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Abstract: Remote healthcare systems and applications are being enabled via the Internet of Medical
Things (IoMT), which is an automated system that facilitates the critical and emergency healthcare
services in urban areas, in addition to, bridges the isolated rural communities for various healthcare
services. Researchers and developers are, to date, considering the majority of the technological
aspects and critical issues around the IoMT, e.g., security vulnerabilities and other cybercrimes. One
of such major challenges IoMT has to face is widespread ransomware attacks; a malicious malware
that encrypts the patients’ critical data, restricts access to IoMT devices or entirely disable IoMT
devices, or uses several combinations to compromise the overall system functionality, mainly for
ransom. These ransomware attacks would have several devastating consequences, such as loss of
life-threatening data and system functionality, ceasing emergency and life-saving services, wastage of
several vital resources etc. This paper presents a ransomware analysis and identification architecture
with the objective to detect and validate the ransomware attacks and to evaluate its accuracy using a
comprehensive verification process. We first develop a comprehensive experimental environment,
to simulate a real-time IoMT network, for experimenting various types of ransomware attacks.
Following, we construct a comprehensive set of ransomware attacks and analyze their effects over an
IoMT network devices. Furthermore, we develop an effective detection filter for detecting various
ransomware attacks (e.g., static and dynamic attacks) and evaluate the degree of damages caused to
the IoMT network devices. In addition, we develop a defense system to block the ransomware attacks
and notify the backend control system. To evaluate the effectiveness of the proposed framework,
we experimented our architecture with 194 various samples of malware and 46 variants, with a
duration of sixty minutes for each sample, and thoroughly examined the network traffic data for
malicious behaviors. The evaluation results show more than 95% of accuracy of detecting various
ransomware attacks.

Keywords: Internet of Medical Things (IoMT); ransomware; Cyber-Security; Tizen OS; Cuckoo
Sandbox

1. Introduction

The Internet of Things (IoT) has successfully managed the growing needs of societies
by improving quality of life and has efficiently deployed a range of services, such as
smart cities, agriculture, healthcare and emergency health services etc. Among the various
applications of IoT, the implementation of the e-health Internet of Medical Things (IoMT)
is playing a vital role in the healthcare industry with the aim to gain efficient health
access, improve the hospital healthcare quality, and improve the productivity of medical
equipment [1,2]. To enable IoMT, a diverse range of sensor devices are connected together
with IoT-enabled technologies in order to deliver reliable healthcare services e.g., distantly
monitoring patients [3,4] and effectively communicating and advising [5]. Researchers have

Sensors 2022, 22, 8516. https://doi.org/10.3390/s22218516 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22218516
https://doi.org/10.3390/s22218516
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7672-1187
https://orcid.org/0000-0002-8188-2601
https://orcid.org/0000-0002-6295-7014
https://doi.org/10.3390/s22218516
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22218516?type=check_update&version=3


Sensors 2022, 22, 8516 2 of 18

been working to create healthcare frameworks that link medical equipment to a variety
of healthcare services in a way that is accurate, reliable, and most importantly secure, all
in an effort to enhance the healthcare industry as a whole via IoMT [6]. Various types of
security attacks over IoT [7], especially controlling the medical devices in an IoMT e.g., for
ransomware, have been affecting the communication of IoMT devices that could threaten
the patients’ lives and disable the entire healthcare system.

The ransomware attacks are rapidly growing and are threats to individuals, businesses,
and government and private sectors, where the attackers infect their deployed infrastructure
and demand large amounts of ransom [8–10]. Due to an excess of such attacks, newer
versions of the ransomware attacks appear frequently and have been responsible for
millions of dollars of losses annually [11]. Unlike conventional malware attacks, which
often target a single layer of an IoT network, ransomware may spread across the network,
wreaking havoc on several levels before ultimately compromising the network’s security
in the process e.g., integrity, confidentiality etc. This has a disastrous effect on essential
real-time systems such as IoMT since it leads to money losses and vital information leaks.
A ransomware attack not only takes control of the network infrastructure of IoT network, it
can also take control of the user data, resulting in limited or no access to the service data
and operations. If the victim refuses to pay, the ransomware attack may result in extended
period of attack, increased demand, or the data may be deleted by the attacker [11].

The ransomware attacks can be divided into three categories: Crypto ransomware [12]
where the attackers use the encryption and decryption algorithm (i.e., public-private key)
to encrypt the data and files, hold the decryption key, and demand for ransomware.
The decryption key is handed over once the victims pay the ransom amount. In case of the
IoT networks (e.g., IoMT), the crypto ransomware is launched over the backend application
servers instead of IoT devices since the sensor devices do not contain large amounts of
data. Locker ransomware blocks user access to IoT devices, disables IoT sensor devices,
and controls system performance. In addition, this attack can be combined with the DDoS
attacks to disable user interface with the IoT devices or inactivate the sensor nodes, thus
denying legitimate user access. The Hybrid ransomware encrypts the important devices’
data (i.e., IoMT devices) and uses locking mechanism, which is severely devastating since
both the data and overall system functionality is compromised.

In this paper, we develop a ransomware analysis and identification architecture that
detects ransomware attacks and ensures their validity and accuracy using a comprehensive
verification process, by experimenting with various types of malwares. We took ten
different malwares, e.g., GPcode, Filecoder, etc., and experimented on their various samples
(respectively with an Avg. and St. Dev. of 21 and 18 samples) and variants (respectively
with an Avg. and St. Dev. of five and two malware variants). Hence, we evaluated our
ransomware analysis and identification architecture with a total of 194 various samples
of malware and a total of 46 variants. For each of the selected malwares, we considered
various types of ransomware attacks e.g., ‘Encrypting Files’, ‘Deleting Files’, ‘Stealing Files’.
We conducted our experiments using a Cuckoo Sandbox [13] that helps analyze the network
traffic data, specifically encrypted with Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols, for malicious behavior of network peers. In addition, for each
of the 194 samples, we ran our experiment for a total for sixty minutes and thoroughly
examined the network traffic data for malicious behaviors.

The primary goal of this malware analysis is multifold: How a malware attack interacts
with file system associated with IoMT devices, the nature of attack e.g., changing metadata
of a file system, to evaluate the robustness of a secure software system e.g., OpenSSL,
against eavesdropping, to differentiate between static and dynamic ransomware attacks,
and to verify the integrity via registry of a file system. In addition, we followed various
guidelines [14,15] in order to ensure the validity and accuracy of ransomware detection
analysis i.e., ensuring that the testing dataset comprises of diverse range of malwares,
the malware attack is robust against different system configurations to experiment various
settings and security measures, the target is within the vicinity of connected IoMT devices,
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in addition to guaranteeing that the detection filter has access to optimize various signatures
of source files.

During each trial session, the system log was copied to a parallel storage location,
where the responses were subsequently aggregated, evaluated, and audited. This was
done in order to improve anomaly detection and make our detection process as effective as
possible. Throughout this process of detection and optimization process, we took several
measures and steps: to see if the files were setup in diverse locations, separate file setup
was implemented to launch a different attack, search for corrupted files, and the files
are concurrently generated. After every iteration of our experimental session, we record
a detection rate which has a precision that is more than 85% of the detection accuracy.
Similarly, for each of the iterations, we note an average latency of malware detection was
recorded nearly 0.03 and 0.025 ms, respectively for continuous and triggered scanning of
malware. Furthermore, for various timestamps of the experiments, we found an increase
of malware detection of our proposed detection model. We argue that this performance
is satisfactory: it demonstrates the system’s consistency once an anomaly is initiated by
the ransomware.

Our main contributions are:

• Developed a ransomware analysis and identification architecture that detects ran-
somware attacks within an IoMT network

• Developed a comprehensive experimental environment to simulate a real-time IoMT
network

• Constructed a comprehensive set of ransomware attacks and analyze their effects over
an IoMT network devices

• Developed an effective Detection Filter for successfully detecting various ransomware
attacks and evaluating the degree of damages caused to the IoMT network devices

• Developed a defense system to block the ransomware attacks and notify.

We organize the paper in the following sections: Section 2 presents the related work.
The proposed methodology along with the experimental setup is presented in Section 3.
Section 4 presents the performance analysis of our proposed ransomware analysis and
identification architecture. Section 5 presents experimental results; we conclude in Section 6.

2. Related Work

Urooj et al. studied the dynamic analysis for ransomware detection across multiple
platforms, dataset collection and application of machine learning, deep learning and
hybrid approaches in dynamic analysis of ransomware detection. This study also proposes
future research directions. This study listed twenty-three windows platform datasets, two
Android, four cloud and IoT datasets and two network based datasets used in dynamic
analysis. Dynamic analysis executes the malicious code in a controlled environment
to capture the ransomware behavior. Pre-encryption detection studies are very limited
according to this study. This study addressed the open issues in ransomware detection for
future research: real-time detection, time-complexity, implementation on low specification
hardware, evasion and obfuscation-tolerant systems. This article provides comprehensive
study on dynamic analysis for ransomware detection [16].

Humayun et al. provided a wide-ranging analysis on evolution, prevention and
mitigation of ransomware in IoT. This study reported the current research directions for
ransomware during the period of 2014 to 2018, the penetration in different countries and
statistical report on ransomware attacks. Further ransomware propagation through various
sources and most affected sectors. Healthcare sector is top most priority for the attackers
including government and education sectors. This survey revels more priority should
be given in studying prevention and mitigation of ransomware attacks on IoT enabled
environments [17].

Alrawashdeh et al. offered a rapid method of ransomware detection using Memory-
Assisted-Stochastic-Dynamic-Fixed-Point arithmetic using a four-layer Deep Belief Net-
work (DBN) structure. In this approach, efficient cross-correlation for the stochastic com-
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putation in FPGA is produced by storing random bit-streams in memory. The memory
technique for the Deep Belief Network (DBN) is trained with stochastic computation with
dynamic fixed-point arithmetic. Precision rate 91% and detection speed of 0.006 ms. is
reported. This approach improves ransomware detection of ransomware in Internet of
Things (IoTs) [18].

Homayoun et al. presented ’Deep Ransomware Threat Hunting and Intelligence
System (DRTHIS)’ to detect ransomware and its family using Long Short-Term Memory
(LSTM) and Convolutional Neural Network (CNN) deep learning techniques, for classifica-
tion using the softmax algorithm. Training dataset includes 220 Locky, 220 Cerber and 220
TeslaCrypt ransomware samples, and 219 benign samples. Test results achieve F-measure
of 99.6% with a true positive rate of 97.2%. This model is even tested with previously
untrained variants of ransomware families CryptoWall, TorrentLocker and Sage. Results
for new ransomware detection rate are 99% of CryptoWall, 75% of TorrentLocker and 92%
of Sage. This study focused on fog layer nodes, which holds sensitive data [19].

Azmoodeh et al. proposed a method in which energy consumption patterns are
monitored to detect the ransomware. Energy consumption rate of different process is used
to classify ransomware from non-malicious applications on Android devices. PowerTutor is
used monitor power consumption of all running processes in 500 ms intervals. Ransomware
samples from VirusTotal, Intelligence API are applied with active Command and Control
(C2). This study demonstrated proposed approach outperforms K-Nearest Neighbors,
Neural Networks, Support Vector Machine and Random Forest, in detection rate, recall
rate, precision rate and F-measure [20].

Hatzivasilis et al. studied the security and privacy requirements and best practices,
which can be adopted to safeguard the users and stakeholders along with IoMT system.
Authors consider this study could be used as practical guide for developing IoMT appli-
cation. Security areas considered by most of the popular vendors are devices, security
at connectivity and cloud levels and security aspects studied here are confidentiality, in-
tegrity, and availability. Different protection mechanisms discussed in this study. Privacy
of personal data stored in IoMT devices is equally a high priority requirement. There
are established standards for privacy protection of Personal Identifiable Information (PII),
similar to the ISO/IEC standards 27018 and 29100 and regulation efforts such as the General
Data Protection Regulation of European Union Regulation (EC) 2016/679 was established.
Data is categorized into personal sensitive, sensitive and statistical. Highest privacy pro-
tection is given to personal sensitive data followed by the two others. Three aspects of
privacy studied in this paper are data-collection, data-access, and data-usage. Protection
mechanisms for these aspects are discussed and described [21].

Tervoort et al. reviewed options for mitigating cybersecurity risks from legacy medical
device software. This study found eighteen solutions for intrusion detection and prevention,
communication tunneling insecure wireless communications. This scoping review focus on
vulnerabilities in medical devices due to lack of security features, legacy operating systems,
unsupported software and inability to apply patches. To deal with the security issues of
medical devices that run legacy software a scoping review using a bidirectional citation
searching method. Search started with three relevant studies and discovered 121 articles
cited by these three studies and 725 articles cite these studies. Results classified based on
four criteria: (a) Application area (b) Risk type (c) Solution type and (d) Method of analysis.
The authors found 18 studies that address the risk caused by legacy software in medical
devices [22].

Fernandez et al. [23] proposed an intelligent and automatic solution to detection,
classification and mitigation of ransomware attacks in integrated clinical environments
(ICE++). ICE++ combines the mobile edge computing (MEC), software defined networking
(SDN), and Network Function Virtualization (NFV) provides adjustable, cost-effective,
and self-regulating administration of security system to mitigating the ransomware attacks
in ICE. The proposed system consists of four modules: the monitoring module collects the
network traffic from medical devices and generates feature vectors, the offline model gener-
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ation module receives feature vectors generated training dataset and selects a classification
algorithm to train a model and the analyzer module accepts the qualified ML models from
and, in real time, the current feature vectors thereafter detects the anomalies and labels
the traffic as ransomware or benign. Finally, the decision and reaction module assesses
the risk of having a functioning ransomware attack. This system uses One Class SVM for
anomaly detection and Naive Bayes for probability valuation of the association of the new
models to the class with the best analogous traffic pattern. Performance of the proposed
model is significant: it achieved 92.32% of accuracy and 99.97% of precision in abnormality
recognition; however Naive Bayes achieved a 99.99% of classification precision.

Baek et al. [24] suggested a two-step hybrid malware detection system (2-MaD) to
guard IoT nodes against obscured malware in a smart city environment. The 2-MaD
program was split into two steps. First, in which the detection of malicious software is
carried out using static analysis, and second, where the detection of malware is carried
out using a dynamic scan. The correctness of the false negative rate (FNR) was used
as a performance indicator. The performance assessment for 2-MaD exhibited that the
malware discovery precision was 94.46%, which exceeded detection based on static analysis.
The shortcoming of the projected scheme is that it failed to emphasized on involved
application interface calls, instruction trace logs and track the registry changes.

Damien et al. [25] offered a feature section architecture (FeSA) that aims to discover
a set of ransomware features that helped to develop the sustainability of the applied
machine learning classifier. The functional technique was equated to other systems such as
evolutionary search, harmony search, etc. in order to measure the ransomware exposure
degree, recall, false negative and accuracy. The projected mechanism failed to highlight the
exploitation impact of victim node’s boot record. Moreover, the ransomware identification
and prevention paradigm was not thoroughly investigated at gateway that is prime spot
for effective anomaly detection and response.

Farnoush et al. [26] identified ransomware only consuming the headers of the exe-
cutable file by creating and mapping feature vector graph using ‘Power Iteration’ technique.
For evaluation purpose, three datasets were compiled. The first data set contained 12,000
portable executables whereas the second dataset was based on 2000 executables. The third
data set was assembled with malwares such as Wannacry, Cryptowall, etc. with file sizes
ranging from 1kb to 26mb. The core benefits of the offered technique are satisfactory
computational convolution and satisfactory ransomware discovery rates.

Zahoora et al. [27] proposed a novel Deep Contractive Autoencoder based Attribute
Learning (DCAE-ZSL) system. The projected method was able to efficiently discover
code insertion that can study the semantic depiction of zero-day attacks in an unsubstan-
tiated style. To examine the method effectiveness the applied dataset comprises of 582
ransomware and 942 normal software samples based on office productivity apps, mobile
gaming APK and Microsoft Windows OS compatible widgets. Scheme accomplished a sub-
stantial conciliation between false positive and false negative as associated to the shallow
baseline prototypes. DCAE-ZSL is only effective on executable files, and does not show
promising outcome for diverse family of ransomware anomalies.

Manabu et al. [28] presented an open data set about hypervisor-based ransomware
storage intake behaviors. The dataset contains entree configurations of ransomware options
that considers variable OS versions and encryption applied methodologies as a benchmark-
ing criterion for sample segmentation. Dataset validity was examined by applying feature
engineering, and confusion matrices, which allowed to gain five-dimensional data vectors.
The main limitation of focused research is that the dataset was compiled and assembled in
consideration with an obsolete operating system (i.e., Windows 7) and will not be helpful
to train system against emerging ransomware tools.

The Industrial Control System (ICS) links the virtual and natural worlds with various
physical components, such as sensors and controllers. The present installation of the
ICS is mostly housed in what is known as the “plant”, which is a technical name for the
facility’s physical infrastructure. Inputs, outputs, and logic are the three components that
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make up control systems in IoT enabled facilities. Control inputs transmit plant status.
Zhang et al. [29] claims control logic is PLC software that can repeatedly receive, calculate,
and deliver control signals. This article introduces ICS-ARC, an innovative ransomware
attack mechanism that can automatically construct network packets unique to specific
control logic. The approach is presented in this article. A cyberattack using ransomware
is carried out by ICS-ARC in a four-step process. Both an Arduino with pre-installed
OpenPLC and a separate tap water treatment system were constructed by the authors so
that they could test the systems’ ability to exploit ICS-ARC vulnerabilities. The findings of
the demonstrated operational anomaly reveals that ICS-ARC substantially increases the
fault tolerance of the attempt while simultaneously decreasing the cost of the attack.

The extensive implementation of various information technology platforms across a
wide range of enterprise sectors is what is meant to be referred to as “digitization”. The
process of transformation often makes use of several sorts of systems, such as software
platforms, computer networks, and other types of network infrastructure. To identify phish-
ing simulation research methods, technologies and research gaps in practically evaluated
literature, a comprehensive review was carried out by Yeng et al. [30]. Phishing serves as
the most prevalent ransomware assault because it exploits the weakest link. An SMS-based
spoofing scenario research was conducted on Ghanaian medical practitioners using state-
of-the-art and quantitative techniques. For evaluation, the following roadmap was adopted:
(a) create content that is intentionally misleading, distribute a leaked document to the
authorities, and get approval in advance; (b) examine the safety of the individuals involved
as well as the security of their private details; and (c) claim about doing a debriefing, getting
post-consent feedback, and protecting your data. Research concludes that 61 percent of
recruited healthcare professionals were vulnerable.

Alqahtani et al. [12], offered a survey that is dedicated to studying and assessing
the state-of-the-art in ransomware detection and prevention in the interest of aiding the
scientists that attempts to disrupt this extremely significant and rising malware issue.
The emphasis is on cryptographic ransomware since it is the kind that is the most common,
damaging, and difficult to deal with. This article reviews the methods used for ransomware
identification modeling to provide suggestions for the focus and orientation of research
directions. Furthermore, concerns about ransomware early detection were addressed
in this article. Approaches pertinent to the various detection method stages have been
investigated. Authors have extensively commented on the current efforts that aim to
enhance feature extraction, selection, and behavioral modeling. Article suggested that
innovative techniques and solutions are still required, particularly those that examine
combined data from various sources and systems to strengthen and enhance malevolent
software’s behavioral traces.

Table 1 summarizes the purpose of various research works, characterized over various
features of ransomware, e.g., objective, contagion, malevolent events and extortion, along
with various tested environments and platforms i.e., PCs, mobile device, and IoT.
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Table 1. Assessment of similarities and differences of Related Work.

Research Narrative Progression
Covered Features of Ransomware Covered Platforms

Objectives Contagion Malevolent Events Extortion PCs Mobile Devices IoT

Alrawashdeh et al. [18]

To effectively detect malicious
activity, used deep learning to
extract the latent representation of
high-dimensional data.

N I I I N I I F

Homayoun et al. [19] Reveals IoT Ransomware
development. I I I F I N I F

Azmoodeh et al. [20]

Demonstrated an Android power
consumption-based machine
learning method to identify
ransomware assaults.

I F I I N N F F

Fernandez et al. [24]

Examined how genetic and
nature-inspired attribute selection
methods work in systems with
unpredictable forecasting
modifications.

I I I I N N N I

Damien et al. [27]

Examined how evolutionary and
nature-inspired attribute selection
techniques work in settings where
the forecasting model evolves
unexpectedly.

I I I I N I I I

Umme et al. [27] Used Zero-shot Learning (ZSL) to
identify ransomware. I I I I I I I I

Manabu et al. [28]

Presented a novel dataset of
ransomware configurations on
several operating systems and
storage system with complete
ciphering.

F I I F I I I I

N = No details are furnished, I = Incomplete data furnished, F = Full details are furnished.
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3. Proposed Method

Today, more than twelve billion devices are interlinked with each other to sense,
aggregate, process, analyze and exchange valuable streams of data [31]. Each device has
a unique identifier which enables the functional user to seamlessly operate and perform
rightful action. Considering the actionable gains, researchers are experimenting different
use cases that will enhance the productivity, efficiency, and effectiveness of healthcare
infrastructure. Mobility-aware digital healthcare appliances (i.e., Internet of Medical Things
(IoMT)) are helpful in ‘remote patient monitoring (RPM)’ by leveraging the connected
devices equipped with IoT sensors to monitor the fitness of a person and feed the sensed
data directly to ‘electronic health record (EHR)’ system. EHR is a vital decision-making
tool for physicians.

IoMT sensors help caregivers to capture reliable and contextual data feeds, such
as a patient’s status of his/her physiological, heart rate, glucose level in blood, oxygen
saturation, etc. Automation in hospitals reduces the cost and enhances the quality of care.
For hospital staff, their prime focus is to keep the patients happy and healthy. Unfortunately,
security and privacy are an exploitable consideration. Connected devices, such as fitness
monitors, sensors, affiliate data sources can be maliciously abused and disrupt the flow
of information to/from the needed platform. One of the emerging risks is associated
with ‘ransomware’ that locks the victim machine to support adversary’s illicit intentions.
Malwares (such as constructor, behavior analyzers, backdoors, SQL slammers, and Crypto-
Lockers) are able to deploy evasion methods, infection broadcasting, and distributed Denial
of Service (DDoS) attacks. Unlike traditional malwares, ransomware target ‘Command and
Control (C&C)’ servers and health monitoring interconnected devices to exhaust and lock
the daily operations of an organization.

Proposed research focuses on devices mounted with Tizen [32] operating system.
Tizen was programmed in consideration with rapidly changing mobility aware sensing
devices and for affiliate data-driven systems. Tizen module supports Linux-based essential
libraries that are helpful for EHR databases, data parsing, connectivity-related functionali-
ties, personal information management (PIM), etc. It sustains an applied method and its
properties using cgroup (i.e., control group). The significance of the process is stimulated
to lessen the likelihood that the OS event progression is killed in a low memory condition.
Moreover, sensor frameworks furnish instrument proceedings to applications and platform
modules. A sensor operation can be evaluated by engaging hardware or simulated sensors.
Table 2 describes the application & system states as illustrated in Figure 1.

Table 2. System Service States.

State Description Auto-Restart On-Boot On-Reboot Post Package
Installation

Pre Package
Updates

Ready

Application has
begun

(i.e., setting up the
dbus connection)

No No
Not auto

launched when
reboot

Not auto-launched
callback

(i.e., service_app)
when reboot

Not launched
inevitably

Created Application initiates
the core loop. No Yes Launched

automatically
Initiated callback
(i.e., service_app)

Launched
inevitably

Running Application is
functional. Yes No Not Launched

Not launched the
callback

(i.e., service_app)

Launched
inevitably

Terminated
Application’s

functional operation
has ended

Yes Yes Not Launched Launched callback
(i.e., service_app)

Launched
inevitably
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Figure 1. Module based application statuses.

By extracting application statues, information such as Resource ID, Resource Type,
URI (i.e., provides data related to Authority, application Path, system Query), Multipur-
pose Internet Mail Extensions (MIME) type, application & message keys (for example:
app_control_data, etc.), and launch mode settings (i.e., privileges) can be revealed. In pro-
jected technique, for messaging ‘remote & local’ ports were accessible. Tizen platform
secures accessible data and mounted applications by storing them in a secure repository
and crypto modules.

Using the popular OpenSSL command line program, we implemented key manage-
ment, data integrity, ciphering, and decoding. The following cryptographic techniques
were utilized: (a) Data Encryption Standard (DES), (b) RSA (Rivest–Shamir–Adleman),
and (c) a digital signature algorithm (DSA). Tizen has a built-in Content Screening and
Reputation (CSR) framework that grants privilege to installed application to filter, audit
and block malicious event calls. Each application is eligible to code its malware scanning
criteria by (a) forming content screening context, (b) applying content scanning (i.e., mem-
ory, file, & directory), (c) detect a malware by signature verification (i.e., size, exploit path,
event list & size, and device privilege policy).

Contrasting most of current malware attacks, ransomware threats are not typically
considered to be furtive after the septicity level, as the entire idea of the attack is to report
targets that their computing infrastructure is maliciously compromised with the aim to
encrypt or destroy the data. To understand the ransomware triggering behavior of malicious
software we have analyzed the following (Table 3) original and upgraded malware:

Table 3. Analyzed malware that was used in experiments.

Attack Types

Malware Samples Variant Encrypting Files Deleting Files Stealing Files

GPcode 55 9 Yes No No

Filecoder 46 5 Yes Yes No

Cryptolocker 30 5 Yes No Yes

Tobfy (screen locker) 15 4 Yes No Yes

Cryptowall 11 3 Yes No No

AutoKMS 9 6 No Yes Yes

Wacatac.B!ml 11 4 Yes Yes Yes

Obfuscator 7 5 Yes No No

Daemon_Tools_Lite_BundleInstaller 10 5 Yes Yes Yes

Experiments were conducted using modular Cuckoo Sandbox [33] that permits anal-
ysis of memory, behavior of malicious files and network traffic especially when the data
stream is cyphered with Secure Sockets Layer (SSL)/Transport Layer Security (TLS). Each
sample was rigorously examined for sixty minutes. After each session, the system was
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refreshed and rolled back to normal state to diminish or avoid any intrusion by secondary
evaluations. The prime goal of malware analysis was:

1. To define by what means a malevolent procedure interacts with the file system after a
victim IoMT device is experiencing a ransomware attack.

2. To evaluate I/O callback routines that handles the ‘feature change call’ to the file
system.

3. To analyze the reliability of customized cryptosystems (i.e., OpenSSL and YACA).
4. To understand the static (code) and dynamic (behavior) of ransomware.
5. To verify the integrity of registry keys, registry process, Dynamic-link library (DLL),

UNICODE strings, information about TCP connections, TCP dumps, data related to
‘file_change_monitor’, TCP port listener, and unpacked applications.

Detection Filter

We assume that if malware is present in the system, it influences more than one
application-driven data set. Whether the adversary attempt was successful or failed,
the corresponding data were logged. If a violation (i.e., malicious event or behavior) is
observed, the defense system will block the event and notify the base station.

∑
Executions

[
kO×

(
1

mK
× 1

pos

)]
= Mo with

kO = 1 if the execution comprehending ’H’ failed,

kO = 0 otherwise

(1)

Here, ‘kO’
is the entropy (i.e., state of disorder), where ‘O’ is the unique group of samples, ‘H’

is the associated malicious event linked with ransomware, and ‘mK’ is the analyzed log
file. As per Equation (1), the number of unsuccessful executions in which ‘H’ is available
(Mo) over several executions that exist in (M). ‘pos’ is represented as a Boolean function
that signifies the ‘open or false’ state of policy logic.

k = K(H, i.e., is the malicious activity linked to ransomware )

=
Mo + ∑execution kO× (1/mK)α × (1/pos)β

2M
(2)

According to the Equation (2), there is a strong chance that the fault/Trojan horse is
embedded in the system routine if there are abuses signaling a similar procedure. Thus,
the use of probabilistic score estimation is beneficial in the process of assigning relative
ratings to all interconnected devices. For a given IoMT ad-hoc network ‘N = (H, P)’ with
|L| devices, let ‘T = (tyx)’ be the parsimony model; if vertex ‘y’ is linked to ‘x’, so ‘tyx = 1’,
and ‘tyx = 0’ otherwise. Here ‘N’ is the entropy rate of the ad-hoc network, and ‘P’ is the
state of malware transmission matrix.

dy =
1
∃ ∑

xεU(y)
dx =

1
∃ ∑

xεN
tyxdx (3)

where ∃ refers to existential quantification that was used to identify predicate variable and
U(y) is a regular dataset of related event log associated to constants ‘y and ∃’. Application
call-related event data require a ranking matrix to identify the importance of generated
data logs.

KBy =
1− A

M
+ a ∑

xεH(y)

KB(x)
outQ(x)

(4)

where ‘a’ is the datasets, ‘H(y)’ is a set of relationship among data connections to ‘y’,
‘OutQ(x)’ is the outer links to external data sources available of node ‘x’, and ‘M’ is the
total number of associated interlinked devices.
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During experiments, we observe that during malware transaction, the short-time
power consumption and frequency-domain function outcome data are drastically variable
in comparison from the routine behavior. The Laplace transform function was applied to
projected method to analyze continuously generated variable case data to resolve the initial
value problem.

D(w) =
M−1

∑
w=0

d(w)p−x2πxw/m, (0 ≤ w ≤ M− 1) (5)

Equation (5) indicates the possibility to observe and evaluation of linear continuum
‘D(w)’ which indicates exposure of observed system to the malevolent entity. To match the
signature, a requirement-focused characteristic database is required and was maintained.
For this reason,

Ay( f y) = probabilitydistribution( f y|dy; ∃) (6)

where ‘y’ represents the chosen preparation data section, and ‘ f ’ is the classification in
which this dataset can fit in to, and Ay refers to a definite likelihood distribution of ‘ f ’.

measured variable (θ) = maxθ ∑
y

∑
f y

Ay( f y) log
probability(dy, f y; ∃)

Ay( f y)
(7)

For analysis, we collected, processed, and analyzed data captured in context of CPU
energy consumption when specific health monitoring applications were active. In health-
care facility, EHR was enriched by real-time sensor feeds (e.g., biosensor data flow, images,
accelerometer, temperature, and pressure). Sampling frequency for data aggregation of
required data to identify ransomware was 200 ms per sample. Nominated flags to identify
the ransomware existence in the host device are identified in Table 4.

Table 4. Observed attributes for malicious software and/or process call.

Operation Purpose

DLL removable execution Hijack Execution Flow

Unwanted Executable Image Exploit targets

Outdated Application Version Inject executable malicious code

Size of Executable Code Identify and/or payload exploitation

Size of Reserved Stack Off-by-one overflow indicator

Size of Heap Stack Off-by-one overflow indicator

Size of Reserved Commit Log4Shell exploitation

Size of Heap Commit Heap-based buffer overflow

Address of Entry Point Understanding Privilege Escalation

Data Source Understanding Privilege Escalation, Command Injection Attacks

Application Loader Flags Identification of Code Flaws, and Insecure Code

Data Relocation Calls Identify attack vectors

Pointer to Raw Identify attack vectors

Data Applied Primary & Sub Languages by Application Identify ‘System call parameters and application ‘Configuration settings’

Timestamp of Executable Code Generation Exploit DB to launch Denial-of-Service

The ransomware executable packages itself with numerous executables that are prereq-
uisites for it to achieve its operational requirements. During the experiment, the projected
ransomware used SHA-256 to partially encrypt each file separately, change and rename the
file type extension identifier, change the wallpaper on the device, programmatically avoid
the caching suspension, and skew the examination of the encrypted binary file.
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Here, we assumed that skewness is a degree of regularity in a dissemination. Momen-
tal skewness (E) can be evaluated as:

αu = 1/2E1=µ3 /3σ3 (8)

where σ is the regular eccentricity, µ is the mean and ‘E’ is referred as skewness. Since the
suggested experimental system could provide a mean and a standard deviation, the skew-
ness of the data set at the time of evaluation could be calculated. In consideration of
Equation (8),

E3 =
∑M

y (Dy − D)
3

(M− 1)× σ3 (9)

where ‘D’ is random variable, and ‘D’ is the mean of distribution.
In general, proposed technique considers an unfamiliar executable (i.e., mentioned in

Tables 3 and 4) as apprehensive, for the reason that these kinds of process complication
practices are commonly applied by malwares.

4. Performance Analysis

In consideration with Tizen ransomware attack phases, the malware identification,
tolerance, and countermeasure mechanisms were coded for characterization and evolution
purpose. Various configuration settings for the experimental evaluations are given in
Table 5. Dataset (i.e., Table 3) analysis was conducted for the following system configura-
tions:

Table 5. Configuration for experimental evaluation.

Operating System Tizen 6.0 M2

OS Kernel Linux LTS with multiuser support

File format Tizen Package Kit (TPK)

De-compilation Tool dnSPY

CPU AMD A10-4600M, AMD A6-3400M

Data Width 64 bits

L1 Data 4 * 64 Kbytes (2-way)

CPU Cores & Threads 4

Frequency 1400 to 2300 MHz

Bus Speed 99.82 MHz

Thermal Power 35 Watt

Power state levels Screen (OFF, DIM, NORMAL, AWAKE)

RAM 8 GB

Devices X86 supportive architecture (wearables, mobile, etc.)

Transistor Count 1303 million

Total Data/Code Samples 194

Analyzed Ciphered File Extensions .FOX, .KOKO8, FASTB, .ANN

Targeted Extensions .txt, .doc, .docx, .xls, .xlsx, .jpg, jpeg, .mdb, .zip, .rar

Data Mining Tool (Testing and Validation) KNIME (Konstanz Information Miner)

Before performing feature assortment, we have prepared our data set by eradicating
duplicate features. For applied architecture mentioned in Figure 2, dataset weight was
approximately 149 GB, which contains source files, data files, database backups, xml
supported multimedia files, TPK, etc. To ensure validity and accuracy of ransomware
detection analysis, we followed pre-declared guidelines, such as:

1. Verification of testing dataset by ensuring if it contains dissimilar malwares,
2. Malware is effective in different system configurations,
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3. Intended target is linked with Prince Sattam University’s internal or external network
devices, and

4. Detection filter is capable of editing system ‘access control policy’ source files in order
to tune and optimize certain signature or behavior.

Figure 2. Ransomware analysis and identification architecture (i.e., before Denial-o-Service).

The following factors are maintained constant during the entire experiment.

1. The experimental configuration on which the test is performed.
2. The ransomware agent used to attack the target system.
3. The mechanism that detects ransomware.
4. The timing mechanism for system shutdowns.

To apply weights to each evaluated feature, we used Logistic Regression (LR) model.
LR provides an effective understanding of relationship among dissimilar dataset variables
that helped project system to decide whether certain system call (e.g., ‘feature change call’)
is malicious or legitimate.

ρ(d) =
1

1 + p−d , d = β0 + β1d1 + . . . + βmdn (10)

where βm the erudite ratio for feature dn. This ratio is erudite through repetitions in order
to diminish the inaccuracy between the anticipated values and the definite values.

5. Experimental Results

Malware implies the use of common techniques, as illustrated in Table 3. To determine
how the malware binary is generated and responded, three experimental trials were carried
out. For each session, 60% of the sample set was used for training and 40% for testing the
intended method. The results of each experimental session are set out in Figure 3. The
primary aims to conduct detection trails were (a) to scan folders using signature-based
detection to identify files and patterns related with ransomware, and (b) by using rule-
based analytic, find ransomware strains that have not been seen before. After each session,
the system response log was aggregated, analyzed, and audited to enhance the anomaly
detection system. Analyzed ransomware accesses a variety of directories to establish an
appropriate environment for ciphering.
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(a) (b)

(c)

Figure 3. Ransomware detection rate (a) Trial 1, (b) Trial 2, (c) Trial 3.

Figure 4 (i.e., extension of Figure 2) focuses on the feature extraction that is required to
identify and optimize vulnerability detection process. The following characteristics were
exclusively (but not limited to) evaluated for each iteration:

1. If directories/files are set up in various locations?
2. If the created folders begin with a distinctive character?
3. If a separate filing setup is implemented?
4. Do files that are created have understandable names?
5. Are various file formats taken into consideration?
6. Whether the files are unusable (corrupted) files?
7. If more than 50 files are generated concurrently?
8. If an alert is triggered when detection log files are viewed?

Figure 4. Ransomware’s Feature detection and Optimization Process.

Figure 5 indicates the mean latency, which is logged and compared after the detection
technique has been carried out to determine whether the performance of other transactions
is stimulated by the applied detection approach. In terms of performance measurement after
registering the aforementioned activities, devices were periodically exposed to predefined
vulnerabilities. Once the infection scenario begins, the start and end times of the events are
recorded to calculate the average overhead.
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Figure 5. Average Latency impact on Tizen mounted devices.

Figure 6 shows how the model performs on different timestamps. The output is not
constant every second, but it is usually high because it is equal to or over 90 percent.
For quick malware recognition, this performance is satisfactory because it demonstrates
consistency once anomaly is initiated by the ransomware.

Figure 6. Early Detection Accuracy.

Figure 7 exhibits a comparison of the suggested technique with that of previously
published studies. It is apparent that there are currently no solutions that can suit all the
requirements that have been described. Nevertheless, the proposed technique has the
potential to dramatically increase the IoMT system’s security and dependability while
simultaneously minimizing threat likelihood.

Figure 7. Comparative Analysis [18–20,24,25,27,28].
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To further support our evaluations, we carry out a t-test (note that other hypothesis
testing can be carried out) to test the null hypothesis whether the proposed framework and
literature works would provide the same level of protection to the IoMT systems. Various
statistics are given in Table 6, such as t Stat, t Critical two-tail, and the Mean Differences. It can
be observed that t Stat values compared to t Critical two-tail, for the proposed framework,
are consistently higher than the previously published works. As an example, examin-
ing the first column i.e., comparing proposed framework with Alrawashdeh, et al. [18],
the tStat > t Critical two− tail are evaluated to 3.55 > 2.57, hence we reject the null hy-
pothesis, whereas carrying a huge mean difference of 0.15. Similarly, for some other proposals
e.g., [19,20,24], there is a huge difference among various statistics, which is convincing
enough to claim that the security provision with the proposed approach is significantly
different from these proposals. Similar trends can also be observed with other proposals
i.e., [25,27,28].

Table 6. Statistical hypothesis testing for proposed framework and previously published works.

Statistical Symbols Proposed Research

t Stat 3.55 11.49 12.82 15.64 8.06 9.74 6.67

t Critical two-tail 2.57 2.31 2.31 2.31 2.36 2.36 2.45

Mean Differences 0.15 0.26 0.25 0.36 0.19 0.19 0.20

[18] [19] [20] [24] [25] [27] [28]

6. Conclusions

Large or small, regardless of size, each institute is vulnerable to devastating effects of
ransomware attack. Cyber criminals have been developing vulnerabilities at a more rapid
pace than system developers have programmed protections in several recent incidents.
The risk associated with ransomware begins with a preliminary infection and compromise,
but it does not end there. In order to avoid vulnerability, a defense system should be
autonomic and autonomous. The proposed technique leveraged multiple capabilities,
such as monitoring, identification and alerting of abnormal sourcing patterns for incident
response. Vulnerability analysis enabled the ransomware prevention system to respond in
an active manner. During the experimental assessment, the proposed methodology was
reviewed and trained to achieve resiliency with integrated recovery skills. The malware
prevention shield limits the ability of the adversary to create highly targeted attacks. To
eliminate blind spots, in future we aim to focus on:

1. Explore opportunities to bridge security monitoring gaps.
2. Examine the impact of packet traffic monitoring to purpose secure hybrid environment

(i.e., on-premises and in the cloud) that can operate without friction,
3. Indicate appropriate methodology to gain scalable system audit log in order to gain

valuable insights.
4. Detect next-generation and emerging ransomware threats in real-time with higher

efficiency and diminished false positives.
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