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Abstract: Video summarization (VS) is a widely used technique for facilitating the effective reading,
fast comprehension, and effective retrieval of video content. Certain properties of the new video data,
such as a lack of prominent emphasis and a fuzzy theme development border, disturb the original
thinking mode based on video feature information. Moreover, it introduces new challenges to the
extraction of video depth and breadth features. In addition, the diversity of user requirements creates
additional complications for more accurate keyframe screening issues. To overcome these challenges,
this paper proposes a hierarchical spatial–temporal cross-attention scheme for video summarization
based on comparative learning. Graph attention networks (GAT) and the multi-head convolutional
attention cell are used to extract local and depth features, while the GAT-adjusted bidirection ConvL-
STM (DB-ConvLSTM) is used to extract global and breadth features. Furthermore, a spatial–temporal
cross-attention-based ConvLSTM is developed for merging hierarchical characteristics and achieving
more accurate screening in similar keyframes clusters. Verification experiments and comparative
analysis demonstrate that our method outperforms state-of-the-art methods.

Keywords: video summarization; spatial–temporal features; cross-attention

1. Introduction

With the rapid development of multimedia information technology and intelligent
terminal equipment, video data have emerged as a critical medium of information trans-
mission due to its lack of reading threshold and high data-carrying capacity. However, the
openness and informality of video production result in the accelerated growth of video
data and several undesirable phenomena, such as widespread data redundancy [1], unclear
content emphasis, and blurred video theme boundaries. Therefore, it is becoming vital to
provide effective and efficient tools for the management, browsing, and retrieval of these
videos. Video summarization, which uses a subset of the most informative frames to create
a condensed version of the original video by removing redundant information [2–4], is an
effective tool for addressing these issues.

Recent methods for video summarization rely heavily on the superior performance
of deep learning, particularly in feature extraction. In addition, feature extraction is a
fundamental component of video summarization algorithms that extract time series [5,6]
or spatial–temporal features from video data [7,8]. From the perspective of a video feature,
the performance of the video summary is dependent on the feature extraction technique.
These deep learning video summarization algorithms constantly increase the depth and
breadth of video feature extraction to improve its performance. The most important crite-
rion for measuring video summarization performance is user satisfaction. User satisfaction
is contingent upon their requirements for video summarization performance. Furthermore,
user requirements can be translated into property constraints of algorithms [7]. These
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property constraints can be categorized as representativeness [5], content coverage [8],
redundancy [3], diversity [5], interestingness [9], importance [10], etc. The variety of
user requirements continues to expand, while their feature definitions are more hazy.
Consequently, video summarization algorithms focusing on video salient characteristics
extraction are incapable of satisfying the multi-source user requirements. In addition, with
the rise in popularity of video terminal equipment and the evolution of multimedia technol-
ogy, hand-held and fragmented time-created videos have become the predominant sources
of new created video data. Certain more prominent properties of the new video production,
such as significant redundancy, a lack of strong focus, and a fuzzy theme boundary, dis-
rupt the video summarization’s initial thinking mode based on video feature information
and present it with new challenges. With the evolution of video characteristics and user
requirements for video summarization, the demand for keyframe accuracy screening has
increased. Some traditional methods are no longer applicable, such as clustering [11].

To be more precise, existing algorithms can meet a portion of the user-centered require-
ments and capture good summarization performance. However, the following challenges
remain: contradiction between breadth extraction of salient video characteristics and multi-
source of user diversified requirements; the contradiction between depth extraction of
salient video characteristics and unbounded new video productions; the contradiction
between similarity frames and more accurate keyframe screening.

To address the issues mentioned above, this paper proposes a hierarchical spatial–
temporal cross-attention scheme based on contrastive learning, as shown in Figure 1.
The central idea of this article is to extract features and relationships between frames that
account for coarse and fine-grained, global and local, depth and breadth, to fuse hierarchical
features while increasing the difference between similar frames, and then screen keyframes
and generate summaries by evaluating their significance. From the perspective of video
feature extraction, the solution to diverse user requirements for video summary lies in the
extraction of the frame’s own characteristics, relationship features between frames, and
relationship features between frames and the entire video. This study uses DB-ConvLSTM
and multi-head attention mechanisms to design multi-conv-attention cells and joint GAT
to acquire the spatial–temporal connection of keyframes to extract fine-grained spatial–
temporal feature information from video frames. The GAT adjusted DB-ConvLSTM to
extract the global and breadth features. In addition, to amplify the difference of similar
keyframes, a spatial–temporal cross-attention-based ConvLSTM is constructed for merging
hierarchical characteristics. Finally, video summarization is generated by CB-ConvLSTM
through possibility. Therefore, the major contributions of this work can be summarized
as follows:

1. A hierarchical spatial–temporal video feature extraction approach is developed. The
purpose is to ensure as much characteristic information as possible for generating
video summarization;

2. A cross-attention cell that combines the local and global features information based
on DB-ConvLSTM is proposed. It seeks to emphasize the difference between related
frames and achieve more accurate screening in similar keyframes clusters for video
summary generation;

3. Verification experiments and comparative analysis are performed on two benchmark
datasets (TVSum and SumMe) for this paper’s algorithm. The results demonstrate
that the proposed algorithm is extremely rational, effective, and usable.
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Figure 1. Overview of our approach.

2. Related Work

In this section, we briefly overview some state-of-the-art video summarization ap-
proaches and correlation techniques pertaining to our hierarchical spatial–temporal cross-
attention scheme.

2.1. Video Summarization

Generally speaking, pre-processing, feature extraction, post-processing, and VS cre-
ation comprise the video summary generating procedures. The post-processing can be
left out. In particular, feature extraction is the central stage of the algorithm. The initial
algorithm is based on time series techniques such as vsLSTM/dppLSTM [5]. The initial
method of similar keyframes decision is based on clustering [11]. Zhao et al. [12] develop
an extended bidirectional LSTM (Bi-LSTM) for extracting both structure and information
characteristics from video data. To acquire a more precise extraction of video features,
refs. [3,13] offer a keyframe-selection strategy based on video spatial–temporal character-
istics. In addition, graph neural networks are employed to implement this notion [1,6].
However, the aforementioned algorithms are all video-centric and lack comprehensive
analysis of video topics and user demands. In [14], first-person (egocentric) videos-based
models are proposed. A model of characterizing egocentric video frames uses a graph-
based center-surround model. User requirements impose certain restrictions on the feature
extraction results. The video summarization algorithms [15] are based on attention tech-
nologies, mimicking human keyframe filtering. Ji et al. [16] solve the problem of short-term
contextual attention insufficiency and distribution inconsistency. Köprü [17] proposes
two new architectures based on temporal attention (TA-AVSUM) and spatial attention
(SA-AVSUM).

Additionally, for the video summarization algorithm, both video feature information
and video frame relational are crucial [18]. Continuously improving the performance of the
user-requirements-driven algorithm fundamentally necessitates more comprehensive and
accurate feature extraction. This scheme is based on the concept of creating stereoscopic
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modeling using spatial–temporal feature information, relationship information, and other
multi-elements.

2.2. Cross Attention

Refs. [19–22] have conducted substantial study on how to more properly and com-
pletely extract video features and the relationship features between video frames. Con-
textual information is vital in visual understanding problems [19] and is also applicable
to generating video summarization. Huang et al. [19] proposes a Criss-Cross Network
(CCNet) based on attention for obtaining video information in a more effective and efficient
way. Lin et al. [20] presents a universal Cross-Attention Transformer (CAT) module for ac-
curate and efficient semantic similarity comparison in one-shot object detection. In [22], the
attention mechanism is incorporated at two main levels: a self-attention module leverages
global interactions between encoder features, while cross-attention in the skip connections
allows fine spatial recovery in the U-Net decoder by filtering out non-semantic features.
It can be seen that cross-attention has the ability to simultaneously extract the depth and
breadth characteristics of video data. This study uses cross-attention to merge the hierar-
chical spatial–temporal characteristics, and it aims to accentuate the distinctions between
video frames.

2.3. Graph Attention Networks (GATs)

Veličković et al. [23] give a novel neural network architecture that operates on graph-
structured data, leveraging masked self-attentional layers to address the shortcomings of
prior methods based on graph convolutions or their approximations. GATs provide distinct
weights to each neighbor based on their importance, effectively filtering the neighbors.
Zhong et al. [1] build a method for video summarizing utilizing graph attention networks
and Bi-LSTM. However, it does not take into account information loss throughout the
confrontation process. This paper makes use of GATs to capture spatial–temporal relational
attention between video frames and comparative-adjusting feature extraction.

3. Materials and Methods

Figure 1 shows an overview of our hierarchical spatial–temporal cross-attention
scheme for video summarization. DB-ConvLSTM, multi-conv-attention, and multi-head
attention GAT are all used for video feature extraction. The DB-ConvLSTM is employed to
extract coarse-grained global spatial–temporal video characteristics. Effective fine-grained
local features are extracted using multi-conv-attention networks and spatial–temporal
relational feature extraction using multi-head attention GAT. This research derives hier-
archical spatial–temporal feature information on the basis of cross-attention, taking into
consideration both global and local characteristics and coarse-grained and fine-grained
features. In particular, this scheme promotes comparative learning for acquiring local
feature information for multi-conv-attention and GAT, and obtaining global feature knowl-
edge for DB-ConvLSTM and GAT. The local and global characteristics are combined using
spatial–temporal cross-attention. Finally, CB-ConvLSTM obtains the video summary.

Following the algorithm phases, this part elaborates the DB-ConvLSTM and CB-
ConvLSTM, contrastive adjustment learning, and spatial–temporal cross-attention for the
keyframes screening module. The contrastive adjustment learning is adjustment learn-
ing based on contrastive learning. Finally, we will introduce the loss function used in
our framework.

3.1. DB-ConvLSTM and CB-ConvLSTM

Both DB-ConvLSTM and CB-ConvLSTM are founded on the technology of ConvLSTM.
ConvLSTM is not only designed for extracting spatial–temporal information features but
also for inferring saliency information concurrently. Then, suppose there are n frames in
a video, the whole video can be written as f = { f1, · · · fn}, ct is the memory cell, ft is
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the forget gate, and it is the input gate. From [24], we can obtain that the ConvLSTM is
defined as:

it = σ(Wχ
i × Xt + WH

i × Ht−1)
ft = σ(Wχ

f × Xt + WH
f × Ht−1)

ot = σ(Wχ
o × Xt + WH

o × Ht−1)
ct = ft ◦ ct−1 + it ◦ tanh(Wχ

c × Xt + WH
c × Ht−1)

Ht = ot ◦ tanh(ct)

(1)

3.1.1. DB-ConvLSTM

In the video information processing methods, the DB-ConvLSTM [25] network is
suggested to extract spatial–temporal video characteristics more deeply and precisely.
DB-ConvLSTM is a bidirectional two-layer architecture, one forward-oriented and one
backward-oriented. The forward-oriented and backward-oriented have information inter-
action. The deeper layer is composed of backward-cells, its input is the output features of
forward-cells, and the output is {Yt}t

t=1. The backward-ConvLSTM is defined as:

ib
t = σ(WH f

i × H f
t + WHb

i × Hb
t+1) (2)

f b
t = σ(WH f

f × H f
t + WHb

f × Hb
t+1) (3)

ob
t = σ(WH f

o × H f
t + WHb

o × Hb
t+1) (4)

cb
t = ft

b ◦ cb
t+1 + ib

t ◦ tanh(WH f

c × H f
t + WHb

c × Hb
t+1) (5)

Hb
t = ob

t ◦ tanh(cb
t ) (6)

where W are the training parameters, denoting the learnable weights, H is the hidden
state, σ is the activation function, × denotes the convolution operator, and ◦ denotes the
hadamard product. In the VS algorithm, the DB-ConvLSTM can be written as:

Yt = tanh(WH f

y × H f
t + WHb

y × Hb
t−1) (7)

tanh is the activation function to normalize Yt, and the loss function of training DB-
ConvLSTM is distance minimization.

3.1.2. CB-ConvLSTM

CB-ConvLSTM is capable of extracting not only the characteristics of a single video
frame but also the spatial–temporal relationships between different frames [7]. From [7],
we can obtain the definition of CB-ConvLSTM, based on Equations (2)–(7), and replace the
content in Equation (1) by ConvLSTM; then, CB-ConvLSTM is defined as follows:

H f
t = ConvLSTM(Xt, H f

t−1) (8)

Hb
t = ConvLSTM(Xt ⊕ H1,t, Hb

t+1) (9)

⊕ is the operation of fusing two vectors, H1,t is the first hidden state, and the loss
function of training CB-ConvLSTM is distance minimization. In this paper, the three layers
in the network cell aim to extract and aggregate the features, and the final outputs are the
possibility of whether a frame will be selected as a keyframe for video summarization.

3.2. Contrastive Adjustment Learning

Contrastive learning [26] introduces a novel idea of features derived from many
perspectives: the learning algorithm does not have to concentrate on every element of
the sample itself, as long as it learns enough traits to differentiate it from others. In our
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study, the use of contrastive learning serves three purposes: (1) to overcome the diversity
theme of video, (2) to extract elastic traffic feature information, and (3) to increase feature
extraction with surface breadth and detail while enlarging the difference between video
frames. As shown in Figure 2, the specific application of our strategy is to use the GATs-
obtained data as the primary line and generate positive and negative pairs from the results
of DB-ConvLSTM and multi-conv-attention, respectively. Dm is supposed as the results of
the two sections of the comparative learning. DDPG [27] is used to train the Dm adjusted
DB-ConvLSTM, which is the same as [1].

DB-ConvLSTM Multi-Conv-Attention

Negative

Positive Positive

Negative

......

......

Step①Step①

Step①

Step②

Step②GAT

Step③

Adjustment

Figure 2. Step of contrastive adjustment learning.

x+ is the positive sample, and x− is the negative sample, S is the function for measur-
ing the samples’ similarity, and similar to [26], the rule for setting positive pairs is:

S(Y(x), Y(x+))� S(Y(x), Y(x−)) (10)

Dt is the video characteristics, which are extracted by multi-conv-attention and DB-
ConvLSTM. D+ is the keyframe sets, D− is the non-keyframe sets, Qj is feature mapping
of the labeled data, and Q+ is the annotated manually keyframe-sets. Then, the positive
pairs include: YA = {D+(x) ∩Q+(x)}. Moreover, the loss function of a negative sample is
InfoNCE in this paper, and it can be written as:

Ladj = ∑
x,x+ ,x−

[
−log

(
eY(x)TY(x+)

eY(x)TY(x+)+Y(x)TY(x−)

)]
(11)

3.3. Multi-Conv-Attention and Cross-Attention
3.3.1. Multi-Conv-Attention

The temporal, spatial, and multi-element video properties are all important parts of
our approach. As a consequence, a new network cell is constructed using ConvLSTM and
multi-head attention. It uses convolution to improve the attention mechanism’s ability
to get as much video information as possible. In our multi-conv-attention cell, we first
adopt a set of projections to obtain query Q. Additionally, it employs ConvLSTM and
average pooling to produce two sets of projections of key K and value V, enhancing the K
and V dimensions of the attention mechanism while also boosting the performance and
consistency of feature information extraction. Finally, the attention is calculated as:

Mc(Q, K, V) = So f tmax(ConvLSTM( QKT√
dk

))V (12)

In this scheme, we employ n = 8, and dk = dv = dmodel/n = 64.
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3.3.2. Cross-Attention

The Cross-Attention module is shown in Figure 3. F(·) and G(·) are projections to
align dimensions using interpolation function. Then, the module performs cross-attention
between Xm and Xatt, which can be expressed as

q = G(Xm) ·WQ (13)

k = ConvLSTM(G(Xatt)) ·Wk (14)

v = F(Xm) ·Wv (15)

Finally, calculate the cross-attention using Equation (12).

Concat

ConvLSTM

Dot Product

ConvLSTM

Softmax

Max pooling
Inner Product

F(•) and G(•): 
interpolation function

F(•) G(•)

Concat

ConvLSTM

Dot Product

ConvLSTM

Softmax

Max pooling
Inner Product

F(•) and G(•): 
interpolation function

F(•) G(•)

Figure 3. Spatial–temporal cross-attention cell.

3.4. Loss Function

The total loss is primarily made up of three components, and all the loss functions
of these parts are based on cross-entropy. In items of supervised learning, the selection
of keyframes is ultimately intended to decrease the discrepancy between predicted and
background data. The cross-entropy is used to approximate the distribution of the learnt
model to the background data. The lower the value is, the more similar the probability
distributions of the anticipated and background data. p is the probability distribution of
background data, and q is the predicted probability distribution, and the cross-entropy
H(p, q) is:

H(p, q) =
n

∑
i=1

pilog
1
qi

= −
n

∑
i=1

pilogqi (16)

In our network, the softmax is used to normalize the cross-entropy, yi is the output of
network cells, ŷi is the category i of background data, ŷi ∈ {0, 1}, and the loss function is:

L = − 1
m

[
m

∑
i=1

ŷilog
ezi

∑k
i=1 ezk

]
= − 1

m

[
i=1

∑
m

ŷilogyi

]
(17)
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Lmat is the loss function of the model of multi-conv-attention contrastive GAT. Ldat is
the loss function of the model of DB-ConvLSTM contrastive adjustment GAT. Lcro is
the loss function of cross-attention. Both Lmat and Ldat are cross-entropy, as defined by
Equation (17). To resolve the centralization issue and reduce the ambiguity problem in key
frame filtering, we use Lcen for centralization keyframe scores:

Lcen = λ · min(Ldat,Lmat)

max(Ldat,Lmat)
(18)

In Equation (17), λ balances the function of global and local domains. Formally, the objective
function Lobj is written as

Ltol = µ · Lcro + Lcen (19)

µ balances the loss of cross-attention and multi-conv-attention.

4. Experiments Analysis
4.1. Datasets

Each database has its focus, so before the experiment, the two databases TVsum [28]
and SumMe [29] should be analyzed, and the results are shown in Table 1. Additionally, we
use two other public datasets, OVP (Open Video Project) [30] and YouTube [11], to augment
the training sets.

Table 1. Analysis of TVsum and SumMe dataset.

Datasets Description

TVsum
The title-based video summarization dataset contains 50 videos of various genres

(e.g., news, documentary, egocentric) and 1000 annotations of shot-level importance
scores (20 user annotations per video). The duration varies from 2 to 10 min.

SumMe The SumMe dataset consists of 25 videos, each annotated with at least 15 human
annotated summaries. The duration of videos varies from 1.5 to 6.5 min.

4.2. Evaluation Metrics

To facilitate a comparison study of the experimental influence on current research
findings, the Precision, Recall, and F-score are used as measurement standards, similar to
the literature [3]. S is the video summarization generated by the algorithm, G denotes the
ground user-marked ground truth, and the following definitions apply to Precision, Recall,
and F-score:

Precision =
|S ∪ G|
|S| (20)

Recall =
|S ∪ G|
|G| (21)

F− score =
2× Precision× Recall

Precision + Recall
(22)

As shown in [31], randomly generated video summaries may achieve equivalent perfor-
mance when using the F-score measure. To avoid this problem, we evaluated our method
as seen in Table 2. Under our comparison method, the comparing parameter is F-score.
Furthermore, to be more precise, these datasets are randomly split into different training
and testing sets five times, and the final measure is produced by averaging the five results.
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Table 2. Datasets setting used for evaluation (C: Canonical; A: Augmented; T: Transfer).

Datasets Setting Training Phase Testing Phase

TVSum

C 80% TVSum The rest 20% of TVSum
A 80% TVSum+SumMe+ The rest 20% of TVSum

OVP+YouTube
T SumMe+OVP+YouTube TVSum

SumMe

C 80% SumMe The rest 20% of SumMe
A TVSum+80% SumMe+ The rest 20% of SumMe

OVP+YouTube
T TVSum+OVP+YouTube SumMe

4.3. Experimental Environment and Parameters Settings

The deep learning platform for operating our approach is Pytorch. The hidden states
are with dimensionality of 256 for ConvLSTM, and other parameters settings are as follows:
similar to other algorithms, we use the pool5 layer of GoogleNet to extract the visual
features for each video frame. The number of ConvLSTMs hidden layers is 256, the
learning rate initialized is le− 5, the batch size is 5, the kernel size is set as (5,1), and the
maximum training epoch is set as 100. Furthermore, considering that the training epochs
are critical to summarization performance, after increasing for five epochs continuously,
their influence on the validation set is plotted in Figures 4–6. The horizontal coordinate
is the training epochs, and the vertical coordinates are the values the of F-scores, Recall,
and Precision.

Figure 4. Plots show the influence of training epochs on the value of F-scores.

Figure 5. Plots show the influence of training epochs on the value of Recall.
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Figure 6. Plots show the influence of training epochs on the value of Precision.

4.4. Comparative Analysis of Schemes

This section verifies the feasibility and effectiveness of the proposed strategy through
two ways: one is validation of the algorithm itself, and the other one is comparative analysis
with state-of-the-art video summarization approaches.

4.4.1. Self-Verification

Before comparing the scheme to other state-of-the-art algorithms, it is vital to validate
the scheme’s performance itself. Table 3 and Figure 7 show the results of evaluating the
performances of our methods on the SumMe and TVSum datasets. From the perspective
of result stability, the test variation curves of C, T, and A on SumMe and TVSum datasets
are shown in Figures 8 and 9. The horizontal coordinate of both figures is training epochs.
Figure 7 gives an example of generating video summarization on the SumMe and TVSum
datasets by our approach; the yellow lines show the annotation importance scores of
ground truth summarization marked by the user, and the blue lines show the prediction
score of our method. We clearly observe that our models achieve very competitive results
against state-of-the-art methods.

SumMe Video-11

SumMe Video-20

TvSumVideo-5

SumMe Video-11

SumMe Video-20

TvSumVideo-5

Figure 7. An example of generating video summarization on SumMe and TVSum datasets; the
first two are samples from SumMe datasets and the last one is from TVSum datasets. The yellow
lines show the annotation importance scores of ground truth summarization marked by the user, and
the blue lines show the prediction score of our method.
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Figure 8. The A, C, and T results of SumMe.

TVSum

Figure 9. The A, C, and T results of TvSum.

Table 3. Performance analysis of self-verification (F-scores).

Data Sets TVSum SumMe

Metric C (%) A (%) T (%) C (%) A (%) T (%)

MAX 65.3 67.4 66.2 61.6 63.1 64.5
MIN 50.8 50.2 55.9 53.3 52.4 51.3

AVERAGE 60.57 58.62 61.26 58.4 58.4 60.01

4.4.2. Comparative Analysis with Relative Approaches

The primary components of our algorithm consist of the attention mechanism, Con-
vLSTM, and GATs. In this section, we compared our approach with some state-of-the-art
video summarization methods on SumMe and TvSum. Comparison methods can be clas-
sified into three categories: based on “LSTM+”, based on “Attention+”, and based on
GATs methods.

(1) Comparison With “Bi-LSTM+” Methods

Due to the few research results on the summary algorithm based on ConvLSTM, this
section compares our scheme to the Bi-LSTM based algorithms. Some classic algorithms
are compared, as shown in Table 4.
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Table 4. Performance analysis of methods based on “Bi-LSTM+”.

Data Sets TVSum SumMe

Metric C (%) A (%) T (%) C (%) A (%) T (%)

vsLSTM [5] 54.2 57.9 56.9 37.6 41.6 40.7
dppLSTM [5] 54.7 59.6 58.7 38.6 42.9 41.8
H-RNN [12] 57.9 61.9 − 42.1 43.8 −

HAS-RNN [32] 58.7 59.8 − 42.3 42.1 −
DHAVS [33] 60.8 61.2 57.5 45.6 46.5 43.5

Ours 65.3 67.4 66.2 58.4 58.4 60.01

H-RNN [12] and HAS-RNN [32] are based on hierarchical architecture. According to
the findings of the comparison, we observe that our method outperforms state-of-the-art
video summarization methods on both datasets.

(2) Comparison With “Attention+” Methods

Since the scheme in this paper involves not only the combination of ConvLSTM and
attention but also the graph neural network, we will analyze it separately. The results of
comparison with “Attention+” methods are shown in Table 5. SABTNet [15] is based on
attention and a binary neural tree. Liang et al. [34] proposes a video summarization method
based on dual-path attention, while Zhu et al. [35] is based on hierarchical attention. Table 5
demonstrates that the cross-attention method has clear benefits over the SumMe database.

Table 5. Performance analysis of methods based on “Attention+”.

Data Sets TVSum SumMe

Metric C (%) A (%) T (%) C (%) A (%) T (%)

M-AVS [36] 61.0 61.8 − 44.4 41.6 −
SABTNet [15] 61.0 − − 51.7 − −

[34] 61.58 61.2 58.9 51.7 52.1 44.1
[35] 61.5 62.8 56.7 51.1 52.1 45.6

Interp-SUM [2] 59.14 − − 47.7 − −
3DST-UNet [3] 58.3 58.9 56.1 47.4 49.9 47.9

Ours 65.3 67.4 66.2 58.4 58.4 60.01

(3) Comparison With “Graph Attention+” Methods

The extraction of spatial–temporal characteristics and frame–relationship features is
facilitated by a graph neural network. Table 6 shows the results of comparing our method
with some “Graph Attention+” video summarization methods including RSGN [13],
GCAN [37], Bi-GAT [1] and SumGraph [38]. From the experimental results in Table 6,
our method outperforms other approaches, which are based on “Graph Attention+”.

Table 6. Performance analysis of methods based on “Graph Attention+”.

Data Sets TvSum (F-Score %) SumMe (F-Score %)

RSGN [13] 60.1 45.0
GCAN [37] 60.1 53.0
Bi-GAT [1] 59.6 51.7

SumGraph [38] 63.9 51.4

Ours 65.36 58.48

4.4.3. Comparison Results

Following the comparison tests outlined above, it can be seen that the proposed
method has certain advantages over existing approaches, most notably in the SumMe
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database set. Specifically, the hierarchical spatial–temporal cross-attention scheme in this
research enhances the algorithm’s stability, scalability, and other performance characteristics.

5. Conclusions

This paper proposes a hierarchical spatial–temporal cross-attention scheme for video
summarization using contrastive learning. The scheme solves the contradictions of diver-
sification user requirements, depth and breadth of features extraction and new creation
videos. The hierarchical architecture is divided primarily into depth and breadth feature
extraction and spatial–temporal cross-attention feature merging. This paper extracts local
and depth features using a graph attention network and multi-head attention mechanism,
and it extracts global and breadth features using a GAT adjusted DB-ConvLSTM. Fur-
thermore, merging hierarchical characteristics via spatial–temporal cross-attention cells is
used for more precise keyframe screening. Finally, video summarization is generated by
CB-ConvLSTM. In practice, results from the TVSum and SumMe datasets indicate that the
proposed algorithm is highly rational, effective, and usable. Nevertheless, the analysis of
similarity keyframe screening is still insufficiently detailed.
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23. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
24. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-c. Convolutional LSTM network: A machine learning approach

for precipitation nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing Systems,
Montreal ON, Canada, 7–12 December 2015; Volume 28.

25. Song, H.; Wang, W.; Zhao, S.; Shen, J.; Lam, K.-M. Pyramid dilated deeper convlstm for video salient object detection.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 715–731.

26. Gao, T.; Yao, X.; Chen, D. Simcse: Simple contrastive learning of sentence embeddings. arXiv 2021, arXiv:2104.08821.
27. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. In Proceedings of the International Conference on Learning Representations 2016, San Juan, Puerto Rico,
2–4 May 2016; pp. 1–15.

28. Song, Y.; Vallmitjana, J.; Stent, A.; Jaimes, A. Tvsum: Summarizing web videos using titles. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 5179–5187.

29. Gygli, M.; Grabner, H.; Riemenschneider, H.; Van Gool, L. Creating Summaries from User Videos; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 505–520.

30. Open Video Project. Available online: https://open-video.org/ (accessed on 22 September 2022).
31. Otani, M.; Nakashima, Y.; Rahtu, E.; Heikkila, J. Rethinking the evaluation of video summaries. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 7596–7604.
32. Zhao, B.; Li, X.; Lu, X. Hsa-rnn: Hierarchical structure-adaptive rnn for video summarization. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7405–7414.
33. Lin, J.; Zhong, S.-h.; Fares, A. Deep hierarchical LSTM networks with attention for video summarization. Comput. Electr. Eng.

2022, 97, 107618. [CrossRef]
34. Liang, G.; Lv, Y.; Li, S.; Wang, X.; Zhang, Y. Video summarization with a dual-path attentive network. Neurocomputing 2022,

467, 1–9. [CrossRef]
35. Zhu, W.; Lu, J.; Han, Y.; Zhou, J. Learning multiscale hierarchical attention for video summarization. Patt. Recognit. 2022,

122, 108–312. [CrossRef]
36. Ji, Z.; Zhao, Y.; Pang, Y.; Li, X.; Han, J. Video summarization with attention-based encoder–decoder networks. IEEE Trans. Circ.

Syst. Video Technol. 2019, 30, 1709–1717. [CrossRef]
37. Li, P.; Tang, C.; Xu, X.Video summarization with a graph convolutional attention network. Front. Inform. Technol. Electr. Eng. 2021,

22, 902–913. [CrossRef]
38. Park, J.; Lee, J.; Kim, I.-J.; Sohn, K. Sumgraph: Video summarization via recursive graph modeling. In Proceedings of the

European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 647–663.

http://dx.doi.org/10.1016/j.patrec.2021.03.013
http://dx.doi.org/10.1016/j.patrec.2020.12.016
http://dx.doi.org/10.1109/TNNLS.2020.2991083
https://open-video.org/
http://dx.doi.org/10.1016/j.compeleceng.2021.107618
http://dx.doi.org/10.1016/j.neucom.2021.09.015
http://dx.doi.org/10.1016/j.patcog.2021.108312
http://dx.doi.org/10.1109/TCSVT.2019.2904996
http://dx.doi.org/10.1631/FITEE.2000429

	Introduction
	Related Work
	Video Summarization
	Cross Attention
	Graph Attention Networks (GATs)

	Materials and Methods
	DB-ConvLSTM and CB-ConvLSTM
	DB-ConvLSTM
	CB-ConvLSTM

	Contrastive Adjustment Learning
	Multi-Conv-Attention and Cross-Attention
	Multi-Conv-Attention
	Cross-Attention

	Loss Function

	Experiments Analysis
	Datasets
	Evaluation Metrics
	Experimental Environment and Parameters Settings
	Comparative Analysis of Schemes
	Self-Verification
	Comparative Analysis with Relative Approaches
	Comparison Results


	Conclusions
	References

