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Abstract: This paper proposes to use deep reinforcement learning to teach a physics-based human
musculoskeletal model to ascend stairs and ramps. The deep reinforcement learning architecture
employs the proximal policy optimization algorithm combined with imitation learning and is trained
with experimental data of a public dataset. The human model is developed in the open-source
simulation software OpenSim, together with two objects (i.e., the stairs and ramp) and the elastic
foundation contact dynamics. The model can learn to ascend stairs and ramps with muscle forces
comparable to healthy subjects and with a forward dynamics comparable to the experimental training
data, achieving an average correlation of 0.82 during stair ascent and of 0.58 during ramp ascent
across both the knee and ankle joints.

Keywords: deep reinforcement learning; computer simulation

1. Introduction

Deep reinforcement learning (DRL) is a powerful method to solve high-dimensional
state-space problems. Thanks to this feature, DRL has been successfully used for the dy-
namic simulation of physics-based models of both humans [1–4] and robots [5–7] while
performing different locomotion tasks. However, learning complex and physiologically
plausible motions remains a research challenge in the simulation of physics-based muscu-
loskeletal models [8].

With the long-term goal of using DRL for the design of the control architecture of
lower-limb prostheses [9], this study proposed to use DRL to teach the physics-based
musculoskeletal model of a human to ascend stairs and ramps, while achieving a forward
dynamics and muscle fiber forces of the major muscles comparable to the ones of healthy
subjects. The proposed method builds upon our previous work [4], in which we showed
that DRL and, specifically, the Proximal Policy Optimization (PPO) algorithm in combi-
nation with imitation learning can teach physics-based musculoskeletal models of both
able-bodied and impaired subjects to perform level-ground walking.

The proposed DRL method is sketched in Figure 1 and was developed in the open-
source simulation software OpenSim [10] (NIH National Center for Simulation in Rehabili-
tation Research, Stanford, CA, USA, https://opensim.stanford.edu/, (accessed on 31 Au-
gust 2021)). The agent is a physics-based human musculoskeletal model and is trained by a
deep neural network to learn how to ascend stairs and ramps, which are represented as
two objects in the simulation environment. The deep neural network receives, as inputs,
the observed state (joint kinematics and muscle forces) of the agent and a reward, which
is computed on an objective function and an imitation learning term. The output of the
neural network is an action, namely, the muscles’ exitations of the agent.
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Figure 1. The proposed DRL method for the dynamic optimization of the forward dynamics of a
human musculoskeletal model during stairs or ramp ascent.

The human model used in this study was modified from [1] and consists of 18 muscles
(each leg has 6 uniarticular muscles and 3 biarticular muscles) to control 14 degrees of
freedom. The model is kept as simple as possible to allow the DRL architecture to teach
the model how to perform the tasks in a computationally efficient way but, at the same
time, accurate enough to describe a healthy human subject. The model was scaled to fit
the experimental data (belonging to the Motion Capture Database, which is provided by
the Graphics Lab of the Carnegie Mellon University and publicly available in [11]), which
are used as imitation data during training and for the validation of the proposed method.
In order to explore locomotion tasks on advanced environments, such as ascending stairs
and ramps, this study needed to substitute the Hunt–Crossely contact model (which can
only be used with level ground) with the elastic foundation contact model at the feet of the
human model and to add two meshes for the two different objects (the stairs or the ramp)
in OpenSim.

To summarize, the main contributions of this paper are:

• To show that DRL, based on PPO in combination with imitation learning, can suc-
cessfully teach a physics-based human musculoskeletal model in OpenSim to ascend
stairs and ramps, with the future goal of using such architecture for the control of
lower-limb prostheses.

• To be able to study more advanced environments in OpenSim, in addition to level
ground, by implementing the elastic foundation model for the contact forces, as well
as by introducing different objects’ meshes.

The remainder of the paper is organized as follows. Section 2 presents the physics-
based human musculoskeletal model, the environment, and the used experimental data.
Section 3 describes the proposed DRL method. Section 4 shows and discusses the results
obtained during the simulations. Finally, concluding remarks are drawn in Section 5.
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2. Materials

This Section presents the physics-based human musculoskeletal model and the objects
(stairs and ramp) on which the model learns the respective gait patters and the experimental
data from a public dataset that are used to train and validate the proposed DRL method.

2.1. Musculoskeletal Model

The 3D lower-extremity physics-based human musculoskeletal model used in this
study was developed in OpenSim 3.3 (model version number 3000) as an .osim file. The
model was provided for the NIPS’17 competition [1] as a simplification of the more complete
and complex human musculoskeletal model in [12] for its easiness of use in combination
with DRL algorithms. The model is composed of seven bodies: each leg has three bodies
(an upper leg, a lower leg, and a foot) while the pelvis, torso, and head are represented
by a single body (the angle between the pelvis and the torso is fixed to −15◦ for the
stair ascending task and to −5◦ for the ramp ascending task). The model has 18 muscles
(9 per each leg) to control 14 degrees of freedom. Each leg has 6 uniarticular muscles (i.e.,
gluteus maximus, iliopsoas, vastus lateralis, bicep femoris, soleus, and tibialis anterior)
and 3 biarticular muscles (i.e., hamstring, rectus femoris, and gastrocnemius), as shown
in Figure 2. The 14 degrees of freedom are distributed as follows: 6 at the pelvis (tilt, list,
rotation, and translations in XYZ), 2 at each hip joint (flexion and adduction/abduction), 1 at
each knee joint (flexion/extension), and 1 at each ankle joint (dorsiflexion/plantarflexion).
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hamstring_l

rect_fem_l

bifmesh_l

vasti_l

tib_ant_l

glut_max_l

Iliopsoas_l
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rect_fem_r
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tib_ant_r

glut_max_r

Iliopsoas_r

gastroc_l
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Figure 2. The physics-based human musculoskeletal model developed in this study. Figures from
left to right: side view facing the right leg, front view, side view facing the left leg, and back view.

The muscles are modeled in OpenSim as Hill-type muscles, with a first-order dynamic
between excitation and activation [13]. The generated muscle force is a function of the
length, the velocity, and the activation level, ranging between 0% and 100%. When the
muscles are activated, they generate a movement which is a function of the muscle proper-
ties (i.e., the maximum isometric force, the muscle fiber length, the tendon slack length, the
maximum contraction velocity, and the pennation angle). It is important to notice that, to
compensate for the reduced number of muscles in the used OpenSim model with respect
to a complete human muscluloskeletal model, the maximum isometric force for all muscles
was increased by 80% to allow the model to perform the task of ascending stairs, while the
isometric force for all muscles was left at its default value to perform the task of ascending
the ramp.

To use the model for the purpose of this study, some of its sections were modified.
Table 1 summarizes the changes that were made, i.e., the objects (stairs and ramp) were
designed and added to the BodySet section because only level ground is provided in
OpenSim; spherical meshes were added to the feet in the ContactGeometrySet section
to ensure proper contact forces between the feet and the stairs/ramp; the Hunt–Crossely
model was replaced with the elastic foundation force model within the ForceSet section to
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allow for introducing contact forces on the new objects (the Hunt–Crossely model is not
compatible with the new objects). These modifications are further detailed hereafter.

Table 1. The sections in the .osim file of the model developed in this study: some sections are left to
their default state, others are modified.

Section Description Modification

BodySet Body geometry Addition of objects
ConstraintSet List of constraints -

ForceSet Acting forces Elastic foundation
MarkerSet List or markers -

ContactGeometrySet Contact geometry Spherical feet meshes
ControllerSet Auxiliary controllers -

ComponentSet Group geometry -
ProbeSet Auxiliary probes -

2.1.1. Feet

The contact geometry of each foot was realized with three spherical meshes, i.e., one
heel and two toes. The heel mesh is a sphere with a diameter of 50 mm, whereas each toe
mesh is a sphere with a diameter of 25 mm. These three meshes are triangular-hollow (i.e.,
only with exterior faces) meshes, and their level of granularity is made of 107 vertices and
210 faces. Each mesh is designed to keep the amount of vertices and faces to a minimum
to limit the computational load during simulations. Figure 3 shows the placement of the
contact meshes with respect to the bones in each foot.

Name:
Type:
File:
Radius (m):
Position (x,y,z):

r_toe2
ContactMesh
toe_coarse.obj
0.025
(0.02, −0.005, 0.026)

Name:
Type:
File:
Radius (m):
Position (x,y,z):

l_toe2
ContactMesh
toe_coarse.obj
0.025
(0.02, −0.005, 0.026)

Name:
Type:
File:
Radius (m):
Position (x,y,z):

r_heel
ContactMesh
heel_coarse.obj
0.05
(0.03, 0.02, 0.0)

Name:
Type:
File:
Radius (m):
Position (x,y,z):

l_heel
ContactMesh
heel_coarse.obj
0.05
(0.03, 0.02, 0.0)

Name:
Type:
File:
Radius (m):
Position (x,y,z):

l_toe1
ContactMesh
toe_coarse.obj
0.025
(0.02, −0.005, −0.026)

Name:
Type:
File:
Radius (m):
Position (x,y,z):

r_toe1
ContactMesh
toe_coarse.obj
0.025
(0.02, −0.005, −0.026)

Name:
Type:
File:
Position (x,y,z):

stairs_c/ramp_c
ContactMesh
stairs_c.obj/ramp_c.obj
(0, 0, 0)

Figure 3. Bottom view of the spherical contact meshes for the heels and toes with respect to the bones
in the feet (left foot in green, right foot in red, and feet bones in white).

The heel/toes meshes are imported into the ContactGeometrySet section of the .osim
model file. The coordinates (X, Y, Z) for the geometry of each foot are specified as follows:
the heel is placed at (30, 20, 0) mm relative to the body piece calcn, and toes 1 and 2
are placed at (20, −5, −26) mm and (20, −5, 26) mm relative to the body piece toes,
respectively.

During simulations, the ground reaction forces are exerted at these three contact
meshes, but not at the bones. To ensure that the meshes are able to contact the object (stairs
or ramp) and to generate the correct ground reaction forces, the contact dynamics cannot
be described by the default Hunt–Crossley model, so it was substituted with the elastic
foundation force model. The elastic foundation force model is required as a substitute as
this force model is the only one that OpenSim accepts when dealing with custom geometry
(stairs/ramp with heels and toes). The coefficients of the elastic foundation model are
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summarized in Table 2 and were selected as in [14]. Specifically, the stiffness coefficient
was estimated on shoe rubbers and the static/dynamic/viscous friction coefficients were
selected to avoid slippage during contact, whereas the dissipation coefficient to avoid
bouncing at contact.

Table 2. The coefficients of the elastic foundation model between the feet and the objects. The
geometry value for the object can be chosen from either one of the two objects (i.e., stairs_c or
ramp_c), while for the right (_r) or left (_l) foot the geometry values are identical.

Coefficient Value

R
ig

ht
le

g

appliesForce true
geometry [stair_c, ramp_c] r_heel r_toe1 r_toe2

dissipation [s/m] 5
stiffness [MPa/m] 50

static_friction 0.9
dynamic_friction 0.9
viscous_friction 0.9

transition_velocity 0.1

Le
ft

le
g

appliesForce true
geometry [stair_c, ramp_c] l_heel l_toe1 l_toe2

dissipation [s/m] 5
stiffness [MPa/m] 50

static_friction 0.9
dynamic_friction 0.9
viscous_friction 0.9

transition_velocicty 0.1

2.1.2. Design of the Objects: Stairs and Ramp

Two objects were developed in this study, i.e., the stairs and the ramp. The geometry
of the two objects are two different meshes, which were created by using OpenSim to-
gether with MeshLab 2020.07 (MeshLab, Pisa, Italy, www.meshlab.net (accessed on 31 Au-
gust 2021)), SketchUp 2017 (Trimble Inc., Westminster, CO, USA, www.sketchup.com
(accessed on 31 August 2021)), and Blender 2.83 (Blender, Amsterdam, The Netherlands,
www.blender.org (accessed on 31 August 2021)), and saved as two different .obj files.

The two meshes are closed triangular-hollow (i.e., only with exterior faces) watertight
meshes, and their level of granularity is made of 48 vertices and 72 faces for the stairs and
of 24 vertices and 36 faces for the ramp. The meshes were designed to keep the amount
of vertices and faces to a minimum to limit the computational load during simulations.
Each mesh has no overlapping faces or duplicate vertices. The normal to each face point
outwards, and they are directly calculated by OpenSim by considering the order (clockwise
or anti-clockwise) in which the vertices are defined. The two meshes are imported into the
BodySet section and the ContactGeometry section of the .osim model file as non-manifold
watertight meshes.

The stairs are 2 m wide and are made of 3 steps. A single step has a height of 0.2 m
and a depth of 0.25 m. The total increase in height is 0.6 m. The ramp is 2 m wide, has a
run of 3.2 5m, and a rise of 0.45 m. The gradient of the slope is 7.883◦, with a total length
of 3.28 m. Note that the dimensions of the objects were chosen to match the stairs/ramp
of the Carnegie Mellon University Graphics Lab motion capture public dataset [11], from
which the training data were also taken.

Figure 4 show the two environments in which the model is at its starting position
(corresponding to the starting position in the experimental dataset) in front of the stairs
(Figure 4a) and the ramp (Figure 4b). The model is facing and performing the gait in
the positive X direction. The left and right of the model are the negative and positive
Z directions, respectively. The up and down motion of the model are the positive and
negative Y directions, respectively. The reference for the center of the model is its pelvis,
which is placed at (0, 0.94, 0) m in both environments.

www.meshlab.net
www.sketchup.com
www.blender.org
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(a) (b)

Figure 4. Simulation environments: Objects and human model at the starting position of the experi-
mental dataset. (a) Stairs (with three steps). (b) Ramp.

2.2. Simulation Settings

A simulation runs in real time but produces data at each time-step throughout one
iteration. In this paper a time-step is defined as the shortest amount of time between two
events within the simulation. For example, with a time-step of 0.2 s it would be possible to
activate a muscle every 0.2 s. An iteration is defined as a run of the simulation between
t = 0 s and whenever the simulation restarts. If the simulation has restarted three times, it
is then starting its fourth iteration of the simulation. We recorded the data at each time-step
for the very last iteration of the simulation. The simulation was manually halted under
defined criteria. Once the reward gain was leveling off, the simulation was stopped. After
the task was deemed successful, e.g., the model made it to the top of the stairs, it was also
stopped. Lastly, it is possible that the simulation could keep learning, but we decided to
end all simulations after a maximum of seven days.

2.3. Training Dataset

The data used in this study belong to the Carnegie Mellon University Graphics Lab
Motion Capture Database and are publicly available in [11]. The motion capture data
were collected on healthy subjects by using Vicon infrared MX-40 cameras (Vicon Motion
Systems Ltd., Oxford, UK, www.vicon.com (accessed on 31 August 2021)) on 41 markers
placed on the subjects’ bodies and saved in .c3d files. The ease of use, free availability, and
wide range of possible tasks, as well as documentation, were our justification for using
their data.

From the Carnegie Mellon University dataset, this study uses the motion capture
data from the lower body of subject #14 (during the trial #22) for the stairs ascending task
and of subject #74 (during the trial #19) for the ramp ascending task. The motion capture
data of the lower body were exported to a .trc tracking file by using the Mokka 0.6.2
software (Motion Kinematic & Kinetic Analyzer, Lausanne, Switzerland, biomechanical-
toolkit.github.io/mokka/ (accessed on 31 August 2021)).

The tracking data were used on the human model in OpenSim to run the inverse
kinematics, from which the training data are derived for this study. The original Carnegie
Mellon University data and the kinematic data generated through OpenSim report a
maximum root mean squared error of 0.05 m for all markers, which is in agreement with
the guidelines for the verification and validation of human musculoskeletal models in
OpenSim [15].

For each joint i in the model, the velocity vi(t) at time t was calculated as follows:

vi(t) =
pi(t)− pi(t− 1)

t
(1)

www.vicon.com
biomechanical-toolkit.github.io/mokka/
biomechanical-toolkit.github.io/mokka/
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where pi(t) and pi(t − 1) are the positions of the joint at time t and t − 1, respectively.
The initial velocity vi(0) is assumed to be equal to vi(1), while the final velocity vi(m) is
assumed to be equal to vi(m− 1), with m being the total amount of data in the dataset.

The simulation uses the task’s full dataset to train on and then to validated on after
the simulation had ended. Even though the human gait is very cyclical, we chose to use
an entire dataset to train and validate on rather than using repeating patterns due to (a)
having the opportunity to use the entire gait data and (b) the tasks including starting and
ending from stand still, which is included in the dataset (the model takes the first step with
the left leg for both the stair and ramp gait initiations).

3. Method

This Section describes the DRL algorithm that is used to teach the human muscu-
loskeletal model to ascend the stairs and the ramp, as sketched in Figure 1.

3.1. Deep Neural Network

The neural network designed in this study is a multi-layer perceptron, i.e., a feed-
forward artificial neural network, that consists of four layers. Specifically, the input layer
has 214 neurons, both hidden layers have 312 neurons, and the output layer has 18 neurons.
For each neuron νi, the output y is calculated by using a general output function, i.e.,

y(νi) = tanh

(
b +

n

∑
i=1

xiwi

)
(2)

where x is the input to the neuron, w is the weight between the current and previous
neuron, b is the bias, n is the number of inputs from the previous layer, and tanh is the
activation function.

The input of the neural network is the state st, which is a 214-dimensional vector of
continuous variables. Specifically, the kinematic variables are: the positions and rotations,
the linear and rotational velocities, and the linear and rotational accelerations of the joints
and body segments. The force variables are: the ground reaction forces, the muscle forces,
the muscle fiber lengths and velocities, the tendon forces, and the additional miscellaneous
forces that impose limits to the muscle forces. Table 3 summarizes the complete set of state
variables for the musculoskeletal model.

Table 3. The state variables of the human musculoskeletal model.

n. of Variables

Positions/Rotations of body segments 13 + 13
Linear/Rotational velocities of the body segments 13 + 13
Linear/Rotational accelerations of the body segments 13 + 13
Positions/Velocities/Accelerations of the joints 17 + 17 + 17
Muscle forces 72
Miscellaneous forces 13

Total size of the state vector 214

The output of the neural network is an action αt, i.e., an 18-dimensional vector, where
each variable represents either a 1 or a 0 that indicates the muscle excitations. The output
vector is fed into the OpenSim predefined brain-controller that, from the muscle excitations,
calculates the muscle activations by using the first-order dynamics equations of the Hill-
type muscle model.

3.2. The Learning Algorithm: PPO

The learning algorithm used in this study is PPO [16], and the hyper-parameters for
the network were taken from our previous work [4]. During training of the neural network,
the weights wi of the connections between the neurons are optimized by PPO, such that
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the network outputs desirable actions αt at time t based on the observed state st at time t.
Specifically, PPO uses the following objective function:

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (3)

where Êt is the expected value at time t, Ât is the advantage estimation at time t (i.e., the
difference between the expected and the real reward from an action), ε is the clip value, and
rt(θ) is the ratio at time t between the probabilities of the new policy πθ in the parameters
θ and the old policy πθold in the parameters θold, i.e.,

rt(θ) =
πθ(αt|st)

πθold(αt|st)
(4)

and the clipping term clip(rt(θ), 1− ε, 1 + ε)Ât negates the incentive for the rate rt to move
outside of the clip-bound [1− ε, 1 + ε] set by ε.

3.3. Reward Function

The action αt generated by the model results in a reward, which can be either positive
or negative depending on the action the model just took. If the model does a favorable
action, it receives a positive reward. Otherwise, if the model does an unfavorable action, it
receives a negative reward, i.e., a penalty. To learn the tasks, the model should receive as
many rewards as possible.

In this study, as also proposed in our previous work [4], the reward function J(π)t,
calculated at each time-step t consists of two parts, i.e., a goal reward Jgoal(π)t and an
imitation reward Jimitation(π)t, which are weighted as:

J(π)t = 0.1 · Jgoal(π)t + 0.9 · Jimitation(π)t (5)

The goal reward is:
Jgoal(π)t = e−8·∑t(pvel) (6)

where pvel is the penalty for deviating from the desired pelvis velocity contained in the
imitation data.

The imitation reward is:

Jimitation(π)t = 0.9 · e−4·∑t ppos + 0.1 · e−0.1·∑t pvel (7)

At each time-step t, both the position penalty ppos and the velocity penalty pvel of the pelvis,
hip, knee, and ankle joints are calculated. The penalties are calculated by taking the sum of
the squared error of the difference between what is observed and what is in the dataset at
time t.

3.4. Implementation

To run the simulations, different mediums of hardware were used. The most promi-
nent is the Microsoft Azure cloud computing services (azure.microsoft.com (accessed
on 31 August 2021)). A total of three servers were allocated on Azure, i.e., three NC6 Data
Science Virtual Machine for Linux (Ubuntu 18.04) with 6 cores and 56 GB of RAM. Other
hardware was used as well, i.e., four systems running Ubuntu 18.04, i.e., system 1 has an
Intel core i5 3570K and 8 GB of RAM, system 2 has an Intel core i7 8700K with 16 GB of
RAM, system 3 has an AMD Ryzen 3800x with 32 GB of RAM, and system 4 has an AMD
Ryzen 5950x with 64 GB of RAM.

The version of Python used is 3.6.10 (www.python.org (accessed on 31 August 2021)),
and the version of Tensorflow is 1.15 (www.tensorflow.org (accessed on 31 August 2021)).
The DRL algorithm makes use of mpi4py to be able to run on multiple cores (usually
between 4–16).

azure.microsoft.com
www.python.org
www.tensorflow.org
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The approximate time to run a single iteration on the Azure servers is 356 s, on system
1 is 250 s, on system 2 is 170 s, system 3 is 112 s, and system 4 is 95 s.

Data are collected from the simulation after each iteration. The rate at which the data
are sampled during the experiment is every 5 iterations. The trained model is saved using
tensorflow-checkpoint. The angles (in degrees) of the joints are extracted from the trained
model. The training reward per time-step is also recorded as the mean of the reward. The
length of each training period is recorded as well.

4. Results and Discussion

This Section presents and discusses the results obtained in the simulations (according
to their run-time) of the human model while learning to ascend the stairs and the ramp by
means of the proposed DRL architecture. The results are also shown in the video that is
provided as Supplementary Materials to this study.

4.1. Stairs Ascent

Figure 5 shows the reward obtained by the model while learning to ascend the stairs.
The reward increases rapidly for the first∼19,383 time-steps, then it levels out until∼55,951,
where it then again increases rapidly until ∼76,099; from here onward, the learning is
continuous and slow. The rapid increases and jumps in the reward represent when the
model has learned to correctly take the steps. In the end, the model is able to climb three
steps of the stairs for ∼300 time-steps and reaches a maximum reward of ∼215. The model
is able to achieve 71.6% of its total reward, suggesting that the gait is 71.6% accurate to the
imitation data.
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Figure 5. The reward obtained during the learning process of the human musculoskeletal model to
ascend the stairs.

Figure 6 shows the left/right knee (top) and ankle (bottom) joint angles for the entire
simulation time, which includes ascending three steps. It can be noted that there is a
good correlation between the experimental data (dotted lines) and the forward dynamic
simulation (continuous lines). Specifically, the left and right knee joints show a correlation
of above 0.9, while the left and right ankle joint of above 0.6. From the figure, it can be
observed that the left leg initiates the gait of ascending the stairs by flexing the knee. At
the same time, to balance the forward progression, the right leg is maintained in a steady
extension until the weight acceptance of the left leg. From 0.9 s to 1.2 s, the pull-up phase
of the left leg occurs, where the body is lifted-off from the step. This behavior can be
confirmed by observing that the right knee is clearly off the ground, and it flexes to provide
the ground clearance to step over to next step. This cyclic pattern is very stable in the
simulation and, after successfully ascending the three steps, the model attempts to take the
next step but, due to the unavailability of the additional steps in the object, the model falls
down and the simulation is terminated. This can be noted by the discrepancies between
the imitation and experimental data towards the end of simulation. Similarly for the ankle,
it is interesting to note the stability of the left ankle joint to maintain the weight acceptance,
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pull-up, and forward continuance phase between 0.9 s and 1.7 s. Moreover, from 1.7 s to
2.4 s, the ankle quickly plantarflexes to provide toe-clearance along with knee flexion for
the correct foot placement over the next step.
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Figure 6. The kinematics of the left/right knee (top) and left/right ankle joint (bottom) during stair
ascent for the entire simulation time. The areas marked in gray show the period where the leg is not
in contact with the ground. The dotted lines are the experimental data; the continuous lines are the
forward dynamic simulation data.

Figure 7 shows the major muscle contributors of both legs for the stair ascent task,
i.e., bicep femoris short head (bifmesh), vasti, soleus, and tibialis anterior. The bifmesh
is a knee flexor muscle, and it also provides support to the overall gait together with the
hamstrings. The average force of the bifmesh is 6100 N and 6500 N for the left and right leg,
respectively. From the figure, it can be observed that the bifmesh is triggered throughout
the gait to maintain the stability of the knee joint. Moreover, during every heel strike, there
is a peak force of about 1200 N to resist the impact and achieve the weight acceptance. The
vasti is a knee extensor muscle and maintains an average force of 2700 N and 2400 N for
the left and right leg, respectively. From the figure, the cyclic pattern of the vasti during
the weight acceptance phase is clear for both legs. Moreover, once the knee is extended in
the pull-up phase, the vasti slowly relaxes during the forward progression as the center
of body mass is pushed forward to take the next step. The soleus and the tibialis anterior
are responsible for the ankle plantarflexion and dorsiflexion, respectively. The soleus is
activated to provide the peak muscle forces during the end of the forward-continuance
phase (from 0.9 s to 2.5 s) for the right foot and to provide enough push-off force to the leg
so to lift the body to take the next step. The tibialis anterior is triggered especially to accept
the weight and to provide toe clearance after heel strike. Finally, from the figure, it can be
noted that the bifmesh and the tibialis anterior exceed the nominal maximum isometric
forces when compared with the vasti and soleus. This could be due to the reduced muscle
model that is used in this study. For instance, in the case of simulations with a model with
more muscles, the arrangement of muscles such as gastrocnemius and semimembranosus
could reduce the forces of the bifemsh, while the extensor digitorum muscles could support
the tibialis anterior during ankle dorsiflexion.
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Figure 7. The muscle fiber forces of the biceps femoris, vasti, soleus, and tibialis anterior (from top to
bottom) of the human model during stair ascent for the entire simulation time. The figures on the left
side refer to the left leg, while the ones on the right side refer to the right leg. The horizontal red line
indicates the mean fiber force, while the horizontal blue line indicates the maximum isometric forces.

Figure 8 shows the ground reaction forces in the Y direction, computed at the zero
moment point of each foot during two complete gaits (i.e., each foot is in contact with the
ground twice and is lifted twice). The Y-component shows a peak at the very beginning
and at the end of the contact. It maxes out at a force of −1602 N on the left and −1387 N on
the right leg. It has an average (not including zeros) of −500 N on the left leg and −580 N
of the right leg.
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Figure 8. The ground reaction force in the Y direction computed at the zero moment point of each
foot (left foot on the left and right foot on the right) during stair ascent.
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4.2. Ramp Ascent

Figure 9 shows the reward obtained by the model while learning to ascend the ramp.
The reward increases rapidly for the first ∼13,000 time-steps, then it increases linearly. The
initial increase in the reward is due to the model learning to stand and to take the first step.
Since the environment is continuously increasing after this initial step, the reward exhibits
continuous learning. The further the model walks up the ramp, the higher the reward it
achieves. The final 4000 time-steps show the greatest fluctuation. This part of the task is
only learned at a later stage as it takes time to reach the top of the ramp, resulting in the
final moments being iterated over less time. The model spends most of its training time
at the beginning of the ramp as this is where it resets to. In the end, the model was able
to reach the top of the ramp after ∼210 time-steps, reaching a maximum reward of ∼120.
The model was able to achieve 57.1% of its total reward, suggesting that the model’s gait is
57.1% accurate to the imitation data.
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Figure 9. The reward obtained during the learning process of the human musculoskeletal model to
ascend the ramp.

Figure 10 shows the left/right knee (top) and ankle (bottom) joint angles for the entire
simulation time. It can be noted that there is some correlation between the experimental
data (dotted lines) and the forward dynamic simulation (continuous lines). Specifically,
the left and right knee joints show a correlation of above 0.6, while the left and right ankle
joints show a lower correlation. From the figure, it can be noted that both the knee joints
do not perform a complete extension, which is in agreement with the biomechanics of
ramp ascent for able-bodied subjects [17]. The right knee joint performs a faster flexion
during the swing phase (from 1 s to 1.5 s) compared with the imitation data to provide foot
clearance, while the left foot continues from mid-stance to toe-off. Moreover, both knees
show a cyclic pattern that is in agreement with the ramp ascending tasks. The ankle is in
dorsiflexion for both legs. However, the left ankle remains at 22◦ throughout the simulation.
The left ankle tries to provide a push-off at 1.7 s, right before the swing phase, but it is not
as significant as observed in the right ankle. From the figure, it seems that the right ankle
works more than the left one. Both ankles show a cyclic pattern, and their kinematics are
consistent with the experimental data of healthy subjects. The maximum dorsiflexion and
plantarflexion in the ankle is observed to be around 25◦ and −10◦, respectively. However,
the proposed DRL method enables the human model to learn the task.
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Figure 10. The angles of the left/right knee (top) and of the left/right ankle joint (bottom) during
ramp ascent for the entire simulation time. The areas marked in gray show the period where the leg
is not in contact with the ground. The dotted lines are the experimental data; the continuous lines are
the forward dynamic simulation data.

Figure 11 shows the major force contributors for the ramp ascent task, i.e., bicep
femoris short head (bifmesh), vasti, soleus, and tibialis anterior. The bifmesh generates
an average of 880 N and 930 N for the left and right leg, respectively. The bifmesh is
activated throughout the gait with peak in contribution during the mid-to-late stance phase
of the gait to support in the active flexion of the knee joint and to provide support to the
hamstring muscles. The vasti shows a very clear force contribution on the left leg compared
with the right leg, with an average force of 1310 N and 1330 N, respectively. The vasti is
activated at the heel strike of the foot to help in the knee extension. However, in the right
foot, the vasti is also triggered during the swing phase, mainly to provide stability and for
the positioning of the foot for the next step. Similarly, the soleus also shows a distinctive
force contribution that matches with the biomechanics of the healthy human gait. The
soleus is activated only during the push-off phase of the gait for both the ankle joints to
achieve plantarflexion. The average forces applied to the joints are 1810 N and 1740 N
for the left and right foot, respectively, which are below the maximum isometric forces.
The tibialis anterior contributes with an average force of 2120 N and 2000 N for the left
and right foot, respectively, to achieve the dorsiflexion throughout the gait. The agonistic
behavior of the tibialis anterior is not seen during the gait as it is also triggered during the
push-off phase, which would make the soleus muscle work even harder to overcome this
force. However, to perform a successful ramp ascent, the toe-clearance is very critical and,
to enable this functionality, the DRL method learns to keep the tibialis anterior activated.
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Figure 11. The muscle fiber forces of the bicep femoris, vasti, soleus, and tibialis anterior (from top to
bottom) of the human model during ramp ascent for the entire simulation time. The figures on the left
side refer to the left leg, while the ones on the right side refer to the right leg. The horizontal red line
indicates the mean fiber force, while the horizontal blue line indicates the maximum isometric forces.

Figure 12 shows the ground reaction forces in the Y direction, computed at the zero
moment point of each foot during ramp ascent (i.e., each foot is in contact with the ground
four times and is lifted three times). The Y-component often shows peaks. It maxes out
at a force of −2668 N on the left leg and −2469 N on the right leg. It has an average (not
including zero values) of −527 N on the left leg and of −616 N of the right leg.

0

1

2

3

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.4

Time (s)

0

1

2

3

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.4

Time (s)

Fo
rc

e 
(N

 ×
 1

00
0)

Fo
rc

e 
(N

 ×
 1

00
0)

Figure 12. The ground reaction force in the Y direction computed at the zero moment point of each
foot (left foot on the left and right foot on the right) during ramp ascent.
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4.3. Evaluation

The human musculoskeletal model could learn to ascend both stairs and the ramp.
Table 4 reports the correlation values of the knee and ankle joints for the two tasks computed
on the simulation but excluding the last 0.5 s (i.e., the part of the simulation when the
model falls because the object ends). The model scores a lower correlation value during the
ramp ascent task (0.58) compared with the stair ascent task (0.82). It should be noted that
the right ankle has the lowest correlation in the stairs ascent task. The reason is that the
right foot is only in contact with the ground once during this task, leaving it not in contact
for most of the simulation. The angle of the foot, while not in contact, is less important for
learning the task, resulting in a low correlation.

Table 4. The correlation value for each joint during stair and ramp ascent.

Stairs Ascent Ramp Ascent

Left knee 0.92 0.84
Right knee 0.98 0.61
Left ankle 0.92 0.36

Right ankle 0.57 0.52

Mean 0.82 0.58

5. Conclusions

This paper proposed to use DRL to teach a physics-based human musculoskeletal
model to ascend stairs and ramps. The method is based on the PPO in combination with
imitation learning and is implemented in OpenSim.

Compared with our previous work [4], in which a similar method was used for
level-ground walking, this study showed that PPO with imitation learning is able to
cope with more complex environments, such as stairs and ramps, on which the model
can learn forward dynamics comparable to the experimental training data, achieving a
correlation of 0.82 during stair ascent and of 0.58 during ramp ascent across both the
knee and ankle joints. The muscle forces are comparable among the two legs (almost
no asymmetry is observed), and their average values are compatible with values from
healthy human subjects, suggesting the biomechanical accuracy of the musculoskeletal
simulation. However, with added computational power and time, adding upper body
joints and muscles, as well as arms, would be of interest.

The DRL method, together with the introduction of a novel reward function, the
elastic foundation model for the contact forces, and the meshes for the generation of
novel environment in OpenSim, built a solid base for future research into the analysis
of human locomotion on complex terrains and, possibly, into the control of lower-limb
prosthetic devices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22218479/s1, Video S1: The video shows the OpenSim simulation
of a physics-based human musculoskeletal model that has learned to ascend stairs and ramps by
means of a deep reinforcement learning architecture.
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