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Abstract: This paper discusses the perception and tracking of individual as well as group targets
as applied to multi-lane public traffic. Target tracking problem is formulated as a two hierarchical
layer problem—on the first layer, a multi-target tracking problem based on multiple detections is
distinguished in the measurement space, and on the second (top) layer, group target tracking with
birth and death as well as merging and splitting of group target tracks as they evolve in a dynamic
scene is represented. This configuration enhances the multi-target tracking performance in situations
including but not limited to target initialization(birth), target occlusion, missed detections, unresolved
measurement, target maneuver, etc. In addition, group tracking exposes complex individual target
interactions to help in situation assessment which is challenging to capture otherwise.

Keywords: multi-target tracking; extended object tracking; group tracking

1. Introduction

Advances in automotive sensing technology and the ever-increasing demand for
environmental perception have stimulated researchers and practitioners alike in the devel-
opment of tracking algorithms that address the accuracy and computational requirements
of autonomous vehicles, while sophisticated tracking algorithms as demonstrated in air-
borne/ground target tracking applications underwent profound treatment following world
war II, the presence of clutter, false alarms, missed detections as well as maneuvering
targets pose challenges in tracking. Perception and tracking in the automotive industry are
no different. In fact, owing to a significant leap in the development of automotive sensors,
such sensors as RADAR and LIDAR can generate multiple detections/returns making
measurement-to-track data associations even more complicated. The improved sensor reso-
lution has revitalized research in the tracking of extended and group targets. In this paper,
we focus on the perception and tracking of individual as well as group targets as applied
to multi-lane public traffic. We formulate the tracking problem as a two hierarchical layer:
at level 1, we distinguish multi-target tracking based on multiple detections represented
in the measurement space. A situation assessment layer at level 2 tracks group targets
with birth and death as well as merging and splitting functionalities as they evolve. This
arrangement enhances the multi-target tracking performance in situations including but
not limited to target initialization (birth), target occlusion, missed detections, unresolved
measurement, target maneuver, etc. In addition, group targets expose complex individual
target interactions to help in a situation assessment study which are otherwise challenging
to capture.

In short, we monitor both the group and individual extended object (EO) tracks from
sensors’ detections mounted on the moving ego vehicle. In addition to group behavior,
which is directly observable from sensor detections, the behavior of individual EO is also
equally important both in the short and long horizon control decisions. For instance, due to
transient occlusions, detections from an EO might be missing over consecutive scan times.
The group state that the target was known to be a part of can be used to complement missing
detections, i.e., the group state essentially plays a role of a virtual measurement to update
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target state predictions of the EO. Furthermore, before an EO (or groups of EO) splits away
from a group that is being tracked, the tendency for such an event (splitting, in this case)
together with the time history of the trajectory before and following the event, can be used to
make informed decisions about the evolving traffic. Some of these decisions could be critical
such as when the splitting EO (a group of EO) ultimately joins the current or planned lane of
the ego vehicle. In general, group tracking can improve individual EO tracking performance
under missing detections, merged detections, and data association uncertainties.

Next, we shall highlight the objective of group tracking and comment on how it fits
into the overall scheme of multi-target tracking. In short, the relevance of group tracking,
especially under EO (multiple detections) scenarios is evident in four main areas:

*  Data Association: The advent of high-resolution automotive sensors resulted in mul-
tiple detections which are distributed over the extent of a target vehicle. This in turn
necessitated the use of algorithms capable of extended object tracking, which is a
departure from conventional approaches to point target tracking that assumes at most
one detection per object vehicle. The data association was simpler: the detection could
be from a target or a nearby non-target or clutter. Under multiple detections, the sheer
amount of data association that needs to be resolved especially under groups of ex-
tended objects poses a computational challenge. With group tracking, we can simplify
the data association problem to mutually exclusive regions of clusters of detections
which are treated as independent group detections. By way of contrast, the complexity
of data association over a cluster of detections is less demanding than solving the same
over all the measurement space.

*  Merged Measurement: Even under EO considerations, cases of unresolved measure-
ment (also called merged measurement) can be a challenging problem in multi-target
tracking problems. A Merged measurement occurs when the sensor returns a single
detection for multiple objects in the scene. This is mainly due to sensor imperfec-
tions and poor resolution for sufficiently distant detections. Generally, modeling
and integrating merged measurements into the tracking scheme, improve tracking
by preventing premature track terminations. However, this comes with an added
computational complexity. The literature under merged measurement tracking cases is
very rare, often ignored under the independent measurement assumption. The earliest
work that models merged measurements and integrates it into the Joint Probabilistic
Data Association (JPDA) algorithm is presented in [1]. In [2], a resolution model is
developed and implemented within the Multiple Hypothesis Tracker (MHT) method.
The standard sensor measurement is generalized to the case of merged measurement
and then implemented into the generalised labelled multi-Bernoulli(GLMB) filter [3].
Instead of explicitly modeling the case of merged measurements, we intend to track the
group targets for which merged measurements are reported until enough resolutions
are obtained to separate them into independent tracks.

*  Missing Detections: The rationale for using the group state as a virtual measurement
to update the target track (with missing detections) which is known to be a member of
a group is discussed above.

*  Track Initialization: To start a new target track, we employ a one-point track initializa-
tion method. Furthermore, any detections which are not associated with a confirmed
track are used to initiate tentative tracks. The target velocities and accelerations are
assumed to be 041, where d € {2,3} is the dimension of the target track. Both state
variables are estimated from filtering recursion which takes a few measurement scans
to settle into a reasonable estimation. We also intend to improve the estimation by
feeding the average velocities and accelerations of groups in the FoV of the ego vehicle
to initialize the states. The suggestion to use group velocities and accelerations so as
to initialize new target track states is mentioned in [4].

Before closing this section, we shall clarify the use of the terms “extended” and
“groups” targets which are often interchangeably used in the literature without distinctions.
From the viewpoint of sensor detections, an extended object tracking problem is closely
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related to group tracking, but there are multiple important differences. Groups have an
internal degree of freedom that affects the shape of the group whereas the extent of EO is
relatively fixed in most circumstances and for the most part of its motion. Moreover, groups
possess unique behaviors of splitting and merging which, generally, are not characteristics
of an EO. It also needs to be clarified that the objective here is not to model inter-group
interactions, but rather to focus on the use of the group behavior in improving individual
EO tracking performance. In that sense, we propose a hierarchical structure with feedback
from the group to individual track layers arranged as shown in Figure 1. The hierarchical
arrangement is first proposed in [5], but with a different objective and chiefly from the
viewpoint of modeling abstractions.
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Figure 1. A double layer tracking scheme. The top layer tracks a set of target vehicles as a group,
while the middle layer handles multi-target tracking as independent agents. Here, dots represent
sensor detections, whereas solid and dotted ellipses respectively represent the extent of individual
and group targets.

2. Related Work

The self-organizing ability of vehicular traffic is the result of intelligent decisions by
autonomous agents and/or human-driven vehicles. These decisions are influenced by the
desire to avoid collision while navigating a structured multi-lane road network (repulsion)
and by the intention to reach a common goal such as driving through an exit (cohesion) [6],
while individual behavioral responses can be modeled and predicated when taken in
isolation; the aggregate dynamics is remarkably complex and often unpredictable. To this
end modeling approximations exist that range from a microscopic viewpoint captured by
a system of ordinary differential equations to a kinetic theory description via mean-field
limit and a macroscopic level via a suitable hydrodynamic approximation, for more details
on this topic please see the discussions in [7]. In particular, the hydrodynamic model that
presupposes the continuity assumption cannot be applied to traffic flow. This is due to the
small number of participants even in the case of traffic jams to justify the analogy with
particle flows in fluid dynamics. Similarly, the kinetic theory is criticized for not taking
into account the fact that a vehicle is not a particle, but rather an intelligent entity linking a
driver and mechanics and hence the driver’s reaction needs to be considered [8].

By far, a theoretically unified and a rigorous framework for group detection, tracking,
and identification is presented by Mahler [5]. Using “finite-set statistics” (FISST), a theoreti-
cally optimal recursive Bayes filter for the multisensor-multigroup problem, which is cast
as a three-level statistical model, is constructed. Since the resulting filtering equations are
computationally daunting even for the simplest of expected tracking problems, the author
proposes computationally tractable approximation strategies by generalizing the concept
of a probability hypothesis density (PHD) filter.

In [4], a dynamical model and Bayesian filtering algorithm are presented for detection
and tracking of group and individual targets. The mathematical model is based on discrete
stochastic differential equations that imitate the behavioral properties of biological groups.
Repulsive forces are introduced to model closely spaced targets and to prevent an unin-
tended collision. The resulting distribution for the dynamical and observation model is seen
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to be complex and highly nonlinear. As a result of which, a Markov chain Monte Carlo
(MCMC) approach is implemented to perform sequential inference. Although the proposed
model seeks to capture target interactions, there are some limitations that could prohibit its
use in tracking groups of extended objects. First, the observability of all of the individuals
within the group is very questionable. Second, the high dimension of the joint target state
that increases sN times as the number of targets (N) increases could be a challenge in real-
time applications. Here, s is the dimension of the state variables. A group tracking scheme,
similar in spirit to [4], that jointly estimates the group structure, as well as the group states
based on evolving networks and Monte Carlo methods, is presented in [9]. The nodes in
the graph correspond to targets within the group and connected components correspond
to groups of targets. Further studies that incorporate group structure into the joint state
estimation scheme include the works in [10,11]. Both [10,11] build on a presupposition that
fixes the maximum number of groups anticipated in the tracking scene.

The work in [12] presents a performance comparison of three cluster tracking tech-
niques. These are the independent Sampling Importance Resampling (SIR) PFs, an extended
object PHD filter, and a Gaussian mixture Markov chain Monte Carlo (MCMC). It is shown
that the MCMC approach exhibits the best tracking accuracy, essentially yielding the least
number of false detections. Further, efficient SMC implementations, both from algorithmic
and hardware implementation view points, are discussed to make SMC methods suitable
for high-dimensional problems and real-time applications. In [13], a filtering algorithm
based on a Markov chain Monte Carlo (MCMC) for tracking multiple clusters of coordi-
nated objects is presented. A dynamic Gaussian mixture model is utilized for representing
the time-varying clustering structure. This involves point process formulations of typical
behavioral moves such as birth and death of clusters as well as merging and splitting.

The measurement model that extends the point-source model to multiple detections of
EO based on Poisson target-measurement model was discussed in [14,15]. The Poisson pro-
cess assumption with a spatially dependent rate parameter allowed several measurements
to originate from the target and the extent to be seen as a spacial probability distribution. The
most common approach in EO and group target tracking considers an augmented state that
jointly estimates the position of group center and its extent via either random hyper-surface
or the random matrix approach. For the detailed treatment of the two approaches, see the
references [16-23]. In general, in the approach based on the random matrices, the extent is
considered to be a random process and hence is normally assigned a corresponding prior
(e.g., Wishart distribution [19-21]) and a transition kernel. In [24], in order to improve the
estimation performance of interacting multiple model (IMM) tracking algorithm for group
targets, two variable structure IMM algorithms are presented within the random matrices
framework. A similar effort that uses the multiple model structure to improve the Gamma
Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter algorithm is
also proposed in [25]. The multiple model structure is built into the estimation of kinematic
state and extension state and is meant to improve the tracking performance during the
maneuvering stage.

3. Objectives and Contributions

Our objective is to improve the tracking performance of individual extended objects
during common public traffic events involving occlusions, track initiation, and merged
measurements. To that end, we propose a hierarchical tracking structure where the lower
layer deals with the multi-detection multi-target track estimation of individual extended
objects while the upper layer executes group tracking to facilitate a feedback mechanism
that provides group state to the lower tracking layer.

The specific objective at the upper layer is not to model inter-group interactions, but
rather to emphasize the use of group behavior as a mechanism to enhance the performance
of individual target tracks via feedback to the lower layer. This approach was first suggested
in [26] and was identified to have the best potential for accurate tracking performance
among the three methods compared in the article.
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Contributions

In order to address the large data association uncertainty in the presence of high-
resolution detections, we use the linear multi-target (LM) Integrated Probabilistic Data
Association (IPDA) approach for handling the data association problem. The joint kinematic
and extent estimation is facilitated through the random matrix approach outlined in [21].
The work that combines the LMIPDA approach as applied to IPDA is not reported so far.
In addition, the hierarchical scheme that combines the LMIDPA and random matrix as a
joint extended target state at each of the two layers with the objective of improving the
tracking performance is not presented elsewhere. The resulting method will be subject to
challenging simulated scenarios and real radar detections obtained from experimental data
to investigate its performance and utility. Elsewhere, the multi-detection Joint integrated
track splitting (MD-JITS) filter is combined with the random matrix extent estimation
technique in [27]. In [28], for the data association problem, a generalized probabilistic data
association filter is applied. Although the data association uncertainties are handled by a
closely related method, both [27,28] are confined to the discussion of individual extended
target tracking problems.

4. Multiple Detection and Extended Object (Group) Tracking

For extended target tracking, the joint density of the kinematic state x; and the ob-
jection extension X are iteratively computed. In Bayesian filtering recursion, the joint
target density p(xi, Xx|Z¥) undergoes a prediction step followed by a measurement update.
The prediction step is based on an assumed kinematic/dynamic evolution model that
approximates the motion of the target.

p(xee1, Xe1|1Z7Y) = pxg, Xi 257 @

which can be interpreted as a marginal density integrated as [19]:

p(xi, X|ZH1) = /dxkfldxkflx
p(xp, Xp|xp_1, X1, ZF 1) x @)
p(xp_1, Xp_1|ZF1)

The transition density p(xg, Xg|xx_1, Xk—1, Z¥~1) can be written as a product of kine-
matic and object evolution sub-parts:

p(xk/ Xk‘xkflr Xk*l/ Zkil) =
p(xk‘Xk/ Xk—1s kalrzk_l)x (3)
p(Xelxx—1, X1, ZF71)

We make use of Markov-type assumptions for its kinematical part, i.e., p(xg| Xk, xx_1,
Xk-1, Zk’l) = p(xk| Xk, x¢_1) and assume that the object’s kinematical properties have no
impact on the temporal evolution of the object extent and previous measurements if Xj_
is given, i.e.:

(X1, X1, 2571 = p(Xil Xea) @

We thus have:

p (e Xl X1, Xe—1, Z571) = p (el X, x5—1) P (Xid| Xoe—1) 5)
We now obtain the prediction formula:
p(xg, Xi| ZF71) = /dxk—ldxk—l

p(xe X, x-1) P(Xe| X 1) ©)
p (k1| Xk—1, Z5 N p(Xea |27
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Further discussion is much simplified if the temporal evolution of the object extension
is assumed to have no effect on the prediction of the kinematic object properties. That is,
we can make the assertion p(x_1|Xx_1, Z5"1) = p(x4_1|Xt, Z51) or, in simple terms, we
intend to replace X;_1 by Xj. We can write, from Bayes theorem, the joint predicted density
as given in Equation (7).

p(xi, Xel Z571) = (x| Xi, 21 p (X 27T @)
The two densities can then be independently integrated out from Equations (8) and (9).

psklXe, 2571 = [ plocl X xe1) x
p(xi—1|Xe, 25 1) dx

®)

POUZE) = [ pOXel X 1)p (X 112X ©)

The update step incorporates new data (Z;) and propagates the sensor prediction to
time t; as follows.
p(x Xkl Z51) = p(x, XilZ5) (10)

Given the measurement likelihood defined as p(Zy, m|xk, Xy) and the predicted den-
sity of Equation (7), we can write the update step as shown in Equation (11).

Zie, My |xp, X, )p(xk,Xk\Zk’l)
X |Zk) = P(Zi, 1| e, X 11
Ptk Xl Z7) I p(Zye, il xie, Xie) p(xe, Xie| 21 ) doxrd X A

4.1. Bayesian Extended Object Tracking

We assume that the sensor detections include a set of position measurements in two
dimensions (x — y plane). However, the kinematic state variable corresponds to velocity
and acceleration in addition to the position states.

4.1.1. Measurement Model

At each measurement scan k, a random number of measurements 7 labeled as y};
wherei € 1,2,...,n; are collected from the sensor [21].

y}; = Hx; + w;( (12)
Let Y, = {yi}*, and Yy := {Yi, n:}¥_,. The noise wi takes the form of a Gaussian

density with zero mean and variance Xj. For the measurement set Y, the likelihood is
computed as in Equation (13).

ny .
p(Yelng, xie, Xie) = [ [NV (g Hxge, Xic) (13)
=T

For the set of measurements Y, define the mean and the measurement spread as in
Equations (14) and (15).

_ 1 .
Vi = o LYk (14)
k=1
—_ nk . .
Y=Y {vi v —v}" (15)
i=1

Equation (13), can be written as:

p(Yelnk, xe, Xi) o< N (s Hxy, Xic/ni) ¥

— 16
W(Yk;nk—l,Xk) ( )
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where
m—d—1

W(X;m,C) = % exp (tr [—1XC1} ) (17)
29 T4(3)IC| 2

with m > d, W(X;m,C) is the Wishart density of a d-dimentional SPD random matrix X
with an expected SPD matrix mC.

4.1.2. Tracking Algorithm

Applying the Chapman-Kolmogorov theorem and the concept of conjugate priors, a
recursive joint state estimation scheme is derived in [19]. The joint probability density is
factored as follows.

p(x Xk Y) = p (il X, YO (X [YF) (18)

Under the assumed probability density functions, this further results in
p(x Xi[ YY) = N (6 2k Prpie ® Xi) TW (X Vi Xisi) (19)

where @ represents the Kronecker product. The inverse Wishart density is parameterized
as follows:

m+d+1

W(X;m,C) = — I exp (tr [—1CX‘1] ) (20)
27T, (3)1X|" T 2

The authors in [21], proposed the measurement likelihood (13) to take the form of a
Gaussian density as shown in Equation (21).

ny .
p(Yk‘Vlk, Xk, Xk) = HN(]/;(, ka, ZXk + R) (21)
i=1

where, the overall covariance matrix is composed of the sensor error covariance matrix R
and an additional term that includes the spread contribution of the object extension scaled
by a factor of z. Further, from Equation (18), we approximate that:

p (x| Xie, Yi) = p(xkl Ye) = N (x; Hxy, zXg + R) (22)

where
Xk = Xifk—1 + Kiem1 (Tx — Hxgpe—1) (23)
Pk = Prg—1 — Kk|kflsk|k71K1z\k71 (24)

where
Skje—1 = HPg_1H + Ykrkl (25)
Kije—1 = Pk\k—15;:‘;1,1 (26)
Yik-1 = 2Xg—1 + R (27)

The extension update p(X|Yy) is approximated as

p(Xi|Yi) = IW(X; ki ki Xik) (28)

where
Xy = azk(“mk—lxkk—l + N1 + Yie—1) (29)

Ak = Xk[k—1 + Mk (30)
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The authors in [21] assume independence between the kinematics and extent estimates.
In addition, if the dynamic models for the kinematics and extent prediction are independent,
we can use standard Kalman filter prediction equations as follows.

Xyk—1 = FXp 11 (31)
Pek—1 = FPe_qj1FT +Q (32)
X1 = Xp—1jk-1 (33)
-T
Xylg—1 = 2+ EXP(T) (f_1k-1—2) (34)

4.2. Group Tracking Algorithm

In the hierarchical tracking scheme, the group tracks and the EO tracks share a similar
structure in the manner they handle tracks. This is illustrated in Figure 2.

1
1| Group Stats
1

Group Tracks EO Tracks

0 EO Label (ID)

0 EO Centroid Kinematics
(Mean, Covariance)

0 EO Extent (X, a,7)

0 EO Existance Probablity
(&)

0 EO DA Probablity ()
...

0 Group Label (ID)

@ Group Centroid Kinemat-
ics (Mean, Covariance)

0 Group Extent (X, a,7)

0 Group Existance Proba-
blity (X)

0 Group DA Probablity (3)
o...

Figure 2. Groups of targets like individual EO target tracks go through birth/death process, i.e., can
be initialized / terminated and maintained when updates are available.

To improve the tracking performance of individual extended objects a hierarchical
tracking structure is shown in Figure 2. The lower layer handles a multi-detection multi-
target track estimation of individual extended objects and the upper layer executes group
tracking to facilitate a feedback mechanism that provides group state to the lower tracking
layer. At both layers, track management schemes handle track initiation, confirmation, and
termination procedures. Tentative tracks are initialized on measurements not validated by
any of the tracked targets. Furthermore, the prevalent assumption about track initiation
is that our knowledge of the prior information about the tentative target velocity and
acceleration vectors are limited to the maximum speed v,y and the maximum acceleration
Amay [29,30]. In this approach, the initial state estimate and covariance matrix formulations
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follow a similar structure as presented in our previous works [31-33]. Here, the presence of
other groups in the FoV of the ego vehicle can be used to improve our prior information on
the velocity and acceleration of a tentative track.

In addition to the track initiation, maintenance and termination attributes that a group
track shares with individual EO tracks, track splitting and merging events that are specific
to group tracks need to be handled too, see Figure 3. Conceptually, the merging process
terminates either of the sub-groups while initiating a new group track with a unique identity.
The same logic applies to the splitting event. The parent group might survive into one of
the splitting sub-groups or new tracks might be initiated for all the split-up sub-groups.
Both, merging and splitting events are handled by the tracking algorithm which is based on
LMIPDA.

Gy

a) Gy b)

<
y G

G ., »GQ ;

GQ'/
1 Gy : |
t=k—1 t==k 1 i t=k-—1 t=k

Figure 3. Unlike individual EO target tracks, group tracks (colored in purple) (a) can be split into
smaller subgroups (colored in green) or (b) merge to form an even larger group.

5. Results and Discussions

In this section, we discuss and evaluate the performance of multi-detection algorithms
on simulated and experimental target tracking scenarios. Since EO tracking considers
the simultaneous estimation of the kinematic state and the shape parameters of a moving
object, a performance metric that can measure both is required. For EO tracking, a distance
measure should incorporate geometric shape [34,35]. We evaluate the location and extent
errors simultaneously with a single score by means of the Gaussian Wasserstein distance

as follows:
d(p1, 21, g2, X2) = [|p1 — pa |+

tr{Zl +3p—2 \/2122\/21}

where yi1 5,21 7 are, respectively, the mean vector and the co-variance matrix of Gaussian
distributions and 1, pp € R2,%,,% € R?*2,

(35)

5.1. Evaluations on Simulated Data

A single target in front of the ego vehicle executes a lane change manoeuvre from the
left to the right lane. Both the target and the ego vehicle are traveling at a constant speed of
20 m/s. Initially, the target vehicle is 20 m ahead of the ego vehicle in the middle of the left
lane (y = 4 m). The approximate trajectory that both vehicles traverse is shown in Figure 4.
The measurement is assumed to have a Poisson distribution with a known rate.
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Y[m|

0 20 40 60 80 100 120 140 160 180
X[m]
Figure 4. A maneuvering vehicle executes a lane change in front of the ego vehicle which is equipped

with a high resolution sensor.

5.1.1. The Case of Low Measurement Density, A =5

First, we fix Poisson distribution with parameter A = 5. The tracking result is given in
Figures 5 and 6. Compared to the ground truth, the extent estimation as well as the filtered
velocities show more deviation compared to the case when A is higher.

S5F @.\_GMS-\Detections ——ground truth extent estimation ——position estimation
E ol s
= 0 \Q\'&
S5E > —&y DD
| | | | | | | | J
0 20 40 60 80 100 120 140 160 180
40 T T T T T T T T
)
~
S 20 W/L— i
)
0 | | | | | | | |
0 20 40 60 80 100 120 140 160 180
10
z
g 0F 1
>
-10
0 20 40 60 80 100 120 140 160 180
X[m]

Figure 5. The tracking result of a maneuvering target with a measurement distribution assumed to

be Poisson with parameter A = 5.

10

95% confidence region — Mean execution time

Execution time [sec]
(8] e (@)}
O § X

0
_2 1 1 1 1 1 1 1 1 1 |
10 20 30 40 50 60 70 80 90 100
A 0.06 T T T T
g 95% confidence region — Mean GW distance
g 0041 A
z
< 0.02F b
S A
z 0, A A A
=1
o 20.02 I I I I I I I I I
= 0 10 20 30 40 50 60 70 80 90 100

Iteration[k]

Figure 6. The mean GW distance and execution time at each iteration is plotted for A = 5.
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5.1.2. The Case of High Measurement Density, A = 50

Next, we fix the Poisson rate at A = 50. As seen in Figures 7 and 8, the extent estimation
is better than the case with A = 5. Because of the coupling of the kinematic state and extent,
the filtered velocities are seen to be reasonably close to the ground truth values and show
less deviation compared to the case when the A = 5.

51 W Detections —ground truth extent estimation ——position estimation
E o B
S5k &
| | | | | | | | |
0 20 40 60 80 100 120 140 160 180
40 \ \ \ \ \ T T T
o
~
i. 20+ VAN A NS N AN N AN~ =
8
0
0 20 40 60 80 100 120 140 160 180
10 \ \ \ \ \ T T T
2
~
5 0F 1
=
10 | | | | | | | |
0 20 40 60 80 100 120 140 160 180

X[m]

Figure 7. The tracking result of a maneuvering target with a measurement distribution assumed to

be Poisson with parameter A = 50.

x10°

(o))
1

95% confidence region — Mean execution time

~
T

Execution time [sec]
[\S]

0 [
2 \ \ \ \ \ \ \ \ \ I
0 10 20 30 40 50 60 70 80 90 100
£} 0.06 \ \ \ T
g 95% confidence region — Mean GW distance
2 0.04- -
z
< 0.02F y
S A A
@) 0
g
S 0.02 \ \ \ \ \ \ \ \ \
= 0 10 20 30 40 50 60 70 80 90 100

Iteration[k]

Figure 8. The mean GW distance and execution time at each iteration is plotted, A = 50.

5.1.3. The Case of Missing Detections, without Group Information

Figure 9 shows, a scenario where five extended objects are depicted deriving in close
proximity and thus creating two groups of vehicles, three of them to the left and the
remaining two to right of the ego vehicle. The initial configuration in terms of the relative
position with respect to the ego vehicle and the absolute velocities of the EO is also given.
We also simulate a scenario where due to an assumed occlusion, the detections from the
leftmost EO are missing for 70 consecutive scans, i.e., from t = [1.55] seconds into the
simulation. Without feedback from group tracking module, the tracks of the EO whose
detections are missing is terminated. The track ID and only its attributes will be deleted
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as shown in Figure 10. When the occlusion is over and detections are available from the
target, a new track is initiated. Even though the target vehicle is the same, two tracks are
initiated with separate IDs because of the occlusion.
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Figure 9. Scenario to demonstrate the use of group state information in the presence of occlusions.
The target vehicles are colored orange, whereas the ego vehicle is shown in Turquoise.
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Figure 10. One of the EO has missing detections for a duration of 70 measurement scans. Its track is
terminated and a new track is initiated when the target detections are available. Each target track is
assigned to a unique color similar to the manner its track ID is assigned.

5.1.4. The Case of Missing Detections, with Group Information

For the same scenario given in Figure 9, feedback from the group track layer of the
proposed hierarchical scheme is made available to the EO multi-target tracking layer to
illustrate its effectiveness. First, the group consisting of the left three extended objects
is tracked for a while until the occlusion deemed the detections from the leftmost EO is
unavailable. Since, the EO is known to be a member of this group, the group state is
translated into a virtual measurement via the feedback path to update the target track.
Here, for the virtual measurement we use:

yr = Hposxg + Hve,x,?dt (36)

where, H pos and Hy,; select the position and velocity entries of the state variable, respectively.
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As shown in Figure 11, the group information is used to maintain the target track
whose detections were missing for several measurement scans.In the figure, group extents
and group position estimated are shown in red whereas each target track is assigned to a
unique color similar to the manner its track ID is assigned.
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Figure 11. One of the EO has missing detections for a duration of 70 measurement scans. The group
state information the EO is known to be a member of is used to update its track.

5.2. Evaluations on Experimental Data

The mmwave radar sensor used in the both single EO and group EO target experiments
has the specifications as shown in Table 1.

Table 1. Radar parameters. This is the radar parameter and its setting as used for single EO and
group EO experiments.

Parameter Value
1 Frequency Band 77-81 GHz
2 Azimuth Resolution 15 deg
3 Range Resolution 0.977 m
4 Max. Unambiguous Range 50m
5 Max. Radial Velocity 18.55m/s
6 Radial Velocity Resolution 0.29m/s
7 Azimuth Resolution 15 deg

5.2.1. Single Target Tracking

The positive directions of the x-y coordinate axes of the radar sensor are established as
shown in the experimental set up of Figure 12. On the other hand, the coordinate axes of the
Real-time Kinematic (RTK) GPS is given in East-North-Up system, while the base station
unit of the RTK GPS is fixed close to the radar coordinate frame, a suitable transformation
is needed to align the East-North-Up readings to the local coordinate axes.
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a RTK GPS, Rover Station

y

Figure 12. Pictured here is the experimental setup for a single target tracking scenario. (a) The target

vehicle is shown at its starting pose at t. The rover station of the RTK GPS is also shown positioned
at approximately the center of the rear axle. (b) The target vehicle is shown positioned at t = t¢. The
positive x-y coordinate axes of the radar are also depicted.

The rover unit of the RTK GPS is mounted on the target vehicle; logging positional
data at a rate of 10 Hz,will serves as the ground truth. Radar point cloud detections are
sampled and recorded on a tracking computer at a rate of 20 Hz. Ultimately, the GPS data
is transformed to the local sensor frame coordinates and the GPS and radar timestamps
are synchronized to use the RTK GPS location data to validate the performance of the
tracking algorithms.

As shown from the pose of the target at fy and ¢ in Figure 13, the target vehicle
executes a lane-change maneuver as it moves away from the ego vehicle. The kinematic
and state estimation result is shown in Figure 13.

In Figure 14, the number of radar returns from the target is seen to decrease as the
target moves away from the ego vehicle. For the extent estimation, a large enough value
for the maneuvering time constant is chosen. This is particularly important considering
the fact that the extent of the target remains approximately fixed. In addition, the extent
estimation is improved because of a larger value of § = 100At chosen to compensate for
less number of target detections at the far end of the track. It is also noted that, occasionally
detections are missing and thus the track management part of the tracking algorithm is
expected to maintain the target track.

In Figure 15, the time taken to execute a single iteration is plotted against time. Gen-
erally, the execution time depends on a number of factors, but most importantly on the
number of radar detections and the number of targets (including false tracks which are
based on ghost targets). We note that the mean and worst execution time per iteration are,
respectively, 2.5 and 10.4 ms.
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Figure 13. An extended target tracking result. The extent estimation is better with a high enough
maneuver time constant § = 100At to compensate for less target detections at the far end of the track.
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Figure 14. The number of radar target detections confirmed for the target are shown plotted as a
function of its distance from the ego vehicle. As the distance increases the number of detections is
seen to correspondingly decrease.
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Figure 15. Execution time required to complete a single iteration for the case of a single ET.



Sensors 2022, 22, 8415

16 of 20

5.2.2. Multi Target Tracking

Next, group target tracking is demonstrated in a multi-target scenario that involves
two target vehicles. The availability of resources limit the number of targets to two, we
expect the result to extend easily to scenarios involving more than two target vehicles. The
reason being, the complex data association step that is computationally prohibitive as the
number of target vehicles increases, is simplified in LMIPDA algorithm by its very design.

In Figure 16, one of the target vehicles is equipped with RTK GPS to record the ground
truth data, the other vehicle is merely there to facilitate the group target discussion (and
to complicate the data association uncertainty). As seen from the time-snapshots at t = tg
and t = t; of Figure 16, the two vehicles are driven in close proximity and in parallel as
both drive away from the sensor station. The lateral inter-vehicle distance and the relative
speed is intentionally kept reasonably close to simulate group target dynamics. The extent
estimation for the individual ET as well as the group target is presented in Figure 17. In
addition, the kinematic state estimate (for the position) is shown for both group and ET
cases. Similar to the single ET case above, the maneuver time constant 8 = 100At is kept
large enough to counter the extent estimation with fewer target detections.

Figure 16. Experimental setup for the case of multiple ET target tracking scenario. (a) The target

vehicles (ET;(Sedan Car), ET,(SUV Car)) are pictured at the starting pose t = fj. The rover station
of the RTK GPS is placed at the center of the rear axle of ET;(Sedan Car). (b) The time-snapshot
of both target vehicles is shown at ¢ = t;. The positive x-y coordinate axes of the radar sensor are
also depicted.

The MD-LMIPDA tracker is able to resolve measurement-to-target data association
without the need to compute the data association jointly for all the measurements and
targets simultaneously. In addition, it is shown in Figure 17 that even under non-uniform
and sparse target detections, extent estimations for both individual ET as well as group
targets is possible. It is seen from the tracking discussions both under single target and
multi targets that the algorithm can be used to successfully generate extended and group
multi-target state estimates in public traffic scenarios.
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Figure 17. Tracking result of two extended targets. Both the position and extent estimation result for
single ET and group target is shown.

The applicability of the tracking algorithm under real-time requirement is further
justified in the results plotted under Figure 18. As shown in the figure, the mean and
maximum total execution time per iteration are, respectively, 8.5 and 19.8 ms. The total
time is computed by simply adding the execution time for both group and ET tracking
at a given radar scan time. In this work, all simulations are done on a laptop with the
specifications: Intel Core i7 2.90 GHZ processor, installed Memory (RAM) of 16.0 GB and
Windows 10 64-bit Operating system.
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Figure 18. The execution time for per iteration for both group as well as ET tracking.

The notion of group objects is interpreted under stricter constraints of inter-target dis-
tances, relatives speeds and orientations. Targets in formation are required to have “similar”
velocities and tight inter-object distances [4] to maximize the chances of being in a group.
In Figure 19, the relative distance and speed between the group target and constituent
extended targets is plotted against time. In addition, the inter-target distance and speed
differences are shown on the same figure. Under the simulated scenario, a relative speed of
—0.4 < Ay <0.2,-0.6 < Ax < 0.3 and a relative distance of |Ay| < 4, |Ax| < 2 is observed.
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Figure 19. Relative distance and speed between the group and individual extended targets is plotted
against time. The plots ET; and ET),, measure the distance of individual target states from the group
target. Whereas,the inter-target plots show the distance and speed differences between the two
extended targets.

6. Conclusions

The application of high-resolution automotive radar to public traffic presents a multi-
detection tracking problem. In earlier work [36], we proposed a hybrid tracking scheme
that exploits the measurement partitioning approach to address the tracking problem under
multi-sensor multi-target scenarios. In the present paper, we proposed and demonstrated
the use of group tracks to complement and improve individual extended object tracks
under circumstances of missing detections, occlusions, target initialization and merged
measurements. We used the Gaussian Wasserstein distance that incorporates both the shape
and kinematic state in a single metric to evaluate the estimation performance of the tracking
algorithm for various simulated examples.

The evaluation of the tracking algorithm for real radar detections is conducted for a
single ET and promising results are obtained for real-time application. In particular, we
noted the mean and maximum execution time per iteration in the order of 2.5 and 10.4 ms,
respectively. A further experiment exploiting two extended targets was setup to emulate a
dynamic group target. Radar detections from both target vehicles as well as RTK GPS data
on one of the target vehicles is collected from two vehicles driving closely with each other
and infront of the ego vehicle. The tracking problem is formulated as a two hierarchical
layer: at the bottom layer, extended multi-target tracking algorithm is presented; at the top
layer a group target tracking algorithm captures group evolution including merging and
splitting of groups targets. The observed mean and maximum execution time per iteration
are, respectively, 8.5 and 19.8 ms, respectively, justifying the use of the proposed tracking
scheme for real-time applications.

More reliable extent estimation for both individual ET and group targets could be
obtained under more dense sensor detections that also preferably take a uniform distribu-
tion across the extent of the ET and/or the group target. In this study, we employed an
assumption on the extent evolution that tends to constrain the extent to vary only gradually.
Practical traffic scenarios support this assumption: owing to the presence of structured lanes,
tight traffic regulations and the inherent desire to avoid collisions, the extent varies rather
slowly. This assumption also favors radar detections which tend to resemble a line segment
or an “L-shape” even for high resolution options. Adding miss-detections and the possibility
of relatively larger ego-to-target distances that reduce target detections, the extent estimation
under the above assumption is clearly justified. However, for highly maneuvering targets
and if the sole objective is to get reliable extent estimation, other sensors such as LIDAR and
camera could be explored.
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