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Abstract: Optical camera communication (OCC), enabled by light-emitting diodes (LEDs) and
embedded cameras on smartphones, has drawn considerable attention thanks to the pervasive
adoption of LED lighting and mobile devices. However, most existing studies do not consider the
performance bottleneck of Region of Interest (RoI) extraction during decoding, making it challenging
to improve communication capacity further. To this end, we propose a fast grid virtual division
scheme based on pixel grayscale values, which extracts RoI quickly without sacrificing computational
complexity, thereby reducing the decoding delay and improving the communication capacity of
OCC. Essentially, the proposed scheme uses a grid division strategy to divide the received image into
blocks and randomly sample several pixels within different blocks to quickly locate the RoI with high
grayscale values in the original image. By implementing the lightweight RoI extraction algorithm,
we experimentally verify its effectiveness in reducing decoding latency, demonstrating its superior
performance in terms of communication capacity. The experimental results clearly show that the
decoding delay of the proposed scheme is 70% lower than that provided by the Gaussian blur scheme
for the iPhone receiver at a transmission frequency of 5 kHz.

Keywords: optical camera communication (OCC); visible light communication (VLC); region of
interest (RoI); multi-pixel search (MPS); grid virtual division (GVD)

1. Introduction

As the demand for ubiquitous connectivity and high capacity increases [1], traditional
radio frequency (RF) wireless communications technologies are plagued by spectrum
deficiency and high energy-consumption issues. As an alternative, visible light communi-
cation (VLC) opens up a new frontier for sixth-generation (6G) communication thanks to
its superior large, cost-free optical spectrum and energy efficiency [2,3]. Along with this,
the widespread adoption of LED lighting infrastructure and camera-equipped smart devices
further motivates the usage of VLC. Particularly, optical camera communication (OCC),
as a practical VLC technology that can reuse high-efficiency LEDs and camera-equipped
smartphones for data communication, has attracted extensive attention from academic
and industrial communities [4–7]. Compared with traditional RF wireless communication
technologies, OCC has the advantages of non-licensed channels, no electromagnetic in-
terference radiation and low power consumption [8–10], which can be used in the fields
of indoor wireless communication [11,12], indoor precise positioning [13,14], underwater
environments [15] and intelligent transportation [16,17].

Optical camera communication systems built on commercial off-the-shelf (COTS)
equipment typically employ LED lighting infrastructure as transmitters and low-cost cam-
eras as receivers. However, limited by the inherent conditions of low frame rate (typically
limited to 30/60 frames per second (fps)) and the low sampling rate of ordinary cameras,
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the early works of OCC can only reach a data rate of several bytes per second [18,19].
To overcome this limitation, Prof. Haas’s team [4] proposed using the rolling shutter ef-
fect of complementary metal oxide semiconductor (CMOS) cameras to sample ON–OFF
Keying (OOK) modulation signals, which can significantly increase the communication
data rate to the kbps level [20–22]. During rolling shutter operation, instead of exposing
the entire image frame at once, the camera conducts exposures in a column-by-column (or
row-by-row) manner, forming bright or dark stripes in the received image illustrating the
“ON” or “OFF” status of the LED transmitters [20,23]. In general, the camera first searches
for the region of bright and dark stripes concentration from the received image; that is,
the Region of Interest (RoI), and then extracts a single row (column) pixel from the RoI
to form a grayscale vector for demodulation and decoding of optical signals. However,
the existing OCC systems still have problems such as small communication capacity, which
need to be resolved.

Aiming at addressing the problem of the small communication capacity of OCC,
several methods have been proposed in prior works. T.H. Do and H. Lee et al. [24,25]
systematically analyzed and revealed the optical communication reception capability of
ordinary cameras from the theoretical and experimental levels, and focused on analyzing
system communication capabilities using Frequency Shift Keying (FSK) modulation. P.
Luo et al. [26] of Huawei proposed a series of undersampling modulation schemes, such as
Undersampling Phase Shift ON–OFF Keying Modulation (UPSOOKM [27]) , Undersam-
pling Pulse Amplitude Modulation (UPAM [28]), to realize a flicker-free OCC system with
higher spectral efficiency. However, due to the low frame rate of ordinary cameras and
the low response frequency of ordinary LED luminaires, the rate of existing OCC systems
based on low-order modulation is still meager. To this end, the researchers tried to improve
the communication capacity of the OCC system by designing new modulation methods
that support higher orders or using the multi-lamp collaborative transmission.

Since the camera can usually distinguish the color of the light, P. Hu et al. [29] used RGB
LED lamps to realize high-order Color Shift Keying (CSK) modulation, which improved the
communication capacity of OCC. In order to support the compatibility of communication
and lighting, Y. Yang et al. [6] proposed a high-order modulation technology based on a
combination switch. The technology uses the characteristics of ordinary LED lamps with
multiple lamp beads to control the light beads on the LED lamp by grouping, forming a
high-order modulation signal, thereby improving the communication ability. In addition,
using the multi-lamp collaborative transmission is also an effective way to improve the
performance of OCC systems. Y. Yang et al. [20,21] improved the communication capacity
and reliability of the camera simultaneously through the coordinated transmission of
multiple lamps by considering the characteristics of indoor multi-lamp lighting. The
above work has improved the communication capacity and reliability of OCC to a certain
extent. However, the above research has not considered the performance bottleneck of RoI
extraction during the decoding process, which makes it difficult to further improve the
communication capacity.

The traditional RoI extraction method first performs a grayscale conversion operation
on the entire image received by the camera, followed by Gaussian blur and threshold
discrimination to obtain the outline of the RoI. The decoder then extracts a row or column
of pixels from within the contour to form a grayscale vector for subsequent demodulation
and decoding to enable data communication. However, the realization of the Gaussian
blur step needs to be filtered by building the corresponding weight matrix, which makes
the entire Gaussian blur process very time consuming [30]. In addition, along with the
rise of deep learning, some works are being carried out using the YOLO [31] algorithm to
train models to extract the parts of interest through supervised training for RoI extraction
in object recognition. There are also transfg [32] models based on the transformer that
integrate all of the transformer’s raw attention weights into the attention graph to guide
the network to efficiently and accurately select differentiated blocks of images and compute
the relationships between them. However, a common problem with all these deep learning
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algorithms is that they take a long time to load the model and recognize the object, but RoI
extraction in OCC does not require so much fine detection to figure out the outline of an
LED transmitter. To cope with these issues, we propose a lightweight grid virtual division
scheme based on pixel grayscale values, which extracts RoI quickly while maintaining low
computational complexity. In particular, the proposed novel scheme randomly samples a
number of pixels within the received image instead of the traversal of each pixel, thereby
greatly improving the extraction efficiency. Extensive experiments on iOS smartphones
strongly confirm the effectiveness of the proposed scheme. The decoding delay by the
iPhone 8 Plus is 70% lower than those provided by the baseline under a transmission
frequency of 5 kHz.

2. Background and Motivation

We set up the background of RoI extraction in this section. First, we briefly introduce
the rolling shutter effect of the CMOS camera embedded in the intelligent device. Then,
provide a detailed explanation of why the Gaussian blur steps used in the traditional RoI
extraction process are time consuming.

2.1. Rolling Shutter

In rolling shutter mode, the photodiode does not collect all the light simultaneously,
but instead scans the pixels sequentially using the CMOS image sensor (IS). Images are
generated by row by row (or column by column) scanning and exposing one row (or
column) of pixels at a time, with each row (or column) pixel in the sensor array having a
different time to start and end the exposure. Thus, the delay in the exposure time allows us
to record the relative structure of the target based on time. In this mode, different pixels
obtained from the rolling shutter image sensor have different light signal intensities, which
means that there are multiple bits of information. Precisely, the receiver can capture multiple
switching states of the illumination source in the image. When the LED luminaire is “ON”,
a bright stripe is generated in the image, representing the binary data “1”, and when the
LED luminaire is “OFF”, a dark stripe is generated in the image, representing the binary
data “0”, as shown in Figure 1. The faster the LED blinks, the greater the number of stripes
and the narrower the width, so multiple bits of information can be encoded with this
pattern [24,33].

Figure 1. Schematic of the rolling shutter effect.

2.2. Gaussian Blur

As mentioned previously, the rolling shutter mechanism adopts a sequential exposure
method, displaying the “ON” and “OFF” status of the illumination source as stripes in the
image. Only these stripes carry valid data information sent by the transmitter. Therefore,
the extraction of the striped area (RoI) is a core factor affecting the performance of OCC.
While one can quickly identify RoIs in images with the naked eye, automatically extracting
them via a smartphone is by no means trivial due to the spatial distribution of transmitters.
Existing work [30,34] typically uses computer vision (CV) technology to extract RoI, where
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Open Source Computer Vision (OpenCV) algorithms are integrated into demodulator Apps
for smartphones.

As illustrated in Figure 2, the image frame received by the CMOS camera is first
grayscaled. Subsequently, Gaussian blur and image binarization steps are used to obtain the
RoI’s outline further. After the RoI outline in the receiving image is determined, the receiver
decoder samples a row or column of pixel grayscale values from the RoI for subsequent
demodulation and decoding to enable data communication. However, the realization of
Gaussian blur requires filtering by constructing the corresponding weight matrix. The
normal distribution is a significant weight distribution pattern, with larger values closer
to the center of the bell curve and smaller values moving closer to the center of the bell
curve. When calculating the average, we only need to take the “center point” as the origin,
assigning different weights to each location according to the distance from the center pixel.
Since the images are all two-dimensional, the density function of their two-dimensional
normal distribution (also known as the Gaussian function) can be expressed as

G(x, y) =
1

2πσ2 e−(x2+y2)/2σ2
, (1)

where x and y represent the horizontal ordinate distance from the point to be calculated
to the center of the convolution kernel, respectively. σ represents the Gaussian function
standard deviation, the influence of other pixels in the neighborhood on the center point of
the convolution kernel.

Figure 2. RoI extraction steps based on computer vision technology: (a) Original Image. (b) Gaussian
Blur. (c) Image Binarization. (d) Contour Recognition and Pixel Sampling.

According to the Gaussian function, the weight value of each pixel in the image
received by the surveillance camera is calculated, and the weight matrix is normalized.
For each pixel of the original communication image, the product of its neighborhood pixels
and the corresponding elements of the weight matrix are calculated and then summed to
obtain the Gaussian blur value of the current center pixel. The weight matrix is then shifted
to the right to calculate the Gaussian blur value for each point. Obviously, the contour
extraction technique in OpenCV needs to traverse each pixel in the received image, resulting
in high computational complexity and time consumption during OCC decoding. However,
most indoor lighting currently employs round, square or rectangular LED luminaires. It
is relatively simple to extract the contours of these LED luminaires compared with the
complex contour extraction in the field of CV. Therefore, we only need to iterate through
part of the pixels rather than all of them for quick positioning, which will effectively
diminish the decoding delay of the OCC receiver and strengthen the communication
capacity of the OCC.

3. High-Speed RoI Extraction through Grid Virtual Division

In this section, we explain the overall design of the grid virtual division scheme based
on the OCC system. We start with a brief overview of the OCC system workflow, and then
we discuss its individual components in detail. Finally, we highlight the detailed steps of
the grid virtual division scheme in the OCC receiver.
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3.1. System Overview

As illustrated in Figure 3, the block diagram delineates the overall OCC architecture,
which is partitioned into two main parts: a transmitter and a receiver. The transmitter
commonly adapts high-efficiency white light LED luminaires to emit modulated light
signals, and the circuit structure is simple and only uses ordinary transistors as drives. The
receiver uses a variety of mobile devices with embedded CMOS cameras (such as tablets,
laptops, and mobile phones) as its front end to receive the light signals emitted by the white
LED. To cope with the issues in Sections 1 and 2, we equip the receiver with the proposed
scheme, which quickly identifies RoIs without sacrificing computational complexity and
bit error rate (BER). The following subsections will be elaborated on the OCC transmitter,
OCC receiver and the specific implementation of the proposed scheme.

Figure 3. The schematic block diagram of an OCC system.

3.2. OCC Transmitter

The light sources used in daily life include halogen lamps, incandescent light bulbs,
fluorescent lamps and LEDs. Only LEDs are perfect light sources for optical camera
communication due to their fast rate of ON–OFF switching. Therefore, we generally use
white light LED luminaires as the transmitter device of OCC. The workflow diagram of the
OCC transmitter is shown in the upper part of Figure 3. It is mainly composed of five parts:
input information, encoding, a modulation circuit, an LED driver and LED luminaires.
More specifically, the input information is first divided into blocks, and the block sequence
number (BSN) is added before each block. Then, the corresponding encoding techniques
are applied to maintain DC balance so as to avoid visible flicker. Finally, the encoded data
are mapped to modulation symbols using a modulation technique, and the drive circuit
controls the LED luminaires to emit the modulated light.

3.3. OCC Receiver

As illustrated in the lower part of Figure 3, the OCC receiver consists of six parts:
CMOS camera, frame sampling, RoI extraction, pixel sampling, demodulator/decoding and
output information. More specifically, the CMOS camera-equipped smartphone first uses
the rolling shutter effect to capture images of the modulated light sources, forming bright
and dark stripes in the received frame. The received frames then go through the Gaussian
blur and image binarization in computer vision techniques to identify the contours of the
ROI. Subsequently, the grayscale values of an intermediate row or column are sampled
from the recognized RoIs to form a grayscale sequence. This grayscale sequence can be
expressed as the following vector:

~g =
[
gi1 gi2 ... gi(n−1) gin

]
, (2)
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where gij denotes the grayscale value of the ith row and jth column pixel. Finally, the grayscale
information obtained after sampling is converted into logical data by setting thresholds to
distinguish different grayscale value levels of the transmission signal.

3.4. Grid Virtual Division Scheme

RoI extraction is the core factor affecting communication performance, but the existing
RoI extraction technique is computationally complex and time consuming. Taking these
issues into account, we suggested a grid virtual division scheme that improves the efficiency
of RoI extraction. Since the light emitted by the transmitter is brighter, the area where the
RoI projected by the transmitter in the received image has a higher grayscale value of the
pixels than the area where the non-RoI is located. Suppose a pixel with a high grayscale
value is retrieved in a certain area, and there are still pixels with a high grayscale value in
the positive and negative ten pixels on both sides of the point. In that case, it proves that the
area is an RoI area with adjacent symbols. Therefore, the proposed scheme considers using
the grayscale values of the pixels in the received image to quickly locate these RoIs. In this
section, we employ three shapes of LED luminaire—round, square, and rectangular—as
transmitters. The RoI projected by the transmitter carries desired information in a frame,
as shown in Figure 4. In more detail, the proposed scheme can be divided into the following
four steps, and the flow chart is shown in Figure 5.

(a) (b)

(c) (d)

Figure 4. Region of interest projected by transmitters of different shapes in a frame: (a) Round LED
luminaires. (b) Square LED luminaires. (c) Rectangular LED luminaires. (d) LED luminaires in a
variety of shapes.
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Figure 5. Flow chart of the proposed algorithm.

Step 1—Image Chunking: When the CMOS camera receives a whole image containing
optical communication information, the proposed scheme first establishes a virtual grid of
the original image, as shown in the virtual grid composed of orange dotted lines in Figure 4.
Generally, the partition block is divided into n×m blocks according to the resolution of
the received image. In this section, we establish a grid with the partition size of 6× 6 as an
example, as shown in Figure 4. It is worth noting that this step only divides the received
image virtually into 6× 6 parts, without traversing the entire image to divide it into 6× 6
subgraphs. This is to make the sampling area smaller while maintaining computational
complexity so that blocks with higher grayscale values are found.

Step 2—Pixels Sampling: After the virtual grid is established, the decoder randomly
samples the grayscale values of several pixels within the block from the uniform distribu-
tion. Since the area after grid division is small, if the RoI is located in that area, it is likely
to produce a larger area of coverage within the block. Therefore, we sample the pixels in
the left, middle and right areas of the middle row in each block to increase the hit rate of
RoI detection in the block. To be specific, we first choose to randomly sample a pixel in the
left area. If the pixel meets the requirements, we will directly save the block number and
continue to process the next block. If the pixel does not meet the criteria, we will continue
to perform the same operation in the following area until all three areas are completed. As
mentioned before, the grayscale value in the area where the optical signal is concentrated is
higher than that in the surrounding area. To better distinguish which sampled pixels are
eligible, we set a grayscale threshold empirically so as to maximize recognition accuracy.
For comparison with this threshold, in this step, we first store the sampled grayscale values
in the collection, which are represented as follows:

R = {gi
m,n | 0 < i ≤ k, 1 ≤ m ≤ H, 1 ≤ n ≤W}, (3)

where R represents a collection of grayscale values for randomly sampled pixels within
different grids, gi

m,n represents the grayscale value of the pixels in column n of row m in
the ith block, k represents the number of blocks divided into the original image, H ×W
represents the resolution size of the original image. Afterwards, we compare the grayscale
values sampled in the collection to the threshold in turn, recording the number of blocks of
pixels with higher grayscale values.

Benefiting from the advantages of the previous step, when sampling pixels in a certain
block, it is only necessary to divide the rows and columns of the original image by the
partition sizes n and m to locate this area quickly. To be precise, the pixels sampling step
calls the SEARCHPIXEL and SAMPLE functions in Algorithm 1 after the virtual grid has
been established in the frame. SEARCHPIXEL function filters the randomly sampled pixels
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in the SAMPLE function and stores the block number that meets the requirements in the
results container. As mentioned before, we sample the pixels in the left, center and right
areas of each block’s middle row. As illustrated in Figure 4, the cyan-marked numbers in the
frame indicate the block number that satisfies the condition after calling the SEARCHPIXEL
function and the SAMPLE function in Algorithm 1.

Algorithm 1 Grid virtual division algorithm

Input: Image, n, m, threshold
Output: Vectorrect

1: function SEARCHPIXEL(Image, n, m)
2: for blocknum = 1→ n ∗m do
3: pixelle f t ← Sample(Image, blocknum, le f t)
4: pixelcenter ← Sample(Image, blocknum, center)
5: pixelright ← Sample(Image, blocknum, right)
6: if pixelle f t or pixelcenter or pixelright > threshold then
7: Store blocknum in container resultvec
8: end if
9: blocknum ++

10: end for
11: return resultvec
12: end function
13:
14: function IMAGECOMPOSE(resultvec, Image, n, m)
15: n← resultvec.size
16: for i = 0→ n do
17: if At least one of the upper, lower, left and right blocks of the resultvec[i] block is

stored in container resultvec then
18: Concatenate adjacent blocks
19: Calculate the rectx, recty, rectwidth, rectheight of the new combined block
20: Store coordinates in container Vectorrect
21: i ++
22: else
23: Calculate the rectx, recty, rectwidth, rectheight of the original block
24: Store coordinates in container Vectorrect
25: i ++
26: end if
27: end for
28: return Vectorrect
29: end function
30:
31: function SAMPLE(Image, blocknum, location)
32: h← Image.rows/n
33: w← Image.cols/m
34: if location == le f t then
35: result ← random.sample(range((blocknum%m− 1) ∗ w, (blocknum%m− 1) ∗ w +

w/3), 1)
36: else if location == center then
37: result ← random.sample(range((blocknum%m − 1) ∗ w + w/3, (blocknum%m −

1) ∗ w + 2w/3), 1)
38: else
39: result ← random.sample(range((blocknum%m− 1) ∗ w + 2w/3, (blocknum%m−

1) ∗ w + w), 1)
40: end if
41: return result
42: end function
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Step 3—Multi-block Stitching: After obtaining the block number at the area where
the optical signal is easily concentrated, this step first needs to determine the position
relationship between the block number reserved in the previous step. If a complete ROI is
segmented, the divided sub-RoIs must be adjacent. Therefore, it is possible to determine
whether a block belongs to the following four situations according to this criterion:

• There are only upper and lower adjacent blocks;
• There are only left and right adjacent blocks;
• There are both upper and lower adjacent blocks and left and right adjacent blocks;
• There are neither upper and lower adjacent blocks nor left and right adjacent blocks.

More specifically, if the result of the current block number, plus or minus the number
of columns, exists in the container, it is treated as the first case, because the upper and
lower adjacent blocks are in the same column as the current block. For example, the result
of the block number labeled “11” (current block number) plus “6” (number of columns) in
Figure 4d exists in the container, so the block number “17” is the lower adjacent block of
“11”. Therefore, this step then entails calling the IMAGECOMPOSE function in Algorithm 1
to store the coordinate orientation of the block merged by “11” and “17”. If there are
subsequent consecutive block numbers for the current block number in the container,
it is considered the second case. For example, the block marked “26” in Figure 4c has
contiguous right adjacent blocks of “27”, “28”, and “29”, so it is necessary to call the
IMAGECOMPOSE function in Algorithm 1 to store the coordinates of its constituent blocks.
If all the above operation results are present, it is considered the third case. For example,
the block marked “4” in Figure 4b has both a right adjacent block “5” and a lower adjacent
block “10”. At the same time, its right adjacent block exists above block “11”, and its
lower adjacent block exists on the left side of block “11”. Thus, this step needs to use the
IMAGECOMPOSE function in Algorithm 1 to record the coordinate orientation of the block
synthesized by these four blocks after determining the block situation. Finally, if none of
the above results is present, it is considered the fourth case, in which no stitching operation
is required. It is worth mentioning that parts of the RoI may be missed during the image
combination process. For example, block number 22 in Figure 4b is not detected because
the area occupied by the stripes is too small. To deal with this situation, after obtaining the
coordinate orientation of the merged block, we need to extend a few pixels on both sides of
the block before performing subsequent operations.

Step 4—Demodulation and Decoding: Once the coordinates are obtained, this step
involves converting the grayscale to bits and recovering the transmitted data. To be
more specific, the demodulator first samples a single row or column of pixels from the
acquired area to form a grayscale sequence for demodulation. In order to identify the
start of a transmission session, the demodulator first uses a coarse-grained threshold to
distinguish the preamble, which is defined as several consecutive bright symbols in the
packet. Subsequently, fine-grained thresholds are fitted using the grayscale information of
the identified preambles to further convert the grayscale information between two adjacent
preambles into logical data. Finally, the receiver recovers the sent messages and completes
the decoding process of a whole frame.

In a nutshell, the above four-step implementation enables the OCC system to locate
RoIs with high grayscale values without traversing all pixels. Since it is necessary to traverse
the container storing the block numbers of high grayscale values, the time complexity of
the algorithm can be calculated as O(n) according to the following equation:

T[n] = O( f (n)), (4)

where T[n] denotes the execution time of the code, n denotes the size of the data and f (n)
denotes the sum of the execution times of each line of code. Furthermore, the algorithm’s
memory space required to be opened up does not vary with n, so the space complexity is
O(1). From a subjective point of view, this scheme can effectively alleviate the decoding
delay of the OCC receiver and promote the communication capacity of the OCC. This
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satisfies the functional assumption of Section 2. In order to draw the convinced conclusions,
extensive experiments are also conducted in the subsequent sections to verify the robustness
of the proposed scheme.

4. Results and Analysis

In this section, we first introduce hardware and software implements of the proposed
OCC system. We then report the experimental results of the proposed OCC system with
the grid virtual division scheme. To verify the effectiveness of the proposed scheme, we
conclude by seriously discussing various metrics and providing some insights into further
improvements of the performance of OCC.

4.1. Experiment Setup

In order to evaluate the performance of the proposed OCC system with the grid virtual
division scheme, we build four prototype systems and demonstrate its experimental setup,
as shown in Figure 6. At the transmitter side, we use two types of LED luminaires with
different sizes and shapes (round LEDs with diameters of 0.13 m and 0.3 m, square LEDs
with a side length of 0.14 m × 0.14 m and 0.25 m × 0.25 m) as transmitters in our proposed
system. Specifically, we build the LED driver with commercial off-the-shelf components,
which converts alternating current (AC) into direct current (DC) for further modulation via
a low-cost MOSFET of SI2310A to drive the selected LED luminaires. An ARM Cortex-M4
GD32F330G8U6 microcontroller controls the MOSFET to generate modulation symbols,
as shown in Figure 6a. The modulation method utilizes the ON–OFF Keying (OOK),
thanks to its simplicity, without losing its generality. In addition, in order to make the data
transmission more reliable, the original data are split into “packets” for batch transmission.
At the receiver side, we take the CMOS camera of the iPhone 8 plus with 12-megapixels
as the receiver and configure the smartphone camera to work in the preview mode with a
frame rate of 30 fps. The exposure time of the camera is set to 1/8000 s, and the sensitivity
(ISO) of the camera is set to 350. The detailed parameters are shown in Table 1. Last but not
least, we demodulate and decode the optical communication signal through the built-in
iOS application of the iPhone 8 Plus (debugged with Xcode 12.4) to complete the data
communication between the OCC transmitter and the OCC receiver.

Table 1. Experiment parameters.

Parameter Value

Round transmitter No. 1 0.13 m
Round transmitter No. 2 0.3 m
Square transmitter No. 1 0.14 m × 0.14 m
Square transmitter No. 2 0.25 m × 0.25 m

Microcontroller ARM Cortex-M4 GD32F330G8U6
Modulation On-Off Keying

Receiver iPhone 8 Plus
Frame rate 30 fps

Exposure times 1/8000 s
ISO 350

Screen resolution 1920× 1080
Pixel dual 12-megapixel



Sensors 2022, 22, 8375 11 of 17

+

-

R1

R2

R4

R3

R7
ADC

VCC C1

C2

R5
VCC

R6

+

-

VCC

Rs

Rc

Rs

Rc

MCU
Tx

AC-DC

Converter

VLED

AC

(a) (b)

(c) (d)

Figure 6. The experiment setup of the proposed OCC system. (a) Modulation circuit diagram for
modulation circuitry. (b) LED transmitters in different shapes and sizes. (c) LED driver controller.
(d) Experimental scenario for the proposed OCC system.

4.2. Grid Virtual Division Scheme Performance

Based on the prototype of the experimental system already deployed in Figure 6, this
section first designs the comparison experiment between the traditional RoI extraction (as
the benchmark) and the proposed schemes. In practical application scenarios, the effect of
transmission frequency, LED shape or quantity on ROI extraction needs to be considered,
so we set these three metrics to quantify the experimental results. We finally report the
experimental results provided by the baseline and grid virtual division schemes under
variable transmission frequency, variable LED shape and size and variable LED number,
respectively. It is worth noting that more than 10,000 bits are recorded during each test to
count the bit error rate (BER) of the proposed scheme at different data rates. Furthermore,
we have calculated the processing time of machine-learning-based models (such as YOLO
and Transformer). As the seventh-generation models in the YOLO series are more flexible
and have faster processing times, we used the latest version of YOLO7 for testing and
removed the loading times of the model to compare with the proposed method. However,
YOLO7 still has a processing time of 12 ms after removing the loading time of the model,
which is much longer than the selected baseline of Gaussian Blur, so we omit to report its
results for following tests.

4.2.1. Impact of Varying Transmission Frequencies

Since extraction time is a core indicator used to measure the efficiency of RoI extraction,
in this subsection, we first explore the performance of the proposed scheme in terms of
processing time under varying transmission frequencies. Specifically, the processing time
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is the elapsed time from when the receiver captures an image to when the RoI extraction is
completed. In addition, we also examine the performance of the traditional scheme and the
proposed scheme in terms of BER under varying transmission frequencies. We present the
experimental results of each group and analyze them in the following sections.

We fix the receiver at a distance of 80 cm away from the No.1 transmitter (round LED
with a diameter of 0.13 m) and compare the processing time of the proposed method with
the baseline method under three transmission frequencies. We then represent the results
obtained by the iPhone 8 Plus in Figure 7. Intuitively, the different frequencies have little ef-
fect on the extraction time of the RoI. However, our grid virtual division scheme is superior
to the baseline at the same transmission frequency thanks to its advantage of not having to
traverse all pixels. It is evident from the figure that the grid virtual division scheme sub-
stantially outperforms the baseline with its median times at 0.33 ms, 0.395 ms, and 0.335 ms
under transmission frequencies of 4 kbps, 5 kbps, and 6 kbps, as the corresponding median
times of the baseline are one order higher at 1.71 ms, 1.28 ms and 2.35 ms, respectively. This
comparison evidently confirms the effectiveness of the proposed innovative scheme, which
can extract RoI quickly while maintaining low computational complexity.

Figure 7. RoI extraction performance under variable transmission frequencies.

In addition, we also report the BER results obtained by iPhone 8 Plus under three
different transmission frequencies, as shown in Figure 8. It can be seen that the BER of
baseline and the proposed scheme experience a substantial increase to 0.72% and 0.81%
when the transmission frequency reaches 6 kbps. This phenomenon can be explained by the
fact that the strip width in the frame is shorter and hence lower symbol distance at higher
transmission frequencies. Nonetheless, the grid virtual division scheme can achieve a
reasonable BER below the FEC threshold of 0.38% at a maximum of 5 kbps while extracting
RoIs quickly, which strongly confirms the feasibility and effectiveness of the proposed
scheme. Additionally, a transmission frequency of 5 kbps is usually sufficient to support
most OCC applications.

Figure 8. BER with variable transmission frequency.
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4.2.2. Impact of Different LED Shapes and Sizes

As a practical communication, the various shapes and sizes of LEDs supported by
OCC can have an impact on the efficiency of RoI extraction. Therefore, we evaluate the
performance of the traditional and the proposed schemes in terms of processing time and
BER based on LEDs of different shapes and sizes in this subsection. More specifically, we
configure the transmission frequency at 5 kbps and fix the receiver at a distance of 80 cm
away from the transmitter to measure the extraction efficiency of both schemes. As shown
in Figure 6, the transmitters for the four prototypes consist of round LEDs with diameters of
0.13 m (R1) and 0.3 m (R2) and square LEDs with side lengths of 0.14 m (S1) and 0.25 m (S2),
respectively. We present the experimental results obtained by the receiver using box plots
as illustrated in Figure 9. It shows that compared with the baseline, the proposed scheme
has better performance for different LED shapes and sizes. For round LED transmitters,
the median times of 0.23 ms and 0.28 ms obtained by the grid virtual division scheme are
significantly better than the corresponding median times of 1.28 ms and 1.26 ms for the
baseline. For square LED transmitters, the median times of 0.44 ms and 0.41 ms calculated
by the proposed scheme are significantly better than those of 1.99 ms and 0.99 ms for the
baseline. It can be seen that the grid virtual division scheme has significant potential to
improve the efficiency of RoI extraction.

Figure 9. RoI extraction performance under variable LED shapes and sizes.

Similar to the work in Section 4.2.1, we also count the BER results obtained by the
receiver when replacing the transmitter with different shapes and sizes, as shown in
Figure 10. It is evident from the figure that the BER calculated by the proposed scheme is
slightly higher than that calculated by the baseline in the case of R1, R2 and S2. Specifically,
the BER variation of the grid virtual division scheme ranges from 0.2% to 0.38% in the case of
R1, R2 and S2, while the variation in the baseline BER in these four cases ranges from 0.12%
to 0.34%. Nevertheless, the proposed scheme improves the efficiency of RoI extraction
while maintaining a reasonable BER below the FEC threshold of 0.38%. Furthermore, we
notice that the BER of S1 is slightly higher than the other three cases. This may be caused
by the small size of the S1 and the fact that the cloth in front of the lamp absorbs some of
the light intensity. Meanwhile, S2 has a more significant number of light strips in the lamp,
so the BER is lower than that of S1.
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Figure 10. BER with variable LED shape and size.

4.2.3. Impact of Different Numbers of LED

As mentioned earlier, the number of transmitters projected in a frame affects the
extraction efficiency of the RoI to a certain extent. Therefore, in this subsection, we explore
the performance of the traditional and proposed schemes under variable LED numbers.
We still configure the transmission frequency at 5 kbps and fix the receiver 80 cm from
the transmitter to measure the processing time and BER of both schemes. Specifically, we
increase the number of transmitters of the same shape and size from one to four in turn.
The experimental results are presented in Figures 11 and 12 in the form of a box plot and
bar chart, respectively. Intuitively, the number of LEDs affects the extraction time because
the proposed scheme requires the stitching of the adjacent blocks. This phenomenon is
also demonstrated by the median times of the proposed scheme increasing from 0.23 ms
to 0.59 ms with the rise in the number of LEDs, as shown in Figure 11. However, the grid
virtual division scheme still has lower median times than the baseline ranging from 1.02 ms
to 1.51 ms under the same circumstances, which strongly demonstrates the effectiveness of
the proposed scheme.

Figure 11. RoI extraction performance under variable LED number.

As shown in Figure 12, we then calculate the BERs obtained by the receiver when
sequentially changing the number of transmitters from one to four. It is evident from
the figure that the BER increases slightly as the number of transmitters increases. To be
precise, the variation range of the BER at the baseline is 0.16% to 0.28%, while the variation
range of the proposed scheme is 0.20% to 0.32%. Intuitively, if our proposed method
is highly consistent with the regions extracted by the baseline scheme, the BER results
will not fluctuate much. The statistical results are consistent with our expectations and
remain within a reasonable threshold, which are sufficient to demonstrate the feasibility
and effectiveness of the proposed scheme. It also shows that the increase in the number of
transmitters has less of an impact on BER.
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Figure 12. BER with variable LED number.

5. Conclusions

To cope with the issue of the performance bottleneck of RoI extraction during decoding,
in this paper, we present an OCC system based on a fast grid virtual division scheme, which
is purely built on COTS devices to improve OCC performance further. Essentially, the pro-
posed innovation scheme establishes a virtual grid of size n× m on the received image
and then randomly samples several pixels within different grids without traversing each
pixel to locate the regions with high grayscale values quickly. As a result, the lightweight
grid virtual division scheme effectively diminishes the decoding delay and strengthens
the communication capacity of OCC. Furthermore, we have implemented the prototype of
the proposed OCC system to evaluate its performance further. The experimental results
clearly show that our proposed scheme can reduce the decoding delay by 70% compared
to the baseline at a transmission frequency of 5 kHz, which powerfully demonstrates the
effectiveness of the proposed innovation scheme. We believe that applying the simple yet
delicate RoI extraction scheme to the OCC system can significantly reduce the decoding
delay and largely broaden the application scenarios of OCC.
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Abbreviations
The following abbreviations are used in this manuscript:

VLC Visible Light Communication
OCC Optical Camera Communication
LED Light Emitting Diode
RoI Region of Interest
GVD Grid Virtual Division
RF Radio Frequency
6G Six Generation
COTS Commercial Off-the-shelf
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CMOS Complementary Metal Oxide Semiconductor
OOK On-Off Keying
FSK Frequency Shift Keying
UPSOOKM Undersampling Phase Shift ON-OFF Keying Modulation.
UPAM Undersampling Pulse Amplitude Modulation
CSK Color Shift Keying
IS Image Sensor
CV Computer Vision
OPENCV Open Source Computer Vision
BER Bit Error Rate
BSN Block Sequence Number
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
ISO International Organization for Standardization
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