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Abstract: Water management is a key issue in the design and operation of proton exchange membrane
fuel cells (PEMFCs). For an efficient and stable operation, the accumulation of liquid water inside the
flow channels has to be prevented. Existing measurement methods for localizing water are limited
in terms of the integration and application of measurements in operating PEMFC stacks. In this
study, we present a measurement method for the localization of liquid water based on ultrasonic
guided waves. Using a sparse sensing array of four piezoelectric wafer active sensors (PWAS), the
measurement requires only minor changes in the PEMFC cell design. The measurement method
is demonstrated with ex situ measurements for water drop localization on a single bipolar plate.
The wave propagation of the guided waves and their interaction with water drops on different
positions of the bipolar plate are investigated. The complex geometry of the bipolar plate leads to
complex guided wave responses. Thus, physical modeling of the wave propagation and tomographic
methods are not suitable for the localization of the water drops. Using machine learning methods, it
is demonstrated that the position of a water drop can be obtained from the guided wave responses
despite the complex geometry of the bipolar plate. Our results show standard deviations of 4.2 mm
and 3.3 mm in the x and y coordinates, respectively. The measurement method shows high potential
for in situ measurements in PEMFC stacks as well as for other applications that require deposit
localization on geometrically complex waveguides.

Keywords: ultrasonic guided waves; signal processing; deposit localization; water management;
fuel cells

1. Introduction
1.1. Water Management in Fuel Cells

In order to reduce the environmental impact of fossil fuels, regenerative energy sources,
i.e., wind and solar energy will be used predominantly in the future. To overcome their
volatility, scalable and efficient energy storage and conversion systems are required. Fuel
cells offer several advantages, i.e., high conversion efficiency, harmless exhaustion products,
and high availability of the required materials [1], and have thereby become one of the most
promising technologies to support the transition from fossil fuels to regenerative energy
sources [2].

Proton exchange membrane fuel cells (PEMFCs) are operated by supplying hydrogen
on the anode and oxygen on the cathode side. The hydrogen penetrates the gas diffusion
layer and reacts with the electrolyte, emitting electrons for the outer electrical circuit and
protons, which travel to the cathode side through the proton exchange membrane that
separates the cathode and anode. At the cathode side, protons and electrons recombine
with oxygen to produce water. Due to the low operating temperatures between 60 °C and
80 °C [3], the water can be liquid.

It has been shown that water management is important for the operation and opti-
mization of PEMFCs [4]. Furthermore, water management has a great influence on the
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long-term performance and durability of PEMFCs [5]. An optimal working point for the
humidity in PEMFCs has to be found based on the following criteria: the water that has
been generated in the chemical reaction has to be transported out of the cell to prevent
liquid water from blocking the flow channels and to ensure an even distribution of the
reactants. At the same time, the fuel cell has to be prevented from dehydration since the
proton exchange membrane requires a certain humidity. Numerous water management
methods and strategies for PEMFCs have been developed [1,6,7], which are based on
improving the PEMFC design or material, e.g., the flow field design, design of gas diffusion
layer, or respective materials. However, to understand the processes relevant to water
formation and transport, methods for visualizing water in the fuel cell are required. In
addition, Wang et al. concluded that monitoring the water inside the PEMFC is the most
reliable way to determine issues with water management [1], e.g., water flooding the flow
channels.

For the visualization and investigation of water in PEMFCs, various methods based on
optical visualization, imaging using ionizing radiation, and magnetic resonance imaging
have been applied [8]. The optical visualization of water uses laser- and camera-based
methods. This requires optical access, which is typically not given in PEMFCs. Hence,
simplified models with optical windows are used and the operational conditions are
different from real PEMFCs. Rahimi et al. developed a transparent PEMFC stack to
investigate water flow visually under different operational conditions [9]. However, due to
the necessary changes in the cell design, the boundary conditions, e.g., thermal conductivity
and wettability, change. Hence, the processes in real PEMFCs can only be approximated.
Visualization techniques based on ionizing radiation, e.g., X-ray and neutron imaging, allow
the imaging of the water distribution in PEMFCs in the channels and the gas diffusion
layer [10–12]. However, the applicability of these techniques is limited since appropriate
radiation sources are required, which are not commonly available for neutron imaging,
or only single cells or smaller sections of single PEMFC cells can be investigated. Hence,
water imaging based on ionizing radiation is not suitable for detailed parameter studies
on water management or in situ measurements. Magnetic resonance imaging has been
applied for the imaging of water in flow channels and the gas diffusion layer in situ [13,14].
However, the temporal resolution was limited, e.g., to 50 s [13] and dynamic processes
were hardly observed. Furthermore, changes to the investigated setup of the PEMFC were
required. This included the size to fit the cell into the magnet’s core and the changes
to the nonmagnetic materials for the bipolar plate and current collector. In conclusion,
detailed analysis of water is possible with state-of-the-art techniques but requires great
efforts or modifications of the cell design so the results only have limited use for water
management in real PEMFC stacks. Therefore, we introduce a new method for the detection
and localization of water in PEMFCs based on guided waves, which is demonstrated in ex
situ experiments on a single bipolar plate of a PEMFC.

1.2. Measurements Based on Guided Waves

Measurements based on ultrasonic guided waves are common in the fields of nonde-
structive evaluation and structural health monitoring (SHM) [15–19]. Ultrasonic guided
waves are mechanical waves in the kHz to the MHz range that propagate through media
and are delimited to another material, e.g., plate-like structures. Various kinds of transduc-
ers can be used for the generation of guided waves, as well as for sensing the response after
the waves have propagated through the structure under investigation. The propagation
in these structures produces dispersive modes of propagation. The measurement effect in
SHM is based on the interaction of the guided waves with a defect of the structure, e.g.,
from an impact. This interaction may lead to reflections, frequency-dependent attenuation,
or mode conversion. By analyzing the guided wave responses received from the sensors,
it is possible to detect defects in plate-like structures such as metal plates, e.g., on aircraft
wings [20].
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A wide range of signal processing techniques, such as wavelet transform and mode
identification, have been applied for this purpose. Many of these techniques rely on
comparing the guided wave responses from the monitored structure with those of the
undamaged structure to detect differences. In addition to the detection of defects, guided
waves have also been used for the localization and imaging of defects. Most commonly,
tomographic approaches are used for imaging based on guided waves [21–23].

Apart from defects in the structure itself, guided waves are also sensitive to changes
in the adjacent media, e.g., due to deposits on the structure. This effect has been used for
the monitoring of soft depositions in liquid-filled tubes [24], ice detection on windmill
wings [25,26], and for monitoring the wetting on simple plate-like structures [27]. Guided
wave tomography has been applied to localize ice deposits on simple plate structures [28]

Typically, measurements based on guided waves are investigated on structures with
simple geometries and with or without a low number of discontinuities, e.g., plate-like
structures or tubes with constant thicknesses [16]. This is not the case for the bipolar plates
investigated in this study. Bipolar plates in fuel cells are used to distribute the reactants
through flow channels across the entire active surface of the cell. When metallic bipolar
plates are used, the flow channels are created by deep drawing from a metal sheet, which
introduces mechanical stress and bends. Hence, the created structure consists of a high
number of discontinuities and is more complex compared to simple plate-like structures
or tubes. Efforts have been made to understand and model the propagation of guided
waves in plates with a single bend [29,30]. However, the understanding of guided wave
propagation in geometrically complex structures with many bends, such as a bipolar plate
with a flow field that consists of several flow channels, is still very limited. It can be
assumed that the guided wave responses of such a structure are much more complex and
it is unknown how they change due to deposits such as water drops. Therefore, methods
that have been applied successfully to detect deposits on simple plate-like structures, e.g.,
mode identification and time-of-flight measurements [24], cannot be easily adapted to this
problem. With regard to localization, tomography-based imaging methods might fail as
well since the signal paths between the transmitting and receiving transducers depend on
the unknown guided wave propagation within the flow field.

Data-driven methods for signal processing are an option for dealing with the inherent
complexity associated with guided wave measurements. These methods rely on machine
learning (ML) and data from previous measurements rather than physical models. Various
ML methods have been applied to guided wave measurements in the field of SHM, often
with the aim of damage detection and classification [31–33]. Hesser et al. have applied
ML algorithms to localize impact positions on an aluminum plate based on guided wave
responses [34]. Supervised machine learning has also been applied for the classification of
deposits on wind turbine blades using guided waves [26,35]. To the best of our knowledge,
the localization of deposits on complex structures such as the bipolar plate has not been
demonstrated so far.

1.3. Aim and Outline of This Article

In this study, we propose a new method for the localization of liquid water in PEMFCs
using guided waves. The measurement method is investigated in ex situ experiments on a
single bipolar plate. In addition to its application in PEMFCs, the broader research question
of this article is whether deposit localization based on guided waves can be successfully
applied to complex structures such as the bipolar plate. First, the experimental setup of
a sparse sensor array on a single bipolar plate is introduced. Based on the experimental
results, the guided wave propagation through the bipolar plate is investigated. It is then
shown how single water drops on the flow field affect the signal properties of the guided
wave responses based on the location of the drops. Subsequently, a data-driven approach
to localization is presented. Finally, the uncertainty of water localization is evaluated.
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2. Materials and Methods
2.1. Experimental Setup

To investigate the effect of water drops on guided wave propagation, a single PEMFC
bipolar plate was used as a sample. The bipolar plate consisted of stainless steel (Material
No.: 1.4404, AISI: 316L) with a gold coating of 1 µm, a sheet thickness of 100 µm, and outer
dimensions of 10 cm by 8 cm. The bipolar plate had a serpentine flow field with eight flow
channels that connect the gas inlet and outlet (flow field design: Hydrogen and Fuel Cell
Center (ZBT GmbH), Duisburg, Germany). The depth of the flow channels was 0.32 mm.
Four piezoelectric wafer active sensors (PWAS) were connected to a bipolar plate outside of
the flow field with epoxy glue. The sample with the connected PWAS is shown in Figure 1a.

To investigate the localization of water inside the flow field, water drops were placed
in different positions inside the channels. For each measurement, a single drop of water
with a volume of approximately 5 µl was placed on the flow field. All measurements were
conducted in a temperature-controlled laboratory environment at 20 °C. The measurement
system was used to excite guided waves in the bipolar plate. One of the PWAS was ex-
cited while the received signals at all four PWAS were recorded. To reduce signal noise,
500 recorded signals were averaged. This procedure was repeated with each of the four
PWAS being used as the transmitter, resulting in a measurement that consisted of 16 aver-
aged signals (including the echo signals of each PWAS). In addition to the guided wave
measurements, the position and size of the water drops were obtained. For this purpose, a
camera was mounted to a fixed position above the bipolar plate and an image of the flow
field was captured and saved for each measurement. To guarantee the same position of
the flow field in each image, all images were adjusted via template matching. The images
were cropped to 800 × 800 pixels and the position of the water drop was extracted from
each image. The image analysis was automated using the OpenCV library [36]. A total of
296 measurements were conducted, each with a single drop placed on a different position
in the flow field. Additionally, seven measurements were conducted without any water on
the flow field.

Figure 1. (a) Bipolar plate with four PWAS connected to it. The flow field in the center consists of
eight serpentine flow channels, which connect the gas inlet and outlet. (b) Scheme of the experimental
setup showing the camera, pulser, and data acquisition system (DAQ) connected to a PC.
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2.2. Ultrasound System

The ultrasound system drove four PWAS (disc c255 o5 t0,5 wAg, PI Ceramic, Lederhose,
Germany) made from the piezoelectric material PIC 255 (PI Ceramic, Lederhose, Germany).
These PWAS had a thickness of 0.5 mm and a diameter of 5 mm, with a thickness resonance
frequency of 4 MHz and a radial resonance frequency of 0.5 MHz. The PWAS were driven
by a 16-channel pulser receiver unit that is described in detail elsewhere [37]. To transmit
ultrasound signals, the PWAS were excited with a 200 V pulse. For this purpose, the pulser
generated a single-sided negative voltage pulse with a rise time of approximately 4 ns.
Simultaneously, all PWAS were used as sensors to receive the guided wave responses.
The pulse repetition rate was set to 500 Hz. A 54 dB gain was applied to the received
signals. Data acquisition was realized with two GaGe Octopus digitizer boards (Vitrek LLC,
Lockport, IL, USA) with a sample rate of 125 MHz and a resolution of 14 bits. The pulser
and the data acquisition system (DAQ) were connected to a PC that was used to control the
devices and for data storage. A scheme of the measurement system is shown in Figure 1b.

3. Signal Analysis and Evaluation
3.1. Propagation of Guided Waves in a PEMFC Bipolar Plate

The PWAS were used to excite guided waves in the bipolar plate. To lower the
complexity of the guided wave responses, the thickness resonance frequency of the PWAS
was chosen so that only the zero-order modes A0 and S0 were excited. On a flat, isotropic,
and sufficiently large plate, it could be expected to observe Lamb-type guided wave
responses with two distinct peaks for the two zero-order modes, which propagate at
different velocities through the plate. To demonstrate this ideal case, the dispersion curves
were calculated assuming a flat plate with a thickness of 100 µm consisting of stainless steel
(Material No.: 1.4301, AISI: 304). The Dispersion Calculator software was used to calculate
the dispersion curves [38]. Figure 2 shows the propagation times of the A0 and S0 modes
and for the bulk waves for a distance of 68 mm, which corresponds to the center-to-center
distance between PWAS 1 and 2. In the calculated temporal response, the two modes can
be clearly distinguished from one another under the assumption of a flat, isotropic plate.

Figure 2. Propagation times of A0 and S0 modes and bulk wave for a distance of 68 mm on a flat
stainless steel plate (thickness 0.1 mm) calculated with the Dispersion Calculator [38]. The inset
shows the calculated out-of-plane amplitude of the temporal guided wave responses for a 4 MHz
sinusoidal excitation signal (ten cycles, Gaussian window).



Sensors 2022, 22, 8296 6 of 16

In the experiment, the boundary conditions for wave propagation significantly differed
from the theoretical scenario of a flat, isotropic, and infinite plate. The geometry of a bipolar
plate is more complex, featuring the serpentine flow field with its two holes for the gas
inlet and outlet. The edges of the bipolar plate are close to the positions of the PWAS
and, therefore, the bipolar plate cannot be approximated by an infinite plate. Additionally,
the deep drawing of the flow field might have introduced anisotropy within the material.
Compared to a flat, infinite, and isotropic plate, these properties introduce additional
phenomena to wave propagation such as reflection and mode conversion. It has been
shown that geometric features can lead to a concentration of wave energy and act as
local waveguides within a plate. This phenomenon of feature-guided waves has been
investigated mostly in the context of non-destructive testing and for plates with simple
geometric features such as bends [29,30], stiffeners [39,40], and welded joints [41–43]. It
can be assumed that similar effects also occur alongside the channels within the flow field.
These boundary conditions for wave propagation differ from Lamb wave theory and result
in more complex guided wave responses. Figure 3 shows the amplitude s of a signal that
was transmitted from PWAS 1 and received at PWAS 2. The signal was recorded without
any water present on the flow field and has been forward-backward filtered with a fourth-
order Butterworth bandpass filter (lower and upper −3 dB cutoff frequencies: 3 MHz and
7 MHz). At the beginning of the signal, the effect of electromagnetic interference within
the pulser receiver unit can be seen. From about 15 µs onward, the signal shows the effect
of the guided waves arriving at PWAS 2. In contrast to the theoretical signal shown in
Figure 2, the measured signal does not show two clear peaks for the two Lamb wave modes.
Instead, the measured signal is longer and looks much more complex. Reflections on the
edge of the bipolar plate and the complex geometry of the flow field result in a guided
wave response that consists of many superimposed oscillations. The measured signal does
not allow for a clear identification of the different Lamb wave modes. This shows that a
signal analysis based on modeling the wave propagation in a bipolar plate is not suitable
for the localization of water drops on a flow field.

Figure 3. Filtered signal transmitted from PWAS 1 and received at PWAS 2. Electromagnetic (EM)
interference occurs at the beginning of the signal.

3.2. Influence of Water Drops on the Guided Wave Response

Guided waves in plate-like structures are not only sensitive to structural defects within
the plate but also changes at the surface interface. Water contact with the surface can lead
to attenuation, changes in time-of-flight, and mode conversion of the guided waves [44,45].
Sessile water drops on a plate lead to the scattering of guided waves [46]. The sensitivity of
guided waves to water on the surface of the plate has been investigated to quantify surface
wetting [27]. To investigate the influence of the water drops experimentally, signals from
one measurement with the dry bipolar plate were used as baselines. Figure 4 shows a
baseline signal sbl and a second signal swd that was recorded with a single water drop on
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the flow field, as well as the difference signal sd obtained by baseline subtraction according
to the following equation,

sd(n) = swd(n)− sbl(n), (1)

where n is the sample index. Changes in the amplitude and phase can be seen between
sbl and swd. It is clear that the water drop on the flow field has an influence on the guided
wave response that is represented by the difference signal sd.

Figure 4. (a) Filtered signals transmitted from PWAS 1 and received at PWAS 2. The baseline signal sbl

was recorded without a water drop on the flow field and the measurement signal swd was recorded
with a single water drop on the flow field. (c) Difference signal sd. (b,d) Detailed views of the
highlighted signal parts.

Figure 5 shows the filtered difference signals for all 16 signal paths for one measure-
ment with a water drop on the flow field. The difference signal for the signal path from
PWAS 1 (transmitting PWAS) to PWAS 2 (receiving PWAS), which is shown in Figure 4c,
can be seen in Figure 5b. The other difference signals shown in Figure 5 were obtained
accordingly for each combination of transmitting and receiving PWAS. A region of interest
(ROI) with a length of 64.0 µs was chosen for the subsequent signal processing. This corre-
sponds to a length of 8000 samples. The positions of the ROI depend on the signal paths,
starting at 12.0 µs for the signal paths across the flow field (between PWAS 1 and 2, as well
as between PWAS 3 and 4, Figure 5b,e,i,o), 28.0 µs for the echo signals (Figure 5a,f,k,p), and
4.0 µs for the diagonal signal paths. The ROIs were chosen with respect to the different
lengths of the signal paths to omit the electromagnetic interference at the beginning of each
signal and to avoid regions with clipping in the echo signals. As expected, the signals for
each signal path were independent of the direction of the signal, e.g., the signal transmitted
from PWAS 1 to PWAS 2 was almost identical to the signal transmitted from PWAS 2 to
PWAS 1. This resulted in almost identical difference signals for both directions of each
signal path, e.g., the difference signals shown in Figure 5b and Figure 5e. Therefore, only
one direction of each signal path was used for the localization, resulting in 10 difference
signals for each measurement.
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Figure 5. Difference signals within the ROI for all signal paths. (a,f,k,p) Echo signals that are
transmitted and received by the same PWAS. (b,e,l,o) Signal paths across the flow field. The remaining
difference signals are for diagonal signal paths. The difference signal shown in (b) is the same signal
that is shown in Figure 4c. For the water detection and localization, signals shown in (e,i,j,m–o) are
disregarded since they are almost identical to signals shown in (b–d,g,h,l), respectively.

To quantify the influence of the water drop on the guided wave response, the sum of
squares of the difference signal sd was obtained. This sum corresponds to the signal energy
of the difference signal Ed and was calculated according to the following equation:

Ed =
N

∑
n=1

sd(n)2, (2)

where n is the sample index, sd(n) is the difference signal, and N is the number of samples
within the ROI. Ed provides a measure for the change between the measurement signal and
the baseline signal, both in the phase and amplitude, and does not require any additional
knowledge about wave propagation. This approach is known from other measuring
methods such as Lamb wave tomography [23]. The signal energy of the difference signals is
raised if water is present on the flow field and a higher value indicates a stronger influence
of the water. For example, the signal energy Ed of the difference signal shown in Figure 4c
is 7.3 times higher than the mean value of Ed for the six measurements without water.
This shows how the signal energy of the difference signal allowed for the detection of
liquid water on the flow field. This measurement method is based on ultrasonic guided
waves and can be applied to complex geometrical structures such as the bipolar plate in
the experiments.

The signal energy of the difference signal depends on the position of the water drop
relative to the signal paths and the geometry of the flow field. This can be shown by
associating the positions of the water drops, which were obtained via image analysis, with
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the signal energy of the difference signal. In Figure 6, all measurements were superpo-
sitioned in one image for each signal path to show this effect. The relative values of Ed
are color-coded to show which drop positions had a high influence on the guided wave
response for each signal path. It can be seen that the drops that were positioned close to the
transmitter or receiver or in the proximity of the signal path between the two caused larger
changes in the guided wave response resulting in a larger signal energy of the difference
signal compared to drops that were positioned elsewhere. This was expected, since every
reflection of the guided waves, e.g., at the edges of the bipolar plate, involves attenuation.
Therefore, waves that travel on a direct path from the transmitter to the receiver can be
expected to influence the received signals more than waves that are reflected multiple times.
However, due to the complex geometry of the flow field, the path from the transmitter to
the receiver that involves the least amount of attenuation does not necessarily correspond
to a linear connection between the transmitter and the receiver. As an example, in the
first image in Figure 6, the echo signal from PWAS 1 is shown. The image shows that
the us signals were more sensitive toward drops in the upper area of the flow field (near
PWAS 4) compared to some drops in the center of the flow field. We suspect that this effect
was a result of the flow channels acting as local waveguides. Note that the values of Ed
in Figure 6 were calculated for the whole 64.0 µs ROI of the difference signals. Thus, no
time-dependent information from the signal is included.

Figure 6. Change in the signal energy of the difference signal Ed depending on the position of the
drop. The arrows indicate the signal path from the transmitter to the receiver. The colors indicate the
value of Ed relative to the minimum and maximum values for each signal path.

In order to investigate the wave propagation over time, the difference signal was
divided into 20 windows before calculating the signal energy for each window. In Figure 7,
some of the windows are shown for the two signal paths across the flow field. Again, the
effect of the flow field geometry on the guided wave propagation can be observed: for the
horizontal signal path across the flow fields shown in Figure 7a, some drops in the center of
the flow field showed a smaller effect on the signal energy compared to other drops. In the
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case of the vertical signal path, which lies perpendicular to all channels alongside the direct
path between PWAS 4 and 3, this effect was not observed. Drops positioned far away from
the direct signal path, e.g., in the corners of the flow field, showed small relative values
of Ed in the first time windows. In later time windows, a more uniform distribution was
observed and the relative values for Ed were high for all drop positions.

Since the signal energy of the difference signal clearly depends on the position of the
drop in relation to the signal paths and the geometry of the flow field, it can be used to
localize the drops. However, ray tracing models do not sufficiently capture the influence of
the flow field geometry. Therefore, tomographic techniques are not suitable for localization.
Instead, statistical models based on measurement data were investigated.

Figure 7. Change in the signal energy of the difference signal Ed over time. Ed is shown for the
windows of the difference signal. Each window is 3.2 µs long, the timestamps in the figure mark the
beginning of each window. (a) Signal transmitted from PWAS 2 to PWAS 1, (b) signal transmitted
from PWAS 4 to PWAS 3. The colors indicate the value of Ed relative to the minimum and maximum
values for each signal path.

4. Localization of Water Drops
4.1. Model Development and Training

To demonstrate the localization of water drops based on the guided wave responses,
multiple linear regression modeling was applied to estimate the center positions of the
drops. As discussed in the previous section, the signal energy of the filtered difference
signals Ed contains information on the position of the water drops. This signal feature was
therefore chosen as the model input. The linear regression model is given by

x̂ = f (Ed,1, ..., Ed,k) = βx,0 + βx,1Ed,1 + ... + βx,kEd,k = βxE′d, (3)

where x̂ is the predicted value of the x coordinate, E′d = (1, Ed,1, ..., Ed,k) represents the k
model inputs, and βx = (βx,0, ..., βx,k) represents the k + 1 model coefficients to obtain the
x coordinate of the drop. Two models were applied to independently predict the x and
y coordinates of the drop positions on the flow field. The two sets of model coefficients
βx and βy were found via the ordinary least squares method using the training data
Ed = (E′d,1, ..., E′d,j) from the same j measurements. The optimization problem to train the
x coordinates model is given by

βx = arg min
β

‖βEd − x‖2
2, (4)

where x = (x1, ..., xj) are the true x coordinates of the drop positions that were obtained
from the photographs via image analysis. The training of the y coordinate model was
conducted using the true y coordinates y = (y1, ..., yj) from the same dataset. The model
training was conducted using the Python scikit-learn library [47]. The 296 measurements
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with single drops on the flow field were randomly split into training and test datasets
containing 237 and 59 measurements, respectively.

To obtain the model inputs E′d from the raw ultrasound signals, the following signal
preprocessing was applied:

1. Baseline subtraction;
2. Disregarding reversed signal paths because of the high similarity of the signals due

to time-reversal invariance. Only one direction for each signal path was used. This
leaves 10 out of the 16 signals for each measurement;

3. Slicing the signals to ROIs with a length of 64.0 µs, as discussed in Section 3.2 and
shown in Figure 5;

4. Butterworth bandpass filter with lower and upper cutoff frequencies of 3 MHz and
7 MHz, respectively;

5. Windowing of each signal in 250 windows, resulting in a length of 0.256 µs for
each window;

6. Calculating the signal energy of the difference signal Ed for each window of each of
the 10 relevant signal paths.

This signal preprocessing resulted in k = 2500 model inputs for each measurement.
The signal preprocessing applied to obtain the model inputs was identical to that for the
signals shown in Figures 6 and 7, except for the number of windows, which was increased
to 250. The parameters for signal preprocessing were found via fivefold cross-validation of
the ML model using only the training dataset. The root mean square deviation was used as
a measure to choose the suitable parameters for the signal preprocessing:

RMSD =

√√√√1
5

5

∑
i=1

MSDi, (5)

where MSD is the mean squared deviation for the results of the i-th cross-validation
given by

MSDi =
1

Mi

Mi

∑
m=1

((xm − x̂m)
2 + (ym − ŷm)

2), (6)

where Mi is the number of measurements used for the i-th cross-validation. It was found
that using all 16 signal paths (including the reversed signal paths) did not improve the
model. By increasing the number of windows for each signal, the model could be slightly
improved. However, the improvement was only small for the more than 250 windows,
as shown in Figure 8. It seems that the period of 0.25 µs (for the 4 MHz excitation of the
PWAS) is a good indication to choose the optimal length of the time windows, which was
0.256 µs in the case of the 250 windows.

Figure 8. Results of the cross-validation for different numbers of time windows.
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4.2. Characterization of Localization Properties

The two regression models for the x and y coordinates were applied to estimate the
drop positions for the test dataset based on the guided wave responses. One of the measure-
ments was disregarded as an outlier since the estimated drop position was outside of the
flow field. This left 58 measurements for the characterization of the localization properties.
Figure 9a shows the distributions of the deviations of the estimated drop positions from the
true positions for the x and y coordinates. The coefficient of determination R2 was 0.92. R2

was calculated from the residual sum of squares SSres and the total sum of squares SStot by

R2 = 1− SSres

SStot
. (7)

R2 is therefore a measure of the global fit of the model. A value of R2 = 1 would indicate
that the fitted model explained the variability in the dataset, and in this case, there would be
no deviation between the estimated and the true positions of the drops. In the experiment,
the estimated positions of the drops deviated from the true positions with an empirical
standard deviation of 4.2 mm and 3.3 mm in the x and y directions, respectively. In
Figure 9b, it can be seen that these values correspond roughly to half the length of a water
drop. Since only the center position of the drop was used to train the regression model,
no information on the orientation of the aspherical, elongated drops inside the channels
was considered. However, the interaction between the drop and the guided waves in the
bipolar plate occurred over the whole contact area of the drop including both ends of the
elongated drop. Therefore, it could be expected that the measurement uncertainty would
at least be in the range of the drop length. Considering this effect, as well as the use of a
simple linear regression model to estimate the drop positions, it can be assumed that the
accuracy of the localization can be further improved if necessary. This could be achieved
by including more information such as the contact area shape of the drop to train more
advanced ML models.

The number of PWAS also has to be considered with regard to the accuracy of the
localization. A low number of PWAS is beneficial for integration in a fuel cell, whereas
using more PWAS might improve the accuracy of the localization. In the experiments, a
sparse sensor array of four PWAS with resonance frequencies of 4 MHz was used to detect
drops within a 7 × 7 cm area. In comparison, Zhao and Rose used 16 PWAS with resonance
frequencies of 350 kHz to detect ice deposits in a circular area with a diameter of 20 cm [28].
In their study, Lamb wave tomographic imaging was applied to detect the ice deposits on a
flat plate. With this imaging technique, information on the size and shape of the deposit
can be gained in addition to the position. However, tomographic approaches are not well
suited for the complex geometry of the bipolar plate investigated in this study, as discussed
in Section 3.2.

Figure 9. (a) Histograms showing the frequency distribution of the differences δx and δy between the
estimated and true x and y coordinates for the test cases. (b) Flow field with the true (white square)
and predicted (black circle) positions of the water drop for one measurement. The error bars mark
double the empirical standard deviation in all images.
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The environmental and operational conditions (EOCs) during the measurements can
influence the guided wave propagation through the bipolar plate. Thus, the difference
signal, and ultimately the estimated position of the water drop, depends on the EOCs
during the measurements. Ideally, all measurements for the test and training data, as well
as the measurement of the baseline signal, should be conducted under the same EOCs.
Even though the experiments were conducted in a temperature-controlled lab environment,
this criterion was not matched perfectly and small changes in the EOCs still occurred. This
can be seen by comparing the seven measurements without any water. The guided wave
responses in these measurements were similar but not identical. To investigate the effect
of these changes on the localization, each of the seven measurements was used as the
baseline measurement to calculate the difference signals. The same signal preprocessing
and model training described in Section 4.1 were used for each of the seven baseline signals.
The results showed only small effects of the different baseline signals on the localization.
In all seven cases, the coefficient of determination R2 was 0.92. The estimated x and y
coordinates varied with an average standard deviation of 0.9 mm and 0.7 mm (averaged
over all measurements). This is much smaller than the standard deviations of δx and δy
shown in Figure 9a and demonstrates the repeatability of the measurement method.

5. Conclusions

In this study, a new measurement method for the localization of liquid water in
PEMFCs is proposed. The measurement method is based on ultrasonic guided wave
propagation within the bipolar plates of the fuel cell. It is demonstrated in ex situ experi-
ments using a single bipolar plate and a sparse sensor array of four PWAS. By analyzing
the guided wave responses and comparing them to Lamb wave theory, it is shown that
guided wave propagation is very complex due to the complex geometry of the bipolar
plate. Therefore, physical modeling is not a suitable approach to localizing water drops
based on the guided wave responses. Instead, data-driven modeling approaches can be
applied to extract information on the position of the water drop from the guided wave
responses. By applying baseline subtraction, it is shown that the guided wave responses
change when a water drop is present on the bipolar plate, leading to an increase in the
signal energy of the difference signal. Furthermore, it is shown experimentally that the
increase in the signal energy of the difference signal depends on the position of the water
drop during the measurement. We have demonstrated the viability of machine learning
methods by training a simple linear regression model to localize single water drops on the
bipolar plate based on the guided wave responses. The signal energy of the windowed
difference signal was used as the model input. The coefficient of determination for the
regression model is R2 is 0.92. Using the regression model, water drops are located based
on the guided wave responses with an empirical standard deviation of 4.2 mm and 3.3 mm
in the x and y directions, respectively.

The measurement method has a high potential for in situ and in operando measure-
ments in a PEMFC cell stack since the small PWAS can be placed directly on the bipolar
plates. Compared to other imaging techniques used for the investigation of water deposits
in PEMFCs, such as magnetic resonance imaging, X-ray, and neutron imaging [48,49], this
approach requires fewer changes to the cell design, can be applied much more easily, and is
less costly. Such measurement systems could provide important information on water man-
agement in PEMFCs and, therefore, help to increase their durability and performance by
optimizing the design and operation. Further research is needed to adapt this measurement
principle for in situ measurements. Most importantly, the influence of environmental and
operational conditions on the performance of the model has to be evaluated. Temperature
changes within the operating PEMFC might require compensation strategies and additional
data for the model training. Furthermore, different ML approaches could be applied to
localize multiple drops on the bipolar plate and to gain additional information on the size
and shape of the drops from the guided wave responses.
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In conclusion, our results demonstrate that guided wave responses can be used
to localize deposits on geometrically complex structures such as the bipolar plate. In
addition to water localization in PEMFCs, this measurement method could be interesting
for applications such as fouling localization in plate heat exchangers.
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