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Abstract: This study proposes an ultrahigh-sensitivity split-ring resonator-based microwave sensor
for retrieving the complex permittivity of liquid samples. An interdigital capacitor structure was
used to expand the sensing area and the sensitivity. A defected ground structure and A parallel
dual split-ring resonator were introduced to improve the quality factor. A polydimethylsiloxane
microfluidic channel substrate was placed above the interdigital capacitor structure. The channel
route coincided with the interdigital gap to fully utilize the strong electric field. Ethanol–water
solutions with varying ethanol fractions were injected into the channel as the testing liquid. It was
demonstrated that the variation in resonant frequency can be used to retrieve the dielectric properties
of liquid samples. The proposed sensor used a small liquid volume of ~0.68 µL and provided values
in good agreement with the reference data.

Keywords: split-ring resonator; defected ground structure; interdigital capacitor; microfluidic
channel; sensor

1. Introduction

Microwave dielectric spectroscopy has advantages in detecting and identifying materi-
als due to its real-time measurements, non-invasiveness, high sensitivity, and robustness [1].
Planar resonator-based microwave sensors have been applied in many testing and character-
ization scenarios, including displacement and rotation sensing [2], crack detection of metal
and non-metal materials [3], medical settings [4], and dielectric constant measurements for
solid dielectrics and liquid chemicals [5–8].

The working principle of resonator-based sensor is as follows. When a sample is placed
in the sensing area, it will induce shifts of resonant frequency and notch magnitude, which
could be used to retrieve the dielectric properties of the loaded sample. The mainstream
resonators include split-ring resonators (SRR), complementary SRRs (CSRR) [9,10], electric-
LC (ELC) resonators [11], defected ground structures (DGS) [12], stepped impedance
resonators [13], and spiral resonators [14]. Specific functionalities such as dual mode,
compact size, and differential measurements require further investigation.

In the past several years, considerable research efforts have been put into developing
microwave sensors for detecting mixed solutions. SRR and CSRR are the most widely used
resonators in the design of microwave planar sensors [15,16]. In the implementation of
CSRR-based sensors, a microfluidic channel chip should be placed on the ground plane
to allow liquid injection. However, the applications of planar microwave sensors usually
require an additional periphery readout circuitry [17,18]. The assembly of the microfluidic
channel chip on the ground plane would make the CSRR-based sensors difficult to integrate
with the periphery circuitry.

In comparison with the CSRR structure, SRRs are easy to integrate but face the limita-
tions of a small sensing area and a low quality factor. To improve the sensing area, new
types of SRR-based sensors were developed. In [19], an SRR-based sensor was realized by
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incorporating an SRR within a square loop; however, it required a large amount of liquid
due to its intrusive detection method. By loading two identical SRRs into a microstrip
splitter/combiner configuration, a differential-mode sensor was designed in [20]. Further,
a triple SRRs structure was proposed in [21], with the substrate punched in the gap of
the outermost SRR to allow the liquid sample to flow vertically. An inter-digital structure
was incorporated into an SRR to increase the sensing area [22]. On the other hand, several
efforts have been devoted to improving the sensor quality factor. A three-stage coupled
SRR structure was employed in [23], and an active feedback loop was introduced in [9] to
increase the sensor resolution. However, the sensitivities of these sensors were relatively
low due to their limited sensing area.

In this study, we propose an electrically small microwave planar sensor by combining
an SRR and an interdigital capacitor (IDC). By etching a rectangular area on the ground
plane below the IDC-SRR structure and utilizing four metallic vias, a dual-SRR structure
was realized, and both the sensor sensitivity and the quality factor were improved. The rest
of this paper is organized as follows. In Section 2, circuit models and optimization of the
SRR-based sensor are presented. Then, a polydimethylsiloxane (PDMS) microfluidic chan-
nel chip was attached on the proposed dual-SRR, and the simulated results are described.
In Section 3, a prototype of the proposed sensor was fabricated and tested for experimental
verification. Some conclusions are finally drawn in Section 4.

2. Working Principle and Sensor Design

In this section, the working principle and optimization of an SRR-based planar mi-
crowave sensor are introduced and discussed. A complete comparison of all proposed
designs is made at the end of this section.

2.1. IDC-SRR-Based Sensor

Compared with the CSRR-based sensor, whose sensitivity is also influenced by the
coupling capacitance between the CSRR and the microstrip line [16], the resonant frequency
of an SRR-based sensor only depends on the effective capacitance of the SRR [24]. Therefore,
it is intuitive focus on the design of the SRR effective capacitance. Here, the IDC structure
was employed in the SRR design to increase the sensing area and sensitivity, as shown in
Figure 1a. The equivalent circuit model is shown in Figure 1b. In general, the microstrip
line can be modeled by the inductance L and the capacitance C, as shown in Figure 1b.
At the resonant frequency, the IDC-SRR can be represented by a series combination of
inductance LS, capacitance CS and resistance RS of the SRR [25]. M denotes the mutual
inductance between the microstrip line and the SRR. As shown in Figure 1b, the circuit
model was simplified as a parallel model with LE = ω2M2CS, CE = LS/

(
ω2M2) and

RE = ω2M2/CS, where ω is the angular frequency [24]. The equivalent impedance ZS

can be calculated by ZS = (1/RE + 1/(jωLE) + jωCE)
−1 [26]. For a two-port network,

the transmission coefficient S21 can be expressed as S21 = ZC ‖ Z0/ZC ‖ Z0 + ZS + ZL,
where ZC = 2/(jωC), and ZL = jωL. ZC and ZL are the impedances generated by
parallel capacitance and line inductance, respectively. Here, RS is deliberately ignored for
convenience, and the resonant frequency can be defined as

f0 =
1

2π
√

LECE
=

1
2π
√

LSCS
(1)

The IDC capacitance CI can be regarded as several pairs of parallel plate capacitors,
with a uniform strong electric field between the plates. It is easy to implement a microfluidic
channel along the meander gap. As shown in Figure 2, although the electric field is confined
at the gap of a traditional SRR, it is difficult to load a liquid sample into such small sensing
area. By introducing an IDC structure in the SRR, the sensing area can be increased to allow
the loading of a liquid.
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Figure 1. (a) Schematic and (b) equivalent circuit model of the IDC-SRR-based sensor. The geomet-
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Figure 2. Magnitude distributions of the electric field on the top microstrip coupled with (a) a tra-
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Figure 2. Magnitude distributions of the electric field on the top microstrip coupled with (a) a
traditional SRR and (b) the IDC-SRR at the resonant frequency.

2.2. DGS-IDC-SRR-Based Sensor

It is worth noting that the applications of SRR-based sensors are usually limited by
their low quality factor. To improve the sensor resolution, a DGS was introduced, and the
microstrip line width was reduced in the sensor design to increase the notch magnitude, as
shown in Figure 3a. In the figure, wg and lg are the width and the length of the DGS. The re-
duced microstrip line width would increase the impedance, thereby increasing the coupling
between the SRR and the microstrip line [26]. Moreover, the etched structure on the ground
plane would introduce an effective inductance LDGS and an effective capacitance CDGS
into the model [27], as shown in Figure 3b. The transmission coefficient of the DGS-IDC-
SRR-based sensor can be expressed as S21 = [1 + (ZL + ZDGS + ZS(εr))(1/ZC + 1/Z0)]

−1,
where ZDGS represents the impedance induced by the DGS. It is evident that the total
impedance increased, and therefore, the notch magnitude could be improved.

2.3. DGS-IDC-DSRR-Based Sensor

On the basis of the DGS-IDC-SRR structure, an additional ring was added in the
resonator through four metallic vias, as shown in Figure 4a. In this way, a dual-SRR
(DSRR) structure was obtained. Figure 4b,c show the equivalent circuit model and the
corresponding simplified model of the proposed DGS-IDC-DSRR-based sensor. It is evident
that the added ring would cause a mutual inductance, which increased the SRR impedance
ZS and, ultimately, the notch depth.
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Figure 3. (a) Schematic and (b) equivalent circuit model of the DGS-IDC-SRR-based sensor. The
geometrical dimensions are wg = 11.5 mm and lg = 15 mm.
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Figure 4. (a) Schematic of the complete sensor and (b) its equivalent circuit model with the DGS
structure. (c) Simplified model of the whole structure. The geometrical dimensions are d = 0.3 mm,
a2 = 11.6 mm, a3 = 3.2 mm, and b3 = 6.4 mm.

In this study, the 0.762 mm thick dielectric substrate Rogers RO4350B with a dielectric
constant of 3.66 and a loss tangent of 0.0031 was selected. The substrate dimension was set
as 39 mm × 18 mm. The full-wave electromagnetic simulator ANSYS HFSS was used to
obtain the transmission coefficient. As shown in Figure 5, the simulated results obtained by
HFSS and circuit model agreed well with each other.
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Further, to allow liquid flowing, a PDMS microfluidic channel chip with external size
of 10 mm × 10 mm × 5 mm was attached to the proposed sensor, as shown in Figure 6. The
microfluidic channel route coincided with the meander gap of the IDC, and the channel
height was 0.2 mm. There were two cylindrical holes with a diameter of 0.3 mm at both
ends of the channel. For comparative analysis, a liquid sample with varying permittivity
was injected into the channel. The relative frequency shift is defined as

fr =
fo − floaded

fo
=

1√
2π(LEC0)

− 1√
2π(LECloaded)

1√
2π(LEC0)

= 1−
√

1

1 + C2
C1
· εLUT−εAir

εr+εAir

(2)

where fo and floaded are the resonant frequencies of the unloaded sensor and of the sensor
loaded with the liquid sample, respectively. Here, C1 is the capacitive effect induced by
air on one side of the sensing area, and C2 stands for the capacitive effect of air in the
microfluidic channel. It is worth noting that, different from the microfluidic channel of
traditional SRR-based sensors, the liquid sample loaded in this customized microfluidic
channel covered the gap of the IDC, so that all the LUT could achieve a high utilization
rate due to their uniform distribution in the region of a strong E-field.
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Figure 6. Schematic of the DGS-IDC-DSRR-based sensor for microfluidic applications.

Figure 7 shows the relative frequency shift of four sensors with respect to the loaded
liquid sample. The permittivity of the loaded liquid sample increased from 1 (air) to
81 (distilled water). It is evident that the utilization of an IDC in the SRR design would
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produce a significant increase in the relative frequency shift at the expense of a decreased
notch depth (see Figure 5a). The DGS could further improve the relative frequency shift
and simultaneously increase the notch depth (see Figure 5b). As shown in Figure 5b, the
DSRR structure had little influence on the sensor sensitivity but could increase the notch
depth, thereby improving the sensor resolution.
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Figure 7. Simulated relative frequency shift for four sensors.

3. Experimental Validation

To verify the sensor functionality, the latter two sensor prototypes were fabricated
using the PCB technology, as shown in Figure 8a. The PDMS microfluidic channel chip was
produced according to a previous design and attached to the sensing area. Two 50 Ω SMA
connectors were mounted on the microstrip line. Figure 8b shows a photograph of the
experimental setup. The sensor responses were recorded by the Keysight D5234B Vector
Network Analyzer (VNA) (Keysight Technology, DE, USA). Ethanol–water solutions with
different ethanol volume fractions were prepared to be used as the liquid under test (LUT)
and slowly pushed into the PDMS microfluidic channel through a syringe under a pressure
lower than 300 mbar to prevent rupture. In order to reduce the operating error, the channel
was first emptied and then dried with a hot-air blower before injecting the liquid sample.
The stop-flow technique was adopted to avoid bubbles that would affect the accuracy of
the experiment as much as possible.
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Figure 9 shows the transmission coefficients of the proposed sensor with the PDMS
microfluidic channel substrate. The measured results were in good agreement with the
simulated results. As the PDMS substrate was attached, both the resonant frequency and
the notch depth of the sensor decreased. It is evident that the DGS-IDC-DSRR could provide
a larger notch depth than the DGS-IDC-SRR. Here, the quality factor of the sensor was
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defined as the ratio of the resonant frequency to the −3 dB bandwidth. It was determined
that these two sensors had quality factors of 50 and 97.6, respectively. It is evident that
the sensor quality factor can be improved by replacing the SRR with a DSRR, thereby
improving the sensor resolution.
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Figure 9. Measured transmission coefficient of the proposed sensor with the PDMS microfluidic channel.

Then, ethanol–water solutions with an ethanol volume fraction increasing from 0%
to 100% by steps of 10% were injected into the microfluidic channel, and the transmission
coefficients were recorded using the VNA. Figure 10a shows the measured responses of
the proposed DGS-IDC-SRR-based sensor. As the ethanol fraction increased, the liquid
permittivity decreased, and the resonant frequency increased from 0.503 GHz to 1.01 GHz.
At the same time, the notch depth decreased from −4.9 dB to −7.78 dB with the increasing
ethanol fraction, as shown in Figure 10b.
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The relationship between the liquid permittivity ε = ε′ − jε′′ and the sensor responses
including the resonant frequency f0 and the peak attenuation |S21| is plotted in Figure 10b.
A simple mathematical model was established as[

∆ f0
∆|S21|

]
=

[
m11 m12
m21 m22

][
∆ε′

∆ε′′

]
+

[
n11 n12
n21 n22

][
∆ε′2

∆ε′′ 2

]
(3)

where ∆ε′ = ε′sam − ε′ref, ∆ε′′ = ε
′′
sam − ε

′′
ref, ∆ f0 = fsam − fref, and ∆|S21| = |S21|sam −

|S21|ref. The subscripts of “sam” and “ref” represent the cases when the liquid sample was
loaded and when the channel was filled with pure ethanol. The complex permittivity of
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ethanol aqueous solutions with different ethanol fractions reported in [28] were used as the
reference values. The element values of the matrices in equation (3) were obtained using
the nonlinear least square curve fitting tool in Matlab software (MathWorks, Natick, MA,
USA) [16]. By substituting the obtained parameters into (3), the complete mathematical
relationship can be written as[

∆ f0
∆|S21|

]
=

[
−0.01376 −0.01271
0.08104 0.08652

][
∆ε′

∆ε′′

]
+

[
9.154× 10−5 −0.003231
−5.891× 10−4 0.02581

][
∆ε′2

∆ε′′ 2

]
(4)

By inverse operation, the complex permittivity of a liquid can be obtained by[
∆ε′sam
∆ε
′′
sam

]
=

[
597.037 96.073
−319.876 −45.148

][
∆ f0

∆|S21|

]
+

[
950.967 −18.486
−289.210 4.6080

][
∆ f0

2

∆|S21|2
]

(5)

Similarly, the transmission coefficients of the proposed DGS-IDC-DSRR-based sensor
were measured, as shown in Figure 11. As the ethanol fraction of the ethanol–water
solution increased, the resonant frequency increased from 0.584 GHz to 1.206 GHz, while
the notch depth decreased from −7.6 dB to −9.4 dB. By following the similar procedure
described above, the mathematical relationship between the liquid permittivity and the
sensor responses was established as[

∆ε′sam
∆ε
′′
sam

]
=

[
117.067 21.796
−75.155 −5.678

][
∆ f0

∆|S21|

]
+

[
262.504 −0.7912
−73.204 −3.0222

][
∆ f0

2

∆|S21|2
]

(6)
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Then, the measured resonant frequency and peak attenuation in the presence of
different ethanol fractions were substituted into (6) to retrieve the complex permittivity of
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the liquid sample, with the retrieved liquid permittivity shown in Figure 12a. Methanol–
water solutions with different volumes of the methanol fractions were also tested, and the
corresponding measured resonant frequency and peak attenuation were input in (6) to
retrieve their complex permittivity. The retrieved liquid permittivity is plotted in Figure 12b,
and it is shown that the retrieved values were reasonably consistent with the reference
values. Note that the measurements were conducted for three times to demonstrate their
repeatability with this sensor repeatability.
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Finally, the proposed sensors were compared with previous designs. Here, the sensor
sensitivity is defined as

Sε′r =
∆ f

funloaded · (ε′r − 1)
=

funloaded − fε′r

funloaded · (ε′r − 1)
(7)

where funloaded and fε′r represent the resonant frequencies of the sensors unloaded and
loaded, respectively. As shown in Figure 13, the proposed sensors exhibited a performance
comparable to that of state-of-the-art devices. The performance indicators including liquid
sample volume (S.V.), relative electrical size and average sensitivity Savg of the proposed
sensors and previous designs are summarized in Table 1. The average sensitivity of the
sensor denotes the average value of the sensitivities shown in Figure 13. It is evident that
the proposed sensors exhibited significant advantages in sensitivity in comparison with
previous designs. Although the sensor developed in [6] showed a comparable sensitiv-
ity, the high required amount of liquid would limits its application range (e.g., glucose
level sensing).
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devices based on measured data [5,6,8,10,29].



Sensors 2022, 22, 8534 10 of 11

Table 1. Comparison of the proposed sensor with recent designs.

Ref. Resonant Type fo (GHz) S.V. (µL) Relative Size (λ2
g) Savg (%)

[8] CSRR 2.226 0.52 0.249 × 0.435 0.98
[6] CSRR 2.45 1.67 0.536 × 0.334 1.444
[7] EIT-like 0.97 1000 0.13 × 0.13 0.05
[10] MCSRR 1.62 0.39 0.763 × 0.490 0.626
[5] Series LC 1.91 0.39 N/A 0.635
[29] SRR 2.5 5 1.167 × 0.375 0.27

This work
DGS-IDC-SRR 1.49 0.68 0.326 × 0.166 1.430

DGS-IDC-DSRR 1.72 0.68 0.373 × 0.173 1.461

4. Conclusions

This paper proved that the introduction of an interdigital structure, a defected ground
structure and an improved SRR structure can improve the sensitivity and notch depth
of traditional SRR-based sensors. It was deduced from the results that the two latter
structures influenced the line impedance, increasing the amplitude of the S-parameter.
Moreover, the introduced structure only uses the metal ground under the substrate and
does not change the plane area of the sensors. According to the electric field distribution, a
microfluidic channel covering the meander gap of the SRR was designed. Two prototypes
of the proposed sensor were fabricated and tested, and the expected results were obtained.
The research results provide a useful reference for the design of three-dimensional resonant
sensors with the help of metal vias. At the same time, the possibility of increasing the
peak attenuation of the sensor through a structural improvement was proved without
introducing an additional plane area or an external active circuit.
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