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Abstract: Target search for moving and invisible objects has always been considered a challenge, as
the floating objects drift with the flows. This study focuses on target search by multiple autonomous
underwater vehicles (AUV) and investigates a multi-agent target search method (MATSMI) for
moving and invisible objects. In the MATSMI algorithm, based on the multi-agent deep deterministic
policy gradient (MADDPG) method, we add spatial and temporal information to the reinforcement
learning state and set up specialized rewards in conjunction with a maritime target search scenario.
Additionally, we construct a simulation environment to simulate a multi-AUV search for the floating
object. The simulation results show that the MATSMI method has about 20% higher search success
rate and about 70 steps shorter search time than the traditional search method. In addition, the
MATSMI method converges faster than the MADDPG method. This paper provides a novel and
effective method for solving the maritime target search problem.

Keywords: multi-agent reinforcement learning; maritime floating objects; target search; autonomous
underwater vehicles (AUV)

1. Introduction

The development of Autonomous Underwater Vehicles (AUVs) has permitted the
automatization of many tasks initially achieved with human-crewed vehicles in underwater
environments. Target search is the search for floating objects in the water or seafloor,
considered one of AUVs’ most important tasks. Xiang et al. [1,2] propose an effective
strategy for multi-AUV target search in 3-D underwater environments with obstacles and
offer an integrated algorithm for a cooperative team of multiple autonomous underwater
vehicles. Li et al. [3] propose an improved, rapidly exploring random trees algorithm for
the AUV target search problem. However, since floating objects can move with ocean flows,
AUVs need more time and better strategies for target search. Take flight accidents as an
example. The first thing is to find the aircraft’s wreckage, which helps to look for the black
boxes. In the case of the disappearance of Malaysia Airlines Flight 370, the crash damaged
the GPS of the plane. Several countries spent a lot of workforce and resources but found no
plane wreckage. After the golden period of search and rescue, the chances of finding the
wreckage became less and less with the irregular movement of the ocean currents.

AUV’s sensors play a crucial role in target search, and Koopman meticulously investi-
gates the effect of sensors on target search [4]. Modern AUVs are complex robotic systems
containing several proprioceptive sensors, such as compasses, fiber optic gyroscopes, and
Doppler velocity recorders. The resulting sensor outputs can be combined with navigation
filters, such as an extended Kalman filter, to produce a high-quality estimate of the AUV’s
position and uncertainty [5]. Side-scan sonar, initially developed by the US Navy, has
become a central underwater sensor with many applications, such as detecting the seafloor,
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searching, and rescuing. The sector scanning sonar was considered over other acoustic
alternatives such as echosounders and multibeam as a means for object detection for small
AUVs [6].

There are few studies on multi-agent target search. Many researchers have carried out
some attempts at multi-agent search and rescue for moving objects at sea. Target trajectory
prediction is considered a significant step for some target search methods. The fragments
drift on the ocean without power when the plane is shipwrecked. In this case, various
environmental factors can affect its drift trajectory, such as wind, shallow currents, and
waves [7]. Therefore, combining meteorological data and ocean current data to predict the
drift trajectory of the target can improve the success rate of the target search and shorten the
search time. Xiong et al. [8] developed a three-stage decision support approach to optimize
the allocation of search and rescue resources to shorten the response time. Ai et al. [9]
considered comprehensive search and rescue coverage and considered obstacles at sea,
planning a search path that took the shortest time to be the safest and prioritized coverage
of critical areas. Many search and rescue studies also design search systems consisting of
multiple search and rescue vehicles to enhance search efficiency [10–12]. However, these
search methods require certain location information, and trajectory prediction becomes
highly challenging when the target’s initial position is unidentified.

Searching for moving objects, like plane fragments, is usually complicated due to an
unknown initial position (usually, the GPS device is damaged). There are also many other
crucial issues in searching for moving objects in the sea, such as insufficient information,
large search areas, long search time, logistical difficulties, and harsh marine environments.
Scharff et al. [13] investigated AUV path planning methods in underwater 3D environments.
Meghjani et al. [14] tested the traditional outward and inward spiral methods for searching.
However, the performance of these methods dramatically declines when the moving speed
of the drifting object is fast, or the exploration area is large. Therefore, there is an urgent
need for an efficient multi-agent target-oriented search and path planning method.

Single-agent deep reinforcement learning methods have been widely applied to indus-
trial fields, such as autonomous driving and unmanned aerial vehicle [15–18]. Researchers
have also made some breakthroughs in multi-agent deep reinforcement learning meth-
ods [19,20]. Multi-agent reinforcement learning algorithms to specialized fields with
promising results. Jiang et al. [21] propose a value-iteration-based RL algorithm, which can
efficiently converge to stable strategies and significantly improve network performance.
Jo et al. [22] propose a multi-agent Deep Q-learning (DQL)-based transmission power
control algorithm which minimizes the outage probability of the High-Altitude Platform
Station downlink. However, existing multi-agent algorithms are capable of static target
search tasks and have poor performance for moving and invisible objects. Traditional spiral
algorithms have fixed path patterns, which are not applicable to moving targets. Existing
deep reinforcement methods lack the learning of historical information, resulting in many
duplicate routes. We add map information to the multi-agents’ target search algorithm to
reduce the duplicate routes and decrease the search time.

This study proposes a multi-AUV maritime target search method for the target search
problem of moving and invisible objects (MATSMI). MATSMI incorporates the spatial-
temporal information of the exploration map into the reinforcement learning state based
on MADDPG [23]. MATSMI record the agents’ detection trajectory on an exploration map,
which is one of the bases for decision-making and network critique. Furthermore, we
construct a multi-AUV maritime target search simulation environment for multi-agent
reinforcement learning. The average search success rate (ASSR) and the average search
time (AST) are selected as evaluation metrics to evaluate the effectiveness of the proposed
method. The simulation results show that the ASSR and AST of MATSMI are better than
traditional search methods. At the same time, the MATSMI algorithm has dramatically
improved the convergence speed compared to the original MADDPG algorithm.

The rest of this paper is organized as follows. Section 2 presents the related work
about the maritime search problem. Section 3 introduces the mechanism of the MATSMI
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algorithm. Section 4 shows simulation experiments for various situations. Finally, we
summarize the conclusions and future work in Section 5.

2. Related Work
2.1. Target Search

In the 1970s, several scholars conducted in-depth studies on target search.
Stone et al. [24] developed algorithms for arbitrary discrete time target motions and ex-
ponential detection functions. Stone et al. [25] found necessary and sufficient conditions
for optimal detection problems involving regular detection functions and an essentially
arbitrary stochastic process for the target motion. Washburn [26] generalized Brown’s
algorithm to the class of forward and backward algorithm that apply to a more general
class of payoff functions. Algorithms for non-Markovian motions are given by Stromquist
and Stone [27].

Research on visible target search is well-developed, and many path-planning solutions
exist. Li, J et al. [28] propose an adaptive real-time path planning method based on Deep
Reinforcement Learning which accelerates the algorithm’s convergence speed and enhances
the planned path’s smoothness. Yu et al. [29] proposed a hybrid multi-target path planning
algorithm that improves search speed and smooths the planning path. In addition, the
method has strong applicability and high effectiveness. Nussbaum et al. [30] introduce
the Moving Target Search method with Subgoal Graphs. The algorithm optimizes the
agent’s knowledge during the search and meets the requirement of real-time performance.
Botea et al. [31] use compressed path databases in moving target searches whose results are
orders of magnitude better than the state-of-the-art methods.

Many researchers focus on target search where the target is not visible. Song et al. [32]
propose a two-stage optimization model for path planning for the target search of mobile
robots. Moreover, they proposed A method for determining complete visual coverage of
critical locations on a 2D grid map. Farzad Niroui et al. [33] combine traditional exploration
methods with deep reinforcement learning to enable robots to explore unknown cluttered
environments autonomously. Liu Z et al. [34] investigated a collaborative search and
coverage algorithm for a given bounded rectangular region by a set of Unmanned Aerial
Vehicles. They construct a cognitive map including information such as target probabilities
as a representation of the environment; and establish a revisit mechanism. McCalmon J [35]
proposed a method for efficiently exploring unknown regions with accurate coverage of
regions of interest. Walker O et al. [36] proposed a multi-agent target-finding framework
based on online POMDP planning and deep reinforcement learning control.

Multi-agent systems have made great strides in self-organizing mesh networks and
have achieved high levels of reliability and security in communications. Although many
researchers are gradually progressing in several vital areas, it has yet to produce perfect
results in search and rescue [37].

2.2. Spiral Search Method

In the spiral search method, the agent uses a spiral trajectory to cover the target area
to search for the target [14]. The interval of each circle of this trajectory is the detection
diameter of the agent, which can ensure the full coverage of the area search. In the limiting
case, where the floating object moves in the direction of the radius of the spiral trajectory,
the algorithm needs to ensure that the target cannot leave this detection ring after one
revolution of the agent’s search. As such, the spiral search algorithm will ensure that the
agent can find the target.

The algorithm performs relatively well when searching for stationary targets or targets
at low speeds or miniature ranges. However, it is not easy to have excellent results when
the movement range is more extensive, or the target moves faster.
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2.3. MADDPG Framework

The MADDPG algorithm is a generalized multi-agent deep reinforcement learning
algorithm [23]. Extend the single-agent Deep Deterministic Policy Gradient (DDPG) algorithm
obtaining this algorithm, where each agent has its network with no central control. The tasks
are performed together only by collaborating. Its network is also composed of two parts: the
actor and the critic. The actor selects actions based on the state obtained from the environment.
The critic evaluates the actions obtained by the actor to improve the actor’s performance. The
inputs of these two networks are different. The actor’s input is its state. The critic’s input is
the states and actions of all agents. The MADDPG algorithm uses a replay buffer. It saves
the data generated by each executed action in strips to the replay buffer. The replay buffers
randomly draw experience for training which disrupts the order of the data, resulting in a
more uniform input to the network and improving the training effect.

The main innovation of this algorithm is that it feeds the states and actions of other
agents into the critic during the training process, which makes the evaluation more com-
prehensive and allows the network to converge faster.

3. MATSMI Method

This section outlines a formal description of the maritime target search for moving and
invisible objects problem. Moreover, we design a corresponding simulation environment for
multi-agent reinforcement learning. Then we describe in detail the MATSMI in this paper.

3.1. Formalization of the Maritime Target Search Problem

The area scenario is a square area D. There are NA search AUVs. We set initial
positions of AUVs according to the specific situation. The detection area of a single AUV is
circular. Moreover, we defined Di(t) as the detection area of AUV i at the time step t.

The velocity direction of AUV is veli. The velocity magnitude can be chosen arbitrarily
in the interval [0, vm]. A target T appears randomly in the region D in a uniform distribution.
Then move the target under the action of a random environmental force ( fx, fy) ∈ Fenv.
The environmental force ( fx, fy) is randomly drawn from historical ocean wind, shallow
currents, and waves environmental force data Fenv.

During simulation i, the target search is successful, and the variable Ii is equal to one
when the target object T appears in the detection area Di(t) of any AUV. Conversely, the
search failed and Ii was set to zero when the action time t reaches the upper limit tm, or
the target object leaves the area. There are two evaluation metrics for this problem, the
ASSR, and the AST. The optimization objective of the MSTSPP algorithm is at max ASSR
and min AST.

ASSR =
1
N

N

∑
i

Ii (1)

AST =
1
N

N

∑
i

ti (2)

where N is the number of simulations.
In addition, adhere to the following constraints:

a. AUVs always have to be in the region, ∀i, j, (xA
i (t), yA

i (t)) ∈ D at any time;
b. AUVs cannot collide with each other, ∀i, j, (xA

i (t), yA
i (t)) 6= (xA

j (t), yA
j (t)) at any time.

3.2. Create a Multi-Agent System
3.2.1. MADDPG Algorithm Improvement

Based on the DDPG algorithm, The MADDPG exploits other agents’ state and action
information. Nevertheless, some useful spatiotemporal information is not utilized, for exam-
ple, past actions that a single agent cannot observe. Following the idea above, we record the
exploration trajectories traveled by the agents in the form of exploration maps in this paper.
We append the exploration map to the training and decision process after processing.
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In order to improve the search success rate of target search problems, it is necessary to
guide the agent to expand the search area as much as possible to find the target. Moreover,
the exploration trajectory of the agent can help the agent know which regions are still
unexplored. We divide the area into grids, and the value of each grid represents the number
of times the agent explores. When the agent explores the grid, the value is added by one.
This map gathers historical exploration information of all agents. Since the target constantly
moves, the likelihood of a target reappearing in an explored area becomes higher as time
passes. Therefore, we set the values in the map to change back to zero after exceeding the
map memory time tm, which encourages agents to revisit the explored area.

After that, carry out a preallocation of the unexplored areas on the map. Assign the
grid to the corresponding agent according to its distance from each agent. Once an agent
acquires a map, perform this process, and regard the unexplored areas allocated to other
agents as explored. It reduces the difficulty of cooperation between agents.

It will consume many computational resources to allow agents to use the whole map
to make decisions. The most effective basis for decision-making is the map information
around the agent, meaning that many parts of the map are redundant. Hence, each agent
only needs to access the map within a certain distance of his current coordinates. In this
paper, this distance is called map visual distance lm.

Further, we simplify the map to help agents learn the information more quickly. Firstly,
convert the map matrix into a square matrix centred on the current coordinates of the agent.
Secondly, accumulate the values of matrices with distances less than lm in eight directions,
which are at 0 or 45 degrees from the coordinate axis. Therefore, we convert the map matrix
to values for the degree of exploration in the eight directions around the current agent,
making learning less challenging and faster converging.

3.2.2. Multi-Agent System of MATSMI

With the formalization of the target search problem in Section 3.1, we can create a multi-
agent reinforcement learning system. In this system, each AUV is abstracted to an agent.

There are NA agents in the system. Each agent has a set of deterministic policies
µ =

{
µθ1 , µθ2 , . . . , µθNU

}
for selecting actions. In addition, it has a set of critic networks.

The loss function of the critic network is as follows:

L(θi) = Ex,m,a,r,x′ ,m′ [(Q
µ
i (x, m, a1 . . . , aN)− y)

2
], (3)

y = ri + γQµ′

i (x′, m′, a′1, . . . , a′N)
∣∣∣
a′ j=µ′ j(oj ,mj)

(4)

The strategy gradient of the actor network is as follows:

∇θi J(µi) = Ex,a,m∈D[∇θi µi(ai

∣∣∣oi, mi)∇ai Q
µ
i (x, a, m)

∣∣∣ai=µi(oi ,mi)
] (5)

where:
θi is the neural network parameter of the agent.
x is a set of current states. x =

{
o1, o2, . . . , oNA

}
.

m is the current map information.
x′ is the next step states.
m′ is the next step map information.
Qµ

i (x, a, m) is the Q function.

Qµ′

i (x′, m′, a′) is the target Q function which updates towards the Q function within a
specific range.

y is the predicted Q value obtained by the target Q function.
ai is the action of the agent i.
oi is the current agent’s observation i, containing the coordinates of all agents.
mi is the current map information of the agent i.
ri is the reward that the agent i receives after performing the current action.
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γ is the discount value of deep reinforcement learning.
D is the replay buffer.
(x, m, x′, m′, a, r) is a record in the replay buffer containing all the experience gained

by the agent in a single execution.
This multi-agent system can train the network in a simulated environment and opti-

mize the final target to obtain the desired results.

3.3. Reward Setting of MATSMI

The goal of the MATSMI algorithm is to maximize ASSR and minimize AST. Therefore,
it needs to design suitable rewards for achieving this optimization goal. The core of the
target search problem is to find the target. When an agent discovers the target, give a grand
reward Rtarget to encourage searching for the target. In addition, the quicker the discovery,
the higher the reward, encouraging agents to find the target as quickly as possible.

The agent’s continuous action space makes the algorithm’s convergence relatively
tricky. Therefore, we need to restrict the actions’ degrees of freedom. Here, we design the
wall-bumping penalty Rpunish to restrict the exploration area of the agent.

The agent has difficulty learning the correspondence between the state and the dis-
covery target. To help agents learn this correspondence, we design inspirational rewards
that promote exploration. When the agent explores a new area, we give a positive reward.
When it repeatedly explores a region, we penalize it. In this way, agents are encouraged to
explore new areas. As a result, agents can better learn the connection between the state and
the discovery target. At the same time, this helps agents to cooperate with other agents by
giving rewards based on the shared exploration maps of all agents.

3.4. MATSMI Architecture and Algorithm

The Algorithm 1 aims to solve the target search problem for moving and invisible
objects. The execution and training processes are shown in Figures 1 and 2.

Algorithm 1 MATSMI

1. Set epochs, NA
2. Initialize the actor network parameter and the critic network parameter
3. for j← 1 to epochs do
4. Reset env
5. for i← 1 to NA do
6. Choose an action based on the policy ui = µθi (oi, mi) + N
7. Obtain rewards r(t + 1), s(t + 1) and m(t + 1) as a result of the action ui
8. Store the experience < o, u, r, m, m′, o′ > to replay buffer D
9. end for
10. if j > batch size then
11. Sample a minibatch < o, u, r, m, m′, o′ > from replay buffer D
12. for i← 1 to NA do
13. Compute the policy gradient ∇θi j(µi) to update Actor network
14. Minimizing the loss function L(θi) to update Critic network
15. Soft update the target network according to the existing critical network
16. end for
17. end if
18. end for

where:
ui is the determined action of the agent i.
< o, u, r, m, m′, o′ > is a record in the replay buffer containing all the experience gained

by the agent in a single execution.
Each agent in the algorithm has an actor network (the red rectangular in Figures 1 and 2),

a critic network (the green rectangular in Figures 1 and 2), and a target critic network. The
target critic network is a copy of the critic network to optimize the loss. Subsequently, soft
update the target critic network toward the critic network whenever the critic network
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is updated, which reduces the magnitude of the update of the target critic network and
makes the target critic network close to the critic network.
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Figure 1. The execution process of MATSMI.

The algorithm has two main parts: execution and training. The first is the execution
part. The state and map information is first obtained from the environment and then fed
into the actor network to obtain the action. Then the action is executed in the simulated
environment to obtain the new state and map information. We stored the experience
generated in a replay buffer (the orange rectangular in Figures 1 and 2). a is the action of
the agent, o is the observation of the agent, containing the coordinates of all agents, and m
is the map information seen by the current agent (the exact definition as the Section 3.2.2).
The map information is processed the same way as in Section 3.2.1 before being saved,
reducing the exploration map matrix to a 1 × 8 matrix.
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The second part is the training part. Each AUV has its actor network, a critic network,
a target critic network, and values (a, o, m). a is the action of the agent, o is the observation
of agent, containing the coordinates of all agents, and m is the map information seen by
the current agent (the exact definition as execution process and the Section 3.2.2). The data
from the replay buffer is first drawn at random. Then, each agent will input the states,
maps, and actions of all the agents in a time step into the critic network and get the Q value
of the evaluation of the action. The actor network can then be updated by Equation (3).
The predicted Q value can also be obtained from the target critic network, and the critic
network can be updated based on these two Q values. Finally, in the inference stage, by
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inputting the map and state of each step into the actor network, the actor network will
output each step’s action and tell the AUV where to go.

4. Experiment
4.1. Experiment Setup

MATSMI, MADDPG, and the spiral search algorithm use the same simulation envi-
ronment we set up following the formalization in Section 3.1. The environment is spatially
continuous, meaning it can locate agents and targets anywhere in the region. The size of
the area is 20 km × 20 km. The environment is time-discrete, meaning the agent and target
move once after each interval. In other words, the agent is stationary between moves. The
discrete interval is 2 min.

This environment has four search AUVs, whose initial positions are the four corners
of the region as Equation (6). 

(xA
1 (0), yA

1 (0)) = (0, 0)
(xA

2 (0), yA
2 (0)) = (xm, 0)

(xA
3 (0), yA

3 (0)) = (0, ym)
(xA

4 (0), yA
4 (0)) = (xm, ym)

(6)

In this environment, we also constructed a sonar model that scans the surroundings
by continuously rotating the transducer to send a narrow fan-shaped sound beam. The
working frequency of this sonar is 700 kHz. The sonar’s vertical and horizontal beam
widths are 30 degrees and 3 degrees, respectively, allowing for a complete 360-degree
sector scan and a maximum detection distance of 1000 m. When the AUV acquires the
coordinates, we add some noise to the position coordinates to simulate the error caused by
the position sensor.

In addition, the environment has one target object whose initial position is random in
the region. We set the maximum movement speed of AUV to 4 m/s. The target trajectories
are generated by randomly extracting the historical ocean current data to simulate the drift
trajectories. We generate the historical environmental data through multiple simulations in
the National Maritime Search and Rescue Support System. These trajectories are rotated
and panned for data enhancement.

4.2. Comparison Experiments of MATSMI and Spiral Search Algorithm

We first conduct the MATSMI search experiment. We set the map memory time tm to
50 and set the map’s visual distance lm to 10. The training episodes of MATSMI is 10,000.
Besides, we set the search completion time for the spiral search method as the maximum
search time.

As shown in Figure 3, the MATSMI algorithm is close to convergence after 2500 episodes,
with ASSR reaching 85% and AST reduced to 170 steps, indicating that it is feasible to apply
the multi-agent reinforcement learning algorithm to the target search problem.
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In the spiral search algorithm, we divide the original square area into four small
squares. Each agent performs a spiral search on its small square. The four agents complete
the spiral search at the same time.

We set three target movement speeds, 1 m/s, 2 m/s, and 3 m/s, to simulate target
drift in different marine environments. We can obtain more reasonable and accurate results
by comparing the algorithms at different target movement speeds.

As shown in Table 1, MATSMI’s ASSR improved by nearly 20% over the spiral search
for different target speeds, and MATSMI’s AST was nearly 70 steps less than the spiral
search. The results indicate that the MATSMI method is more efficient than the spiral search
algorithm for searching at a faster target speed.

Table 1. ASSR and AST of MATSMI and spiral search methods at different target speeds.

Target
Speed(m/s)

ASSR of
MATSMI

ASSR of
Spiral Search

AST of
MATSMI

AST of
Spiral Search

1 83.5% ± 6.5 64.5% ± 6.5 182.3 ± 20.0 255.8 ± 25.5
2 78.5% ± 4.5 61.0% ± 6.0 189.2 ± 26.0 277.1 ± 28.9
3 65.5% ± 9.5 44.5% ± 5.5 226.2 ± 29.5 292.1 ± 21.5

4.3. Comparison Experiments of MATSMI and MADDPG

We also carried out comparative experiments between MATSMI and the original
MADDPG. The MATSMI algorithm uses the map designed in Section 3.2.1, while the
MADDPG algorithm uses only the coordinate information of each agent. The setup of
the MATSMI algorithm is the same as in Section 4.2. These two algorithms use the same
simulation environment and settings described above.

Figure 4 shows that MATSMI’s ASSR (green line) converges to 85% after 2000 episodes.
In contrast, the purple line of the MADDPG algorithm only reached a similar level to the
MATSMI algorithm after 9000 episodes. The AST of the MATSMI algorithm, which is the
yellow line, reached 170 steps after 2000 episodes. At the same time, the MADDPG (blue
line) algorithm reached the same level only after 8000 episodes. The MATSMI algorithm
converges faster than the original MADDPG algorithm.
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4.4. Search Trajectory

Figure 5 shows that the agents are constantly on the move rather than searching in
a constant area. The agent moves away from previous trajectories rather than near them,
thus making the search more efficient by sacrificing some accuracy. AUVs can accomplish
their search mission extremely well by cooperating.
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In Figures 5–7, the solid lines indicate the travel trajectory of the agent, and the shading
indicates the exploration area of the agent. The orange line indicates the motion trajectory
of the target object. Although the orange line intersects with the green, blue, and black
lines, it is only an intersection on the trajectory, and the AUV can only find the target at the
red circle. Figures 5 and 6 show that the MATSMI algorithm has a shorter search time of
49-time steps, which is 39-time steps less than the MADDPG algorithm for the same target
motion trajectory.
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Figure 7 shows that the trajectory of the spiral search algorithm is constant and searches
in a spiral trajectory. The spiral search allows the search area to cover the whole map. The
spiral search has the longest search time of 363-time steps when the target motion trajectory
is the same.

5. Conclusions and Future Work

This paper applies multi-agent reinforcement learning algorithms to the maritime
target search problem. Based on the MADDPG algorithm, we add map information into
actor network and propose the MATSMI algorithm in conjunction with the maritime target
search scenario. The experimental results show that the multi-agent reinforcement learning
algorithm can solve the target search problem better than the traditional spiral search. In
addition, MATSMI can converge faster compared to the original MADDPG algorithm.
Moreover, this provides a new way of thinking about the maritime target search problem.
In the future, we will try to extract more effective reinforcement learning states and set more
reasonable rewards to allow multi-agent reinforcement learning algorithms to converge
faster and with better results on target search problems. Moreover, we will consider more
environmental information to simulate a more realistic environment.
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