compared with the reconstruction effect of several famous
matrices, our matrices are more suitable for the reconstruction of one-dimensional signals
and two-dimensional images by experimental simulation. In addition, due to randomness,
low storage space and shorter reconstruction time, our matrices have good performances
in the reconstruction of signals and images. To sum up, the perspectives to improve the
performance of the method are as follows:

(1) Special structure of the incidence matrix of (q2 + q + 1, q + 1, 1)-SBIBD;
(2) Gram–Schmidt orthonormalization of (q + 1)× (q + 1)-dimensional random matrix,
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(3) Semi-tensor product compressed sensing based on the structured random matrices.
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