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Abstract: Recent image-style transfer methods use the structure of a VGG feature network to encode
and decode the feature map of the image. Since the network is designed for the general image-
classification task, it has a number of channels and, accordingly, requires a huge amount of memory
and high computational power, which is not mandatory for such a relatively simple task as image-style
transfer. In this paper, we propose a new technique to size down the previously used style transfer
network for eliminating the redundancy of the VGG feature network in memory consumption and
computational cost. Our method automatically finds a number of consistently inactive convolution
channels during the network training phase by using two new losses, i.e., channel loss and xor loss. The
former maximizes the number of inactive channels and the latter fixes the positions of these inactive
channels to be the same for the image. Our method improves the image generation speed to be up
to 49% faster and reduces the number of parameters by 20% while maintaining style transferring
performance. Additionally, our losses are also effective in pruning the VGG16 classifier network, i.e.,
parameter reduction by 26% and top-1 accuracy improvement by 0.16% on CIFAR-10.

Keywords: image-style transfer; network pruning in a single training; channel loss; xor loss; computer
vision; deep learning

1. Introduction

Recently, deep-learning-based image-style transfer methods [1–8] have achieved an
impressive performance in generating an image of an arbitrary style. However, for the sake
of this achievement, they used a common heavy network, a VGG feature network [9], which
is designed to have a large number of parameters for general image-classification tasks
with ImageNet [10]. This resulted in huge memory and computational power consumption
in the feed-forwarding process of the network.

Another drawback of using a heavy network is overloading whitening and coloring
transformer (WCT [3,4,11]), which transforms the second-order statistics of a feature map
into that of target-style feature map. Singular value decomposition (SVD) of O(n3) com-
plexity is necessary for WCT, with a large number (n) of channels extracted from the VGG
feature network being critical for style transferring speed. Therefore, using a compact
network is necessary to improve the efficiency of image-style transfer in both memory
usage and processing speed. Some studies [12–16] identified the channel redundancy of
the VGG16 feature network [9] and this also shows the possibility of the channel pruning
of the VGG19 feature network, which has more channels than the VGG16 feature network.

Network channel-pruning methods [12,13] remove channels of small filter weights
in convolution layers. They follow a two-step process, first eliminating small magnitude
filters from a trained network, and, second, re-training the reduced network to recover the
possible degradation of performance due to the filter-removal step. These methods have
the limitation of not considering the input magnitude coming into the convolution layer
and this may result in occasionally omitting effective responses. For example, if an input
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feature map has large values, the convolution layer may generate responses of a sufficiently
large magnitude even though the filter of a convolution layer has a small magnitude and
these can affect the rear convolution layers.

In this paper, we propose a new channel-pruning method that automatically eliminates
redundant convolutional channels during a single network training process without losing
effective channels. For this purpose, we use two new losses, channel loss Lchannel and xor
loss Lxor. Lchannel forces the output responses of redundant channels in the convolution
layer to be zero. As the number of zero-response channels increases, the compactness
of the network can be increased by eliminating the zero-response channels. Lxor forces
the zero-response channels to consistently appear regardless of the input image. This
loss makes it possible to permanently remove zero-response channels without losing the
performance of the network for an arbitrary input image. Once the consistent zero-response
channels are obtained through an end-to-end network learning process with Lchannel and
Lxor, filter parameters of convolution layers corresponding to the zero-response channels
can be permanently removed, as shown in Figure 1. Since our pruning method is based on
using additional losses which can be added to an original objective function, the network
can be pruned in a single training process, unlike the previous channel-pruning methods
which need multi-stages [12–18].
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Figure 1. Removing filters based on the zero-response channel in the feature map: by removing
the zero-response channel of the feature map f l , it is possible to reduce the filters of the encoder
convolution layer that generates the zero-response and the filters of the decoder convolution layer
that takes the zero-response as input.

The main contributions of this paper are summarized as follows:

1. Our channel loss increases the number of inactive channels, i.e., zero-response channels,
of the feature map which increases the compactness of a network.

2. Our xor loss forces a consistent position of zero-response channels regardless of the
input image, which makes it possible to eliminate the corresponding filter parameters
without losing the performance of the network.

3. Our method achieved a compact network of 20% fewer parameters and 49% faster
image-generating speed than the existing image-style transfer methods without per-
formance degradation.

4. Our method also achieved 26% fewer parameters and a top-1 accuracy improvement
by 0.16% in the image classification task.

The rest of this paper is configured as follows. In Section 2, we will explain the existing
methods of image-style transfer and channel pruning, and in Section 3, we will introduce
the proposed pruning method. In Section 4, we will verify the effectiveness of the proposed
method through appropriate experiments. Finally, we will conclude this work and discuss
future work in Section 5.
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2. Related Works
2.1. Image-Style Transfer

Gatys et al. [1] proposed a seminal work to transform the style of an image by using
the VGG19 feature network [9]. They used the VGG19 feature network that was trained
for image classification to extract the content and style features from an input image.
The feature map from its deep layer was used as a content feature of the image and Gram
matrices, which are correlation matrices of feature maps extracted from multiple layers,
were used as a style feature of the image. Although this method can transfer the style of the
content image to any target style, it takes a very long time to generate the stylized image
due to the pixel-wise optimization process.

To deal with this slow-processing-time issue, some feed-forward network meth-
ods [19–27] were proposed to learn a VGG16-based or VGG19-based feed-forward network
so that the stylized image should be quickly generated through a network forwarding
pass. A feed-forward network learns to reduce the difference between the features [1] of
the target images and the features of the generated image. Although these methods can
quickly generate the stylized image, there exists a limitation that a style (or several styles)
is fixed on the network.

To improve the style capacity of feed-forward networks, recent arbitrary style trans-
ferring methods [2–4,28,29] proposed quickly transfering an input image into an arbitrary
style with a feature transformer. Huang and Belongie [2] extract the feature map from
the image using the VGG19 feature network and then transform the mean and standard
deviation of the feature map through adaptive instance normalization (AdaIN); then, the
transformed feature map is decoded to a stylized image through a decoder network. The
style prediction network [28] was also proposed for arbitrary style transfer. It predicts
offsets and scale parameters. These parameters are used in the instance normalization layer.
Although these methods can quickly generate the stylized image, there is a limitation that
the correlation between channels of the feature map cannot be transformed.

To improve this limitation, recent methods [3,4] consider the channel correlation of
feature maps using whitening and coloring transformer (WCT [3]), which has a burden of
requiring a large amount of computational cost to calculate the square root and the inverse
of the covariance matrix. Dynamic instance normalization (DIN) [29] was proposed for
faster processing than WCT. DIN uses offsets and convolution weights predicted from two
different networks, i.e., bias-net and weight-net, instead of the mean and covariance matrix
of WCT. Since predicting these parameters is a simple feedforward process, using DIN
achieved a very fast processing speed.

Liu et al. [30] proposed a new style-transform layer, AdaAttN, to use attention mecha-
nisms for per-point style transfer. By utilizing the attention mechanism, they considered
local similarities between input content and style images and applied them as the weights
to calculate the mean and variance for AdaIN operation on each feature pixel.

2.2. Network Pruning

Recently, there have been proposed pruning methods [12,13] to accelerate network
forwarding speeds and reduce the memory consumption of convolutional neural networks
(CNNs) by eliminating the filter parameters of the convolution layer.

Li et al. [12] proposed a method to reduce the number of filters in convolution layers.
This method measured the magnitudes of filters and removed the filter of the smallest
magnitude. After this pruning process, this method performed long retraining (1/4 of
initial training) to compensate for a possible performance reduction in the pruned network.
Requiring an additional training procedure for the entire network is the disadvantage of
this method.

He et al. [13] proposed a method to prune the filter channels of the convolution
layer. To reduce some channels of the convolutional filter, this method learned a mask
vector based on LASSO regression for selecting channels to be removed. After removing
the selected channels by the learned mask vector, the remained convolution filters were
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retrained to reconstruct the original feature map. This method also requires two additional
learning procedures, i.e., mask-vector learning for selecting channels to be removed and
extra learning for original feature-map reconstruction.

A study for random channel pruning [31] has been proposed to benchmark the channel
pruning methods so far. This study showed that repeating randomly selecting partial
channels during the training phase achieved the best result. However, this method requires
training many networks and also needs fine-tuning as an additional learning procedure
after selecting top-N networks.

3. Method

In this section, we will explain how to reduce the number of channels in the feature
map for channel pruning. In Sections 3.1 and 3.2, we will introduce new losses for increasing
the number of zero-response channels and for fixing the positions of zero-response channels
in the feature map, respectively. The overall pruning process of applying our losses to the
existing network learning procedure will be described in Section 3.3.

3.1. Channel Loss

The pruning methods based on the magnitude of filter parameters [12,13] have a
limitation of not considering the magnitude of the input feature map. Therefore, we
eliminate network parameters corresponding to zero-response channels regardless of the
input magnitude through a network learning process to have a small number of nonzero-
response channels in the feature map.

Let us consider a feature map f l,b ∈ RCl×Hl×W l
extracted from l th layer which has Cl

channels and spatial size (Hl , W l) of b th image in B batches. We define channel loss Lchannel
as the number of non-zero-response channels in a feature map and this can be calculated as
the sum of

∥∥∥ f l,b
i

∥∥∥
0

across channels and images:

Lchannel =
1

B · Cl

B

∑
b=1

Cl

∑
i=1

∥∥∥ f l,b
i

∥∥∥
0
, (1)

where ‖x‖0 is l0-norm of x which is 0 when all elements of x are 0, or 1 otherwise. As l0-norm
is not differentiable and not suitable for back-propagation, we alternatively implement
l0-norm with the differentiable operations as Equation (2).

‖x‖0 =
‖x‖2
‖x‖2 + ε

, (2)

where ‖·‖2 represents l2-norm and the small value ε = 1× 10−5 is used to avoid divide-by-zero.

3.2. XOR Loss

Although the feature map has a large number of zero-response channels by teach-
ing the network to reduce Lchannel , we cannot permanently eliminate the zero-response
channels because their positions vary from image to image. To fix the positions of the zero-
response channels, we introduce XOR loss Lxor (Equation (3)), to quantitatively calculate
the positional variation of the zero-response channels, as in Figure 2.

Lxor =
2

B(B− 1) · Cl

B

∑
i=1

B

∑
j=i+1

Cl

∑
t

∣∣∣∥∥∥ f l,i
t

∥∥∥
0
−

∥∥∥ f l,j
t

∥∥∥
0

∣∣∣, (3)

where B is the number of batch images and f l,i
t represents the t th channel in the feature

map of the l th layer from the i th image. We need to use a sufficiently large number of
images for representative position consistency by Lxor. For the style transfer task, we use
all input images (B = 8) during the network training phase [3,4] and, thus, 28 (=8C2) pairs
of feature maps are used in calculating Lxor. In addition, for the image classification task,
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we use all input images (B = 128) during the network training phase [32] and, thus, 8128
(=128C2) pairs of feature maps are used during the network training phase. We found each
optimal batch size through several experiments.

  

Feature 
MapFeature 

MapFeature 
Map1

Feature 
MapFeature 

MapFeature 
Map0

l
0
-norm

1 1 0

0 1 1 0

1 0 1 0

0

: Nonzero channel
: Zero channel

L
xor
=Encoder

(VGG)

Feature 
MapFeature 

MapFeature 
MapFeature 

Map

Feature 
MapFeature 

MapFeature 
MapFeature 

Map

Figure 2. The process of calculating xor loss: The quantitative positional variation in zero-response
channels can be measured by counting the number of consistent zero/non-zero-response channel
through images.

3.3. Channel Pruning during Target Task Learning

Our losses are for reducing the number of channels in the feature map regardless of
the target task of a network. Therefore, they can be applied to the network learning process
very simply using the total loss Ltotal (Equation (4)), the weighted sum of our losses and
the original target loss Ltarget.

Ltotal = Lchannel · λchannel + Lxor · λxor + Ltarget (4)

For example, applying our pruning losses to the recent style transfer networks [3,4]
can be carried out by adding Lchannel and Lxor calculated in a batch to their original recon-
struction losses.

We used (λchannel , λxor) = (1.0, 1.0) for the style transfer task and (0.005, 0.005) for
the image classification task, which are found through several experiments to prune the
channel while maintaining the sufficient performance of the task.

After teaching a network to reduce Ltotal , the network is optimized to perform the
target task and to have many consistent zero-response channels in the feature map simulta-
neously. Since these zero-response channels do not mathematically affect the operation of
the next convolution layer, after training a network, the convolution filters that generate
these zero-response channels and the convolution filters that take these zero-response
channels as input can be eliminated from the network, as shown in Figure 1.

4. Experiments
4.1. Experimental Setup

In this section, we describe each experiment setting (image style transfer, image
classification) that we performed to verify the effectiveness of the proposed method. As a
common setting, all experiments were performed in the environment of NVIDIA GTX 1080
TI GPU and Pytorch framework with CUDA and cuDNN libraries.

4.1.1. Setup for Image Style Transfer

We used MS-COCO train2014 [33] as a content image dataset and the training dataset
of Painter By Numbers [34] as a style image dataset to train the image-style transfer
networks [3,4]. Each image of the dataset was resized into 512 pixels on the shorter side
while maintaining the original aspect ratio. During the network learning process, the image
was randomly cropped into 256× 256 pixels to avoid boundary artifacts. We used an input
batch size of 8 and Adam optimizer [35] with a learning rate of 1 × 10−4 during a total of
40,000 iterations for network training. We used MS-COCO test2014 [33] and test dataset of
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Painter By Numbers [34] for quantitative experiments. We performed all experiments with
the same network structure as the existing style transfer networks [3,4].

4.1.2. Setup for Image Classification

We used the VGG16 classifier network [9] for the efficiency of the experiment, where
it has fewer parameters than the recently proposed networks [36–38], and used CIFAR-10
dataset [39] consisting of a small number of images. Since the VGG16 classifier network
was designed to classify ImageNet [10] with 1000 classes, we modified the network for
CIFAR-10 dataset with 10 classes [32]. We used the SGD optimizer [40] with a batch size of
128 for 300 epochs to train a network and used the CIFAR-10 test dataset to measure the
performance of the trained network. The other options not mentioned here were set to the
same as in [32].

4.2. Experimental Results of Pruning for Image-Style Transfer Task

In this section, we compare the performance of the recent two style transfer networks
(Universal [3], AvatarNet [4]) and the result of our pruning method. Note that while both
methods [3,4] learn only the decoder, we learn both encoder and decoder to remove the
channel of the encoded feature map and to learn the original target task using an end-to-
end learning scheme. Therefore, to compare the performance of the proposed method
fairly, we also compared the end-to-end learning results [41] of two style transfer networks
without pruning.

4.2.1. Analysis of Feature-Map Channel Response

To verify if the style transfer network trained by our method extracts a feature map
with consistent zero-response channels for arbitrary input images, we analyzed the channel
responses of feature maps extracted from 1000 unseen test images. Figure 3 shows the
non-zero/zero-responses of feature maps extracted from all 1000 test images with several
single-scale transfer networks. As shown in Figure 3a, the feature map extracted by the
VGG16 [9] feature extractor used in the existing style transfer methods [2–4] shows full
non-zero-responses (white region). In Figure 3b, feature maps extracted by the uncorre-
lated encoder [42] show a number of zero-response channels, but their indices vary from
image to image. The zero-response-channel indices of our method with both channel loss
(Equation (1)) and xor loss (Equation (3)) are consistent through almost all images. Due to
the consistent indices of zero-response channels, we can eliminate the convolution filter
parameters corresponding to the zero-response channels, where they do not affect the
output of the next convolution layer.

4.2.2. Efficiency in Memory and Speed

Table 1 shows the number of parameters for each network and the average (standard
deviation) processing time (ms) for each element calculated using 1000 test images. Results
of the end-to-end learning scheme [41] are not compared here because they use the same
number of parameters as existing methods [3,4].

Table 1. Quantitative comparison of existing style transfer methods and the result of the proposed
pruning method: the speed (ms) is the average (standard deviation) measured using 1000 test images
not used during the network learning.

Methods
Speed (ms) Memory

Encoder/Decoder Transformer Total (# of Parameters)

(a) Universal 6.67 (0.05) 377.80 (5.26) 384.47 (5.29) 34 M

(b) Universal + ours 6.76 (0.07) 190.20 (3.83) 196.95 (3.93) 27 M

(c) AvatarNet 2.93 (0.07) 325.53 (7.02) 328.46 (7.05) 7 M

(d) AvatarNet + ours 2.84 (0.08) 198.97 (12.43) 201.80 (12.52) 5 M
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Figure 3. Channel responses of feature maps extracted from 1000 test images: The horizontal and
vertical axes represent channel indices and image indices, respectively. The feature map extracted
from our pruned network (c) shows only 70 non-zero-response channels (white regions) out of a total
of 256 channels. Compared to the original VGG16 [9] (a) or uncorrelated encoder [42] (b), our channel
responses show a larger number of consistent zero-response channels.

As we can see from the speed measurements in Table 1, most of the image generation
time is consumed by the transformer. As we mentioned in Section 1, both methods use
WCT [3], which requires O(n3) complexity to the number (n) of feature map channels.
Therefore, we removed the redundant channels in the convolutional layer to improve the
style transferring speed of the existing methods, and, as a result, we were able to shorten
the transformer time of Universal by 49% (Table 1 (b)) and AvatarNet by 39% (Table 1 (d)),
respectively. We reduced the number of parameters for Universal and AvatarNet by 20%
and 24%, respectively, by removing the filters that generate the zero-response channels and
the filters that receive the zero-response channels as input.

4.2.3. Quality of Stylized Image

Here, as we mentioned in Section 4.2, for a fair comparison, we further compared
end-to-end learning results [41] of the existing methods [3,4] and the result of the pro-
posed method.

By learning the style transfer networks with an end-to-end learning scheme [41], we
can see that the color tone matching of the output image is improved (Figure 4 from (a) to (b)
and from (d) to (e)), as indicated by Yoon et al. [41]. For example, if we compare the fifth
row of Figure 4a,b, we can see that some color of the flower is not completely transformed
into the color tone of the style image in the output image of the existing method (Figure 4a),
but it is completely transferred in the output image of end-to-end learning result (Figure 4b).
In addition, comparing the second row (Figure 4d,e), we can see that the various colors
(white and red) of the style image are completely transferred in the output image of the
end-to-end learning scheme (Figure 4e) compared with the existing method (Figure 4d). In
addition, the output image (Figure 4c,f) of the proposed pruning method shows that there
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is no serious quality deterioration in the output image even though it uses 20% and 23%
fewer parameters than the existing methods (Figure 4b,e).

  

Content Style (a) Universal0 (b) Universal1 (c) Universal2 (d) AvatarNet0 (e) AvatarNet1 (f) AvatarNet2

Figure 4. Comparison of the output image of existing style transfer methods (Universal [3] (a),
AvatarNet [4]) (d), results of the end-to-end learning scheme [41] (b,e), and the results of our method
(c,f): the output images were generated using the images not used during the network learning.

4.2.4. Comparison with the Existing Pruning Method

In this section, we compare our pruning method with the existing pruning method.
Among the two previous pruning methods [12,13], we selected Li et al. [12] as the com-
parison method since it prunes network during its encoder training phase in the same
way as our method, while He et al. [13] requires an additional training procedure for
mask learning and decoder learning to reduce the feature-map channels. We applied the
existing filter pruning method [12] to the recent image style transfer networks [3,4] and
compared the result with the result of our pruning method. For the pruning process of
the existing method [12], a learned-style transfer network [3,4] was pruned to have the
same number of channels as our pruning method and then retrained to avoid possible
performance degradation by 10,000 iterations (1/4 of initial learning iterations [12]). We
also obtained the result of end-to-end learning [41] as a baseline of the encoder learning
scheme without pruning.

Comparing the results of the proposed method (Figure 5b,e) with the end-to-end
learning results (Figure 5a,d) in the enlarged area of Figure 5, we can see that the output
image of the proposed method has no serious degradation.

In contrast, as we can see in the lips of the magnified image, the output images of
the existing pruning method were not completely generated in the aspect of color tone
(Figure 5c) and detailed edges (Figure 5f) of the style image. In addition, the result of our
pruning method achieved 17% lower style loss [1] for 1000 test images than the existing
pruning method.
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Content Style (a) Universal1 (b) Universal2 (c) Universal3 (d) AvatarNet1 (e) AvatarNet2 (f) AvatarNet3

Figure 5. Comparison of the output images of pruned style transfer network using the proposed
pruning method and the existing pruning method [12]: the existing method used the same number
of parameters as the proposed method. (a) Universal [3] with end-to-end learning scheme [41],
(b) Universal with our pruning, (c) Universal with the previous pruning [12], (d) AvatarNet [4] with
end-to-end learning scheme [41], (e) AvatarNet with our pruning, (f) AvatarNet with the previous
pruning [12].

Figure 6 shows the style and content losses of the generated images correspond to the
number of removed channels in a network. The horizontal axis of the graphs represents the
number of removed channels and the vertical axis represents the content or style loss in log
scale. For the previous filter pruning method [12], we retrained the networks after removing
25× N channels (N = 0 . . . 10) and measured each loss of images from the networks. For
our method (red line in Figure 6), since it does not require an additional learning process
after channel elimination, we measured each loss as gradually removing the redundant
channels from an initially trained network. We selected the channels of the smallest
cumulative magnitude for the entire training dataset [33,34] as the redundant channels.
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Figure 6. Loss variation corresponding to the number of eliminated channels. The blue lines are the
results of the previous pruning method [12].

Since the network pruned by our method has many non-zero-response channels
(Figure 3c), the content and style losses do not increase until the removal of about 200 chan-
nels, as shown as red lines in Figure 6a,b. When the number of the removed channels
exceeds 200, the losses increase sharply because the non-zero-response channels of the
feature map are removed. In contrast, the previous filter pruning method [12] shows
gradually increasing losses as the number of removed channels increases (blue lines in
Figure 6a,b. When the number of the removed channels exceeds 200, it performs better
(lower losses) than our method because of its network retraining process. For a fair compar-
ison, we performed retraining after channel removal for our method, as with the previous
method [12]. After retraining, our method has fewer losses than the previous method, as
shown as the black lines in Figure 6a,b. Therefore, we can say that our pruning method
achieved better loss performance than the previous method of up to 200 channel removal
without retraining, and still better with retraining after removing more than 200 channels.
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4.3. Experimental Results of Pruning for Image Classification Task

Table 2 shows the performance of the VGG16 classifier network (a), the result of the
proposed pruning method (b), and the result of the existing pruning method [12] (c) on
CIFAR-10. We learned the network with proposed pruning losses using the feature maps
of reluX_1(X = 1, . . . , 5) and were able to reduce the number of parameters as shown
in Table 2 (b). In addition, the existing pruning method (Table 2 (c)) which can select
the number of parameters to be removed pruned trained network (a) to have the same
number of parameters as ours (b) and then re-trained the pruned network for the possible
degradation of classification performance during 75 epochs (1/4 of initial training epochs).

Since the proposed method removes the redundant channel of the network to have
the optimal number of parameters through learning, the overfitting to the training data
is reduced and, thus, the performance of the test dataset is improved by 0.16% over the
existing network (Table 2 (a)) composed of redundant parameters [12–16]. Moreover, since
the proposed method selects and removes the redundant channels optimally through a
network training process, it achieved an accuracy improved by 0.46% (Table 2 (c)) over the
existing method [12] which removes channels of small magnitude where these channels
might be effective in style transfer.

Table 2. Classifier pruning results using the proposed pruning method and existing pruning
method [12]: the existing pruning method (c) was pruned to have the same number of channels as
the result of the proposed method (b).

# of Parameters Top-1 Error (%)

(a) Base 15 M 7.74%

(b) Ours 11 M 7.58%

(c) Li et al. [12] 11 M 8.04%

5. Conclusions

In this paper, we proposed a one-step pruning method which removes the redundant
channels of the convolutional layer by adding the proposed two pruning losses to an origi-
nal objective function of the network. The proposed Lchannel forced the output responses
of the redundant channels in the convolutional layer to be zero. In addition, Lxor forced
these zero-response channels to consistently appear in the same position regardless of the
input image. Based on our experiments, we could not obtain any pruning effect using
one of these two losses but only using both losses. Therefore, by teaching the network to
reduce the proposed two losses, we were able to increase the compactness of the network
by eliminating the zero-response channels. By applying the proposed method to the recent
style transfer networks, we were able to reduce the parameters of existing networks by
up to 20% and generate images 49% faster without hurting performance deterioration. In
addition, we applied the proposed method to the image classifier network and reduced
the parameters of the network by 26% with a top accuracy improvement of 0.16%. Our
pruning losses have the advantage of reducing the channel by simply adding it to the
original objective function, but there is a limitation in that the number of channels to be
removed cannot be manually selected. Therefore, we are planning an attempt to improve
the controllability of the proposed pruning method.

Author Contributions: Conceptualization, M.K. and H.-C.C.; methodology, M.K. and H.-C.C.; soft-
ware, M.K.; validation, M.K. and H.-C.C.; formal analysis, M.K. and H.-C.C.; investigation, M.K.
and H.-C.C.; resources, M.K. and H.-C.C.; data curation, M.K.; writing—original draft preparation,
M.K. and H.-C.C.; writing—review and editing, M.K. and H.-C.C.; visualization, M.K.; supervision,
H.-C.C.; project administration, H.-C.C.; funding acquisition, H.-C.C.; All authors have read and
agreed to the published version of the manuscript.



Sensors 2022, 22, 8427 11 of 12

Funding: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning
(NRF-2022R1A2C2013541) in part and 2020 Yeungnam University Research Grant in part.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gatys, L.A.; Ecker, A.S.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423.
2. Huang, X.; Belongie, S. Arbitrary Style Transfer in Real-Time With Adaptive Instance Normalization. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1501–1510.
3. Li, Y.; Fang, C.; Yang, J.; Wang, Z.; Lu, X.; Yang, M.H. Universal style transfer via feature transforms. In Proceedings of the

Advances in Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 385–395.
4. Sheng, L.; Lin, Z.; Shao, J.; Wang, X. Avatar-Net: Multi-scale Zero-shot Style Transfer by Feature Decoration. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 8242–8250.
5. Yao, Y.; Ren, J.; Xie, X.; Liu, W.; Liu, Y.J.; Wang, J. Attention-aware multi-stroke style transfer. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 1467–1475.
6. Wu, Z.; Song, C.; Zhou, Y.; Gong, M.; Huang, H. Efanet: Exchangeable feature alignment network for arbitrary style trans-

fer. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 12305–12312.

7. Lin, T.; Ma, Z.; Li, F.; He, D.; Li, X.; Ding, E.; Wang, N.; Li, J.; Gao, X. Drafting and Revision: Laplacian Pyramid Network for
Fast High-Quality Artistic Style Transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Virtual, 19–25 June 2021; pp. 5141–5150.

8. Park, D.Y.; Lee, K.H. Arbitrary style transfer with style-attentional networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 5880–5888.

9. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

10. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

11. Wang, Z.; Zhao, L.; Chen, H.; Qiu, L.; Mo, Q.; Lin, S.; Xing, W.; Lu, D. Diversified arbitrary style transfer via deep feature
perturbation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, USA,
7–12 February 2020; pp. 7789–7798.

12. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. In Proceedings of the International
Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

13. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; Volume 2, pp. 1389–1397.

14. Luo, J.H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5058–5066.

15. Luo, J.H.; Zhang, H.; Zhou, H.Y.; Xie, C.W.; Wu, J.; Lin, W. Thinet: Pruning cnn filters for a thinner net. IEEE Trans. Pattern Anal.
Mach. Intell. (TPAMI) 2018, 41, 2525–2538. [CrossRef] [PubMed]

16. Lin, M.; Ji, R.; Wang, Y.; Zhang, Y.; Zhang, B.; Tian, Y.; Shao, L. Hrank: Filter pruning using high-rank feature map. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, USA, 7–12 February
2020; pp. 1529–1538.

17. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2736–2744.

18. Luo, J.H.; Wu, J. Autopruner: An end-to-end trainable filter pruning method for efficient deep model inference. Pattern Recognit.
2020, 107, 107461. [CrossRef]

19. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In Proceedings of the
European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 694–711.

20. Ulyanov, D.; Lebedev, V.; Vedaldi, A.; Lempitsky, V.S. Texture Networks: Feed-forward Synthesis of Textures and Stylized
Images. In Proceedings of the 33rd International Conference on Machine Learning (ICML), New York, NY, USA, 19–24 June 2016;
pp. 1349–1357.

21. Dumoulin, V.; Shlens, J.; Kudlur, M. A Learned Representation For Artistic Style. In Proceedings of the International Conference
on Learning Representations (ICLR), Toulon, France, 24–26 April 2017.

http://doi.org/10.1109/TPAMI.2018.2858232
http://www.ncbi.nlm.nih.gov/pubmed/30040622
http://dx.doi.org/10.1016/j.patcog.2020.107461


Sensors 2022, 22, 8427 12 of 12

22. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Improved Texture Networks: Maximizing Quality and Diversity in Feed-Forward
Stylization and Texture Synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 6924–6932.

23. Li, C.; Wand, M. Precomputed real-time texture synthesis with markovian generative adversarial networks. In Proceedings of the
European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 702–716.

24. Gupta, A.; Johnson, J.; Alahi, A.; Fei-Fei, L. Characterizing and improving stability in neural style transfer. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4067–4076.

25. Chen, D.; Liao, J.; Yuan, L.; Yu, N.; Hua, G. Coherent Online Video Style Transfer. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1105–1114.

26. Jing, Y.; Liu, Y.; Yang, Y.; Feng, Z.; Yu, Y.; Tao, D.; Song, M. Stroke controllable fast style transfer with adaptive receptive fields. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 238–254.

27. Wang, X.; Oxholm, G.; Zhang, D.; Wang, Y.F. Multimodal transfer: A hierarchical deep convolutional neural network for fast
artistic style transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; Volume 2, pp. 5239–5247.

28. Ghiasi, G.; Lee, H.; Kudlur, M.; Dumoulin, V.; Shlens, J. Exploring the structure of a real-time, arbitrary neural artistic stylization
network. In Proceedings of the British Machine Vision Conference (BMVC), London, UK, 4–7 September 2017; pp. 114.1–114.12.

29. Jing, Y.; Liu, X.; Ding, Y.; Wang, X.; Ding, E.; Song, M.; Wen, S. Dynamic instance normalization for arbitrary style trans-
fer. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 4369–4376.

30. Liu, S.; Lin, T.; He, D.; Li, F.; Wang, M.; Li, X.; Sun, Z.; Li, Q.; Ding, E. AdaAttN: Revisit Attention Mechanism in Arbitrary Neural
Style Transfer. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Virtual, 11–17 October 2021;
pp. 6649–6658.

31. Li, Y.; Adamczewski, K.; Li, W.; Gu, S.; Timofte, R.; Van Gool, L. Revisiting Random Channel Pruning for Neural Network
Compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans,
LA, USA, 19–24 June 2022; pp. 191–201.

32. Fu, C.Y. pytorch-vgg-cifar10. Available online: https://github.com/chengyangfu/pytorch-vgg-cifar10 (accessed on 20 Decem-
ber 2017).

33. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014;
pp. 740–755.

34. Nichol, K. Kaggle Dataset: Painter by Numbers. Available online: https://www.kaggle.com/c/painter-by-numbers (accessed on
31 December 2016).

35. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning
Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

36. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 1–9.

37. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

38. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

39. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto,
ON, Canada, 2009.

40. Robbins, H.; Monro, S. A stochastic approximation method. Ann. Math. Stat. 1951, 400–407. [CrossRef]
41. Yoon, Y.; Kim, M.; Choi, H. End-to-end learning for arbitrary image style transfer. Electron. Lett. 2018, 54, 1276–1278. [CrossRef]
42. Kim, M.; Choi, H.C. Uncorrelated Feature Encoding for Faster Image Style Transfer. Neural Netw. 2021, 140, 148–157. [CrossRef]

[PubMed]

https://github.com/chengyangfu/pytorch-vgg-cifar10
https://www.kaggle.com/c/painter-by-numbers
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1049/el.2018.6497
http://dx.doi.org/10.1016/j.neunet.2021.03.007
http://www.ncbi.nlm.nih.gov/pubmed/33765530

	Introduction
	Related Works
	Image-Style Transfer
	Network Pruning

	Method
	Channel Loss
	XOR Loss
	Channel Pruning during Target Task Learning

	Experiments
	Experimental Setup
	Setup for Image Style Transfer
	Setup for Image Classification

	Experimental Results of Pruning for Image-Style Transfer Task
	Analysis of Feature-Map Channel Response
	Efficiency in Memory and Speed
	Quality of Stylized Image
	Comparison with the Existing Pruning Method

	Experimental Results of Pruning for Image Classification Task

	Conclusions
	References

