Binary PSO with Classification Trees Algorithm for Enhancing Power Efficiency in 5G Networks
Abstract
:1. Introduction
- Propose an algorithm for irregular 5G HetNets based on BPSO algorithm for SC on/off switching to ameliorate PE of the system, and, using a linearly increasing IW approach where the IW is linearly increasing in each iteration, to enhance the convergence of the BPSO algorithm.
- Propose a novel frequency allocation algorithm for SFR based on the CTs as it is simple and accurate machine learning (ML) technique to mitigate the interference among the irregularly shaped SCs.
2. Literature Review
3. System Model
4. Proposed Algorithms
4.1. SC on/off Switching Using Linearly Increasing IW-BPSO Algorithm
Algorithm 1: Proposed linearly increasing IW-BPSO-based on/off SC switching. |
Inputs: Locations of UEs, locations of SCs, swarm size (), maximum number of iterations ) Output: SC on/off indicator 1: Initialize the position () randomly and velocity () of every particle j as Equation (6). 2: For z = 1 to 3: Calculate using Equation (10) 4: For each particle j 5: Update using Equation (7) 6: Update using Equation (9) 7: Calculate new fitness value F () as Equation (5) 8: if 9: 10: end if 11: if 12: 13: end if 14: end For 15: end For |
4.2. SC Sub-Band Allotment Using Classification Trees (CTs)
5. Numerical Results
- Always on: SFR is not utilized and all SCs are active.
- BPSO only: SFR is not utilized, but SC on/off switching is done via BPSO algorithm.
- Random 10%: SFR is not utilized, but 10% of the SCs are randomly chosen to be switched off. The remaining SCs are kept active.
- Proposed: the SC on/off switching is decided first using the BPSO algorithm, then the SFR is carried out using CTs.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Symbol | Description |
and | Random numbers uniformly distributed between 0 and 1 |
Bandwidth allocated to UE k | |
Resource block (RB) bandwidth | |
and | Acceleration parameters |
Total throughput of the system | |
Distance between the SC and the closest SC using sub-band f in its edge region | |
Distance between SC m and UE k | |
Channel gain between UE k and SC m | |
Global best position of all the particles | |
Number of requisite RBs for UE k in SC m to achieve the minimum data rate | |
M | Number of SCs |
Noise power | |
Best position of the particle j | |
Transmission power of SC m | |
Total power consumption of SC m | |
Transmission power consumption of SC m | |
Total power consumption of the system | |
PE (power efficency) of the system | |
Data rate of UE k in SC m | |
Signal to interference noise ratio of UE k in SC m | |
Number of UEs in SC m | |
Velocity of the particle j in the iteration | |
Inertia Weight (IW) in the iteration | |
Position of the particle j in the iteration | |
α | Path loss exponent |
SC m on/off indicator | |
UE k association indicator with SC m |
References
- Tanveer, J.; Haider, A.; Ali, R.; Kim, A. An Overview of Reinforcement Learning Algorithms for Handover Management in 5G Ultra-Dense Small Cell Networks. Appl. Sci. 2022, 12, 426. [Google Scholar] [CrossRef]
- Salahdine, F.; Opadere, J.; Liu, Q.; Han, T.; Zhang, N.; Wu, S. A survey on sleep mode techniques for ultra-dense networks in 5G and beyond. Comput. Netw. 2021, 201, 108567. [Google Scholar] [CrossRef]
- Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H.; Taoka, H.; et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag. 2014, 52, 26–35. [Google Scholar] [CrossRef]
- Boccardi, F.; Heath, R.W.; Lozano, A.; Marzetta, T.L.; Popovski, P. Five disruptive technology directions for 5G. IEEE Commun. Mag. 2014, 52, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Gui, G.; Gacanin, H.; Adachi, F. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends and challenges. IEEE Commun. Surv. Tutor. 2021, 23, 668–695. [Google Scholar] [CrossRef]
- Saeed, A.; Katranaras, E.; Zoha, A.; Imran, A.; Imran, M.A.; Dianati, M. Energy efficient resource allocation for 5G heterogeneous networks. In Proceedings of the IEEE International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD), Guildford, UK, 7–9 September 2015; pp. 119–123. [Google Scholar]
- Lorincz, J.; Matijevic, T. Energy-efficiency analyses of heterogeneous macro and micro base station sites. Comput. Electr. Eng. 2014, 40, 330–349. [Google Scholar] [CrossRef]
- Hashim, M.F.; Abdul Razak, N.I. Ultra-dense networks: Integration with device to device (D2D) communication. Wireless Pers. Commun. 2019, 106, 911–925. [Google Scholar] [CrossRef]
- Venkateswararao, K.; Swain, P. Binary-PSO-based energy-efficient small cell deployment in 5G ultra-dense network. J. Supercomput. 2022, 78, 1071–1092. [Google Scholar] [CrossRef]
- Kamel, M.I.; Hamouda, W.; Youssef, A.M. Ultra-Dense Networks: A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 2522–2545. [Google Scholar] [CrossRef]
- Liu, C.; Natarajan, B.; Xia, H. Small cell base station sleep strategies for energy efficiency. IEEE Trans. Veh. Technol. 2015, 65, 1652–1661. [Google Scholar] [CrossRef]
- Ge, X.; Yang, J.; Gharavi, H.; Sun, Y. Energy efficiency challenges of 5G small cell networks. IEEE Commun. Mag. 2017, 55, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osama, M.; El Ramly, S.; Abdelhamid, B. Interference Mitigation and Power Minimization in 5G Heterogeneous Networks. Electronics 2021, 10, 1723. [Google Scholar] [CrossRef]
- Shen, B.; Lei, Z.; Huang, X.; Chen, Q. An interference contribution rate based small cells on/off switching algorithm for 5G dense heterogeneous networks. IEEE Access 2018, 6, 29757–29769. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Lin, Z.; An, K.; Niu, H.; Hu, Y.; Chatzinotas, S.; Zheng, G.; Wang, J. SLNR-based Secure Energy Efficient Beamforming in Multibeam Satellite Systems. IEEE Trans. Aerosp. Electron. Syst. 2022, 1–4. [Google Scholar] [CrossRef]
- Isabona, J.; Srivastava, V.M. Downlink Massive MIMO Systems: Achievable Sum Rates and Energy Efficiency Perspective for Future 5G Systems. Wirel. Pers. Commun. 2017, 96, 2779–2796. [Google Scholar] [CrossRef]
- Lorincz, J.; Bogarelli, M.; Capone, A.; Begusic, D. Heuristic approach for optimized energy savings in wireless access networks. In Proceedings of the International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 23–25 September 2010; pp. 60–65. [Google Scholar]
- Lorincz, J.; Capone, A.; Begusic, D. Heuristic Algorithms for Optimization of Energy Consumption in Wireless Access Networks. KSII Trans. Internet Inf. Syst. 2011, 5, 626–648. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Li, H.; Li, Z.; Wang, D. Load-awareness energy saving strategy via success probability constraint for heterogeneous small cell networks. In Proceedings of the IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015; pp. 743–747. [Google Scholar]
- Manssour, J.; Frenger, P.; Falconetti, L.; Moon, S.; Na, M. Smart small cell wake-up field trial: Enhancing end-user throughput and network energy performance. In Proceedings of the IEEE Vehicular Technology Conference (VTC Spring), Glasgow, UK, 11–14 May 2015; pp. 1–5. [Google Scholar]
- Tang, L.; He, Y.; Zhou, Z.; Ren, Y.; Mumtaz, S.; Rodriguez, J. A distance-sensitive distributed repulsive sleeping approach for dependable coverage in heterogeneous cellular networks. Trans. Emerg. Tel. Tech. 2019, 30, e3784. [Google Scholar] [CrossRef]
- Tao, R.; Liu, W.; Chu, X.; Zhang, J. An energy saving small cell sleeping mechanism with cell range expansion in heterogeneous networks. IEEE Trans. Wirel. Commun. 2019, 18, 2451–2463. [Google Scholar] [CrossRef] [Green Version]
- AL-Samarrie, A.K.; Alyasiri, H.; AL-Nakkash, A.H. Proposed multi-stage PSO scheme for LTE network planning and operation. Int. J. Appl. Eng. Res. 2016, 11, 10199–10210. [Google Scholar]
- Alyasiri, H.; AL-Samarrie, A.K.; AL-Nakkash, A.H. Interference Mitigation of Heterogeneous Networks by Proposed Combined Optimal Frequency and Power Allocations Scheme. Int. J. Appl. Eng. Res. 2016, 11, 11925–11934. [Google Scholar]
- Rathore, A.; Sharma, H. Review on inertia weight strategies for particle swarm optimization. In Proceedings of the Sixth International Conference on Soft Computing for Problem Solving, Singapore; 2017; pp. 76–86. [Google Scholar]
- Hsieh, S.T.; Sun, T.Y.; Liu, C.C.; Tsai, S.J. Efficient population utilization strategy for particle swarm optimizer. IEEE Trans. Syst. Man Cybern. Part B 2009, 39, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Eberhart, R.C.; Shi, Y. Tracking and optimizing dynamic systems with particle swarms. In Proceedings of the Congress on Evolutionary Computation (CEC), Seoul, Korea, 27–30 May 2001; pp. 94–100. [Google Scholar]
- Tian, D.; Shi, Z. MPSO: Modified particle swarm optimization and its applications. Swarm Evol. Comput. 2018, 41, 49–68. [Google Scholar] [CrossRef]
- Taherkhani, M.; Safabakhsh, R. A novel stability-based adaptive inertia weight for particle swarm optimization. Appl. Soft Comput. 2016, 38, 281–295. [Google Scholar] [CrossRef]
- Xin, J.; Chen, G.; Hai, Y. A particle swarm optimizer with multi-stage linearly-decreasing inertia weight. In Proceedings of the International Joint Conference on Computational Sciences and Optimization, Sanya, China, 24–26 April 2009; pp. 505–508. [Google Scholar]
- Zheng, Y.; Ma, L.; Zhang, L.; Qian, J. Empirical study of particle swarm optimizer with an increasing inertia weight. In Proceedings of the 2003 Congress on Evolutionary Computation, Canberra, ACT, Australia, 8–12 December 2003; Volume 1, pp. 221–226. [Google Scholar]
- Lee, C.Y.; Cheng, Y.H. Motor Fault Detection Using Wavelet Transform and Improved PSO-BP Neural Network. Processes 2020, 8, 1322. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Wang, J.B.; De Cola, T.; Wang, J. Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access. IEEE J. Sel. Top. Signal Process. 2019, 13, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Lin, M.; De Cola, T.; Wang, J.B.; Zhu, W.P.; Cheng, J. Supporting IoT with rate-splitting multiple access in satellite and aerial-integrated networks. IEEE Internet Things J. 2021, 8, 11123–11134. [Google Scholar] [CrossRef]
- Giambene, G.; Le, V.A.; Bourgeau, T.; Chaouchi, H. Soft frequency reuse schemes for heterogeneous LTE systems. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 3161–3166. [Google Scholar]
- Mohamed, M.O.; Abdelhamid, B.; El Ramly, S. Interference mitigation in heterogeneous networks using Fractional Frequency Reuse. In Proceedings of the International Conference on Wireless Networks and Mobile Communications (WINCOM), Fez, Morocco, 26–29 October 2016; pp. 154–159. [Google Scholar]
- Giambene, G.; Le, V.A.; Bourgeau, T.; Chaouchi, H. Iterative multi-level soft frequency reuse with load balancing for heterogeneous lte-a systems. IEEE Trans. Wirel. Commun. 2016, 16, 924–938. [Google Scholar] [CrossRef]
- Hossain, M.S.; Tariq, F.; Safdar, G.A.; Mahmood, N.H.; Khandaker, M.R. Multi-layer soft frequency reuse scheme for 5G heterogeneous cellular networks. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Moysen, J.; Giupponi, L. From 4G to 5G: Self-organized network management meets machine learning. Comput. Commun. 2018, 129, 248–268. [Google Scholar] [CrossRef] [Green Version]
- Preciado-Velasco, J.E.; Gonzalez-Franco, J.D.; Anias-Calderon, C.E.; Nieto-Hipolito, J.I.; Rivera-Rodriguez, R. 5G/B5G Service Classification Using Supervised Learning. Appl. Sci. 2021, 11, 4942. [Google Scholar] [CrossRef]
- Radivilova, T.; Kirichenko, L.; Lemeshko, O.; Ageyev, D.; Mulesa, O.; Ilkov, A. Analysis of anomaly detection and identification methods in 5G traffic. In Proceedings of the Eleventhth IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Cracow, Poland, 22–25 September 2021; pp. 1108–1113. [Google Scholar]
- Casas, P.; D’Alconzo, A.; Wamser, F.; Seufert, M.; Gardlo, B.; Schwind, A.; Tran-Gia, P.; Schatz, R. Predicting QoE in cellular networks using machine learning and in-smartphone measurements. In Proceedings of the Ninth International Conference on Quality of Multimedia Experience (QoMEX), Erfurt, Germany, 29 May–2 June 2017; pp. 1–6. [Google Scholar]
- Galinina, O.; Pyattaev, A.; Andreev, S.; Dohler, M.; Koucheryavy, Y. 5G Multi-RAT LTE-WiFi Ultra-Dense Small Cells: Performance Dynamics, Architecture, and Trends. IEEE J. Sel. Areas Commun. 2015, 33, 1224–1240. [Google Scholar] [CrossRef]
- Niu, C.; Li, Y.; Hu, R.Q.; Ye, F. Fast and Efficient Radio Resource Allocation in Dynamic Ultra-Dense Heterogeneous Networks. IEEE Access 2017, 5, 1911–1924. [Google Scholar] [CrossRef]
- Shabbir, A.; Khan, H.R.; Ali, S.A. Traffic Load Aware Approach for Optimum Throughput in 5G Heterogeneous Cellular Networks. In Proceedings of the Fourth International Conference on Computer and Information Sciences (ICCOINS), Kuala Lumpur, Malaysia, 13–14 August 2018; pp. 1–6. [Google Scholar]
- Su, G.; Chen, B.; Lin, X.; Wang, H.; Li, L. User Association and Base Station Sleep Management in Dense Heterogeneous Cellular Networks. KSII Trans. Int. Inf. Sys. 2017, 11, 2058–2074. [Google Scholar]
- Huang, X.; Zhang, D.; Tang, S.; Chen, Q.; Zhang, J. Fairness-based distributed resource allocation in two-tier heterogeneous networks. IEEE Access 2019, 7, 40000–40012. [Google Scholar] [CrossRef]
- Mendis, H.V.K.; Balapuwaduge, I.A.M.; Li, F.Y. Dependability-based reliability analysis in URC networks: Availability in the space domain. IEEE ACM Trans. Netw. 2019, 27, 1915–1930. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, P.; Gong, J.; Niu, K. A self-organizing base station sleeping strategy in small cell networks using local stable matching games. In Proceedings of the International Conference on Wireless Algorithms, Systems, and Applications, Berlin, Germany; 2018; pp. 545–556. [Google Scholar]
- Ghazzai, A.H.; Farooq, M.J.; Alsharoa, A.; Yaacoub, E.; Kadri, A.; Alouini, M.S. Green networking in cellular HetNets: A unified radio resource management framework with base station ON/OFF switching. IEEE Trans. Veh. Technol. 2016, 66, 5879–5893. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.R.; Al-Nakkash, A.H.; Salim, O.N.M.; AlAbdullah, A.A. Proposed APs Distribution Optimization Algorithm: Indoor Coverage Solution. J. Phys. Conf. Ser. 2021, 1804, 012134. [Google Scholar] [CrossRef]
- Cai, H.; Li, X.; Xie, C.; Guo, K.; Liu, H.; Liu, C. Area-to-point heat conduction enhancement using binary particle swarm optimization. Appl. Therm. Eng. 2019, 155, 449–460. [Google Scholar] [CrossRef]
- Anuradha, J.; Tripathy, B.K. Improved intelligent dynamic swarm PSO algorithm and rough set for feature selection. In Proceedings of the International Conference on Computing and Communication Systems. Berlin; 2011; pp. 110–119. [Google Scholar]
- Zhang, H.; Wang, Y.; Ji, H.; Li, X. A sleeping mechanism for cache-enabled small cell networks with energy harvesting function. IEEE Trans. Green Commun. Net. 2020, 4, 497–505. [Google Scholar] [CrossRef]
- Shariatmadar, H.; Meshkat Razavi, H. Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method. Struct. Eng. Mech. 2014, 51, 547–564. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, J.; Montalvo, I.; Pérez, R.; Fuertes, V.S. Design optimization of wastewater collection networks by PSO. Comput. Math. Appl. 2008, 56, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Tasetiren, M.F.; Lian, Y.C. A Binary Particle Swarm Optimization Algorithm for Lot Sizing Problem. J. Econ. Soc. Res. 2003, 5, 1–20. [Google Scholar]
- Kumar, N.; Sharma, S.K. Inertia Weight Controlled PSO for Task Scheduling in Cloud Computing. In Proceedings of the International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, UP, India, 28–29 September 2018; pp. 155–160. [Google Scholar]
- Qian, M.; Hardjawana, W.; Li, Y.; Vucetic, B.; Yang, X.; Shi, J. Adaptive Soft Frequency Reuse Scheme for Wireless Cellular Networks. IEEE Trans. Veh. Technol. 2014, 64, 118–131. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, D.; Hernández-Morera, P.; Quinteiro, J.M.; Alonso-González, I. A Low Complexity System Based on Multiple Weighted Decision Trees for Indoor Localization. Sensors 2015, 15, 14809–14829. [Google Scholar] [CrossRef]
- Ji, B.; Lu, X.; Sun, G.; Zhang, W.; Li, J.; Xiao, Y. Bio-Inspired Feature Selection: An Improved Binary Particle Swarm Optimization Approach. IEEE Access. 2020, 8, 85989–86002. [Google Scholar] [CrossRef]
- Aghdam, M.H.; Sharifi, A.A. PAPR reduction in OFDM systems: An efficient PTS approach based on particle swarm optimization. ICT Express. 2019, 5, 178–181. [Google Scholar] [CrossRef]
- Donevski, I.; Vallero, G.; Marsan, M.A. Neural networks for cellular base station switching. In Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 738–743. [Google Scholar]
- Qin, M.; Yang, Q.; Cheng, N.; Li, J.; Wu, W.; Rao, R.R.; Shen, X. Learning-Aided Multiple Time-Scale SON Function Coordination in Ultra-Dense Small-Cell Networks. IEEE Trans. Wirel. Commun. 2019, 18, 2080–2092. [Google Scholar] [CrossRef]
- Sesto-Castilla, D.; Garcia-Villegas, E.; Lyberopoulos, G.; Theodoropoulou, E. Use of Machine Learning for energy efficiency in present and future mobile networks. In Proceedings of the IEEE Wireless Communications and Networking Conference, Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
- Chen, W.N.; Zhang, J.; Lin, Y.; Chen, N.; Zhan, Z.H.; Chung, H.S.H.; Li, Y.; Shi, Y.H. Particle Swarm Optimization with an aging leader and challengers. IEEE Trans. Evol. Comput. 2012, 17, 241–258. [Google Scholar] [CrossRef]
- Gong, Y.J.; Li, J.J.; Zhou, Y.; Li, Y.; Chung, H.S.H.; Shi, Y.H.; Zhang, J. Genetic learning particle swarm optimization. IEEE Trans. Cybern. 2015, 46, 2277–2290. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [Google Scholar] [CrossRef]
- Lin, A.; Sun, W.; Yu, H.; Wu, G.; Tang, H. Global genetic learning Particle Swarm Optimization with diversity enhancement by ring topology. Swarm Evol. Comput. 2019, 44, 571–583. [Google Scholar] [CrossRef]
- Hashim, N.; Ismail, N.F.N.; Johari, D.; Musirin, I.; Rahman, A.A. Optimal population size of particle swarm optimization for photovoltaic systems under partial shading condition. Int. J. Elec. & Comp. Eng. 2022, 12, 4599–4613. [Google Scholar]
- Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the Congress on Evolutionary Computation (CEC), Washington, DC, USA, 6–9 July 1999; pp. 1945–1950. [Google Scholar]
- Agrawal, A.; Tripathi, S. Particle swarm optimization with adaptive inertia weight based on cumulative binomial probability. Evol. Intell. 2021, 14, 305–313. [Google Scholar] [CrossRef]
- Yalcin, N.; Tezel, G.; Karakuzu, C. Epilepsy diagnosis using artificial neural network learned by PSO. Turk. J. Elec. Eng. Comp. Sci. 2015, 23, 421–432. [Google Scholar]
- Wan, R.; Zhu, L.; Li, T.; Bai, L.A. NOMA-PSO Based Cooperative Transmission Method in Satellite Communication Systems. In Proceedings of the Nineth International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017; pp. 1–6. [Google Scholar]
Parameters | Value |
---|---|
SC transmission power [13] | SFR: 20 dBm(center), 22 dBm(edge) No SFR: 22 dBm |
SC baseline power () [14] | 6.8 W |
Maximum number of UEs in the SC () [9] | 30 |
) [9] | 25 |
Maximum IW () [33] | 0.9 |
Minimum IW () [33] | 0.4 |
Maximum velocity of the particle () [9] | 0.6 |
Minimum velocity of the particle () [9] | −0.6 |
Maximum number of iterations () [59] | 500 |
Total bandwidth [13] | 20 MHz |
RB bandwidth [13] | 180 KHz |
Maximum number of RBs [13] | 106 |
Number of sub-bands () [13] | 7 |
Noise power spectral density [14] | −174 dBm/Hz |
SINR threshold () [9] | −5 dB |
SC inactive level () [14] | 0.63 |
Portion of power consumption due to the feeder losses and power amplifier () [14] | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osama, M.; El Ramly, S.; Abdelhamid, B. Binary PSO with Classification Trees Algorithm for Enhancing Power Efficiency in 5G Networks. Sensors 2022, 22, 8570. https://doi.org/10.3390/s22218570
Osama M, El Ramly S, Abdelhamid B. Binary PSO with Classification Trees Algorithm for Enhancing Power Efficiency in 5G Networks. Sensors. 2022; 22(21):8570. https://doi.org/10.3390/s22218570
Chicago/Turabian StyleOsama, Mayada, Salwa El Ramly, and Bassant Abdelhamid. 2022. "Binary PSO with Classification Trees Algorithm for Enhancing Power Efficiency in 5G Networks" Sensors 22, no. 21: 8570. https://doi.org/10.3390/s22218570
APA StyleOsama, M., El Ramly, S., & Abdelhamid, B. (2022). Binary PSO with Classification Trees Algorithm for Enhancing Power Efficiency in 5G Networks. Sensors, 22(21), 8570. https://doi.org/10.3390/s22218570