Review of Vibration Control Strategies of High-Rise Buildings
Abstract
:1. Introduction
2. Passive Control of High-Rise Buildings
2.1. Isolating Base or Energy Transfer?
2.1.1. Base Isolation System
2.1.2. Tuned Mass Damper (TMD)
2.1.3. Tuned Mass Damper Inerter
2.1.4. Tuned Liquid Damper (TLD)
2.1.5. Tuned Liquid Column Damper (TLCD)
2.2. Energy Dissipation
2.2.1. Impact Dampers
2.2.2. Passive Viscous Control Strategies
2.2.3. Aerodynamic Control
2.2.4. Structural Control
3. Active Control
3.1. Active Mass Damper (AMD)
3.2. Active Connected Building Control (CBC) Using Mutual Action between Structures
3.3. Active Bracing System (ABS)
3.4. Active Tendon Control
3.5. Active Control Algorithms
3.5.1. Linear Optimal Control
3.5.2. Instantaneous Optimal Control
3.5.3. Sliding Mode Control (SMC)
3.5.4. Nonlinear Control
3.5.5. Active Control Using Neural Network and Fuzzy Logic
Wavelet-Based Control Algorithm
Other Active Control Laws
- Integral force feedback (IFF) [165], which uses a force sensor and a displacement actuator.
- Direct velocity feedback (DVF) [166], which uses a force actuator and a velocity or acceleration sensor.
- Lead compensator [164], which uses a force actuator and a displacement sensor.
- Proportional integral derivative (PID) controller [166], which uses control loop feedback to control process variables such as displacement, velocity, and acceleration.
3.6. Semi-Active Control
3.6.1. Variable-Orifice Dampers
3.6.2. Variable-Stiffness System
3.6.3. Controllable-Fluid Device
3.6.4. Variable Friction Devices
3.6.5. Electro-Mechanical Devices
3.6.6. Semi-Active TMD and Semi-Active TLD
3.6.7. Semi-Active Impact Dampers
3.7. Hybrid Control
4. Illustration of Literature Results
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dubai Shopping Guide. Available online: https://www.dubaishoppingguide.com/ (accessed on 15 October 2022).
- Høgsberg, J.R. Modelling of Dampers and Damping in Structures; Technical University of Denmark, Department of Mechanical Engineering, Section of Coastal, and Structural Engineering: Copenhagen, Denmark, 2006. [Google Scholar]
- Jangid, R.; Datta, T. Seismic behavior of base-isolated buildings-a state-of-the-art review. Proc. Inst. Civ. Eng.-Struct. Build. 1995, 110, 186–203. [Google Scholar] [CrossRef]
- Housner, G.; Bergman, L.A.; Caughey, T.K.; Chassiakos, A.G.; Claus, R.O.; Masri, S.F.; Skelton, R.E.; Soong, T.; Spencer, B.; Yao, J.T. Structural control: Past, present, and future. J. Eng. Mech. 1997, 123, 897–971. [Google Scholar] [CrossRef]
- Buckle, I.G. Passive control of structures for seismic loads. Bull. N. Z. Soc. Earthq. Eng. 2000, 33, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Soong, T.; Spencer, B., Jr. Supplemental energy dissipation: State-of-the-art and state-of-the-practice. Eng. Struct. 2002, 24, 243–259. [Google Scholar] [CrossRef]
- Kunde, M.; Jangid, R. Seismic behavior of isolated bridges: A-state-of-the-art review. Electron. J. Struct. Eng. 2003, 3, 140–170. [Google Scholar] [CrossRef]
- Spencer, B., Jr.; Nagarajaiah, S. State of the art of structural control. J. Struct. Eng. 2003, 129, 845–856. [Google Scholar] [CrossRef]
- Patil, S.; Reddy, G. State of art review-base isolation systems for structures. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 438–453. [Google Scholar]
- Saaed, T.E.; Nikolakopoulos, G.; Jonasson, J.-E.; Hedlund, H. A state-of-the-art review of structural control systems. J. Vib. Control 2015, 21, 919–937. [Google Scholar] [CrossRef]
- Datta, T. A state-of-the-art review on active control of structures. ISET J. Earthq. Technol. 2003, 40, 1–17. [Google Scholar]
- Jangid, R. Seismic response of sliding structures to bidirectional earthquake excitation. Earthq. Eng. Struct. Dyn. 1996, 25, 1301–1306. [Google Scholar] [CrossRef]
- Jangid, R. Optimum frictional elements in sliding isolation systems. Comput. Struct. 2000, 76, 651–661. [Google Scholar] [CrossRef]
- Rao, P.B.; Jangid, R. Performance of sliding systems under near-fault motions. Nucl. Eng. Des. 2001, 203, 259–272. [Google Scholar]
- Panchal, V.; Jangid, R. Seismic response of structures with variable friction pendulum system. J. Earthq. Eng. 2009, 13, 193–216. [Google Scholar] [CrossRef]
- Cancellara, D.; de Angelis, F.; Pasquino, M. A Novel Seismic Base Isolation System Consisting of a Lead Rubber Bearing in Series with a Friction Slider. Part I: Nonlinear Modeling of the System. Appl. Mech. Mater. 2012, 256–259, 2185–2192. [Google Scholar] [CrossRef]
- Cancellara, D.; de Angelis, F.; Pasquino, M. A Novel Seismic Base Isolation System Consisting of a Lead Rubber Bearing in Series with a Friction Slider. Part II: Application to a Multi-Storey RC Building and Comparison with Traditional Systems. Appl. Mech. Mater. 2012, 256–259, 2174–2184. [Google Scholar] [CrossRef]
- Timsina, S.; Calvi, P.M. Variable friction base isolation systems: Seismic performance and preliminary design. J. Earthq. Eng. 2021, 25, 93–116. [Google Scholar] [CrossRef]
- Soong, T.T.; Dargush, G.F. Passive Energy Dissipation Systems in Structural Engineering; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Moreschi, L.; Singh, M. Design of yielding metallic and friction dampers for optimal seismic performance. Earthq. Eng. Struct. Dyn. 2003, 32, 1291–1311. [Google Scholar] [CrossRef]
- Makris, N.; Chang, S.P. Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures. Earthq. Eng. Struct. Dyn. 2000, 29, 85–107. [Google Scholar] [CrossRef]
- Terenzi, G. Dynamics of SDOF systems with nonlinear viscous damping. J. Eng. Mech. 1999, 125, 956–963. [Google Scholar] [CrossRef]
- Shukla, A.; Datta, T. Optimal use of viscoelastic dampers in building frames for seismic force. J. Struct. Eng. 1999, 125, 401–409. [Google Scholar] [CrossRef]
- Sorace, S.; Terenzi, G. Non-linear dynamic modelling and design procedure of FV spring-dampers for base isolation. Eng. Struct. 2001, 23, 1556–1567. [Google Scholar] [CrossRef]
- Matsagar, V.A.; Jangid, R. Influence of isolator characteristics on the response of base-isolated structures. Eng. Struct. 2004, 26, 1735–1749. [Google Scholar] [CrossRef]
- Matsagar, V.A.; Jangid, R. Seismic response of base-isolated structures during impact with adjacent structures. Eng. Struct. 2003, 25, 1311–1323. [Google Scholar] [CrossRef]
- Matsagar, V.A.; Jangid, R.S. Viscoelastic damper connected to adjacent structures involving seismic isolation. J. Civ. Eng. Manag. 2005, 11, 309–322. [Google Scholar] [CrossRef]
- Matsagar, V.A.; Jangid, R. Base isolation for seismic retrofitting of structures. Pract. Period. Struct. Des. Constr. 2008, 13, 175–185. [Google Scholar] [CrossRef]
- Matsagar, V.; Jangid, R. Impact response of torsionally coupled base-isolated structures. J. Vib. Control 2010, 16, 1623–1649. [Google Scholar] [CrossRef]
- Matsagar, V.A.; Jangid, R. Base-isolated building with asymmetries due to the isolator parameters. Adv. Struct. Eng. 2005, 8, 603–621. [Google Scholar] [CrossRef]
- Kodakkal, A.; Saha, S.K.; Sepahvand, K.; Matsagar, V.A.; Duddeck, F.; Marburg, S. Uncertainties in dynamic response of buildings with non-linear base-isolators. Eng. Struct. 2019, 197, 109423. [Google Scholar] [CrossRef]
- Kazeminezhad, E.; Kazemi, M.T.; Mirhosseini, S.M. Modified procedure of lead rubber isolator design used in the reinforced concrete building. Structures 2020, 27, 2245–2273. [Google Scholar] [CrossRef]
- Özuygur, A.R.; Farsangi, E.N. Influence of pulse-like near-fault ground motions on the base-isolated buildings with LRB devices. Pract. Period. Struct. Des. Constr. 2021, 26, 04021027. [Google Scholar] [CrossRef]
- Chowdhury, S. Nonlinear Dynamic Analysis of Torsionally Coupled Isolated Structures. Pract. Period. Struct. Des. Constr. 2021, 26, 04021023. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, Y.; Zhao, Y.; Tan, P.; Zhou, F. Stochastic seismic response analysis of base-isolated high-rise buildings. Procedia Eng. 2011, 14, 2468–2474. [Google Scholar] [CrossRef] [Green Version]
- Becker, T.C.; Yamamoto, S.; Hamaguchi, H.; Higashino, M.; Nakashima, M. Application of isolation to high-rise buildings: A Japanese design case study through a US design code lens. Earthq. Spectra 2015, 31, 1451–1470. [Google Scholar] [CrossRef]
- Feng, C.; Chen, X. Evaluation and characterization of probabilistic alongwind and crosswind responses of base-isolated tall buildings. J. Eng. Mech. 2019, 145, 04019097. [Google Scholar] [CrossRef]
- Feng, C.; Chen, X. Inelastic Response of Base-Isolated Tall Buildings under Nonstationary Winds: Response History Analysis and Statistical Linearization Approach. J. Eng. Mech. 2021, 147, 04021067. [Google Scholar] [CrossRef]
- Feng, C.; Chen, X. Estimation of inelastic crosswind response of base-isolated tall buildings: Performance of statistical linearization approaches. J. Struct. Eng. 2019, 145, 04019161. [Google Scholar] [CrossRef]
- Zelleke, D.H.; Saha, S.K.; Matsagar, V.A. Multihazard response control of base-isolated buildings under bidirectional dynamic excitation. Shock Vib. 2020, 2020, 8830460. [Google Scholar] [CrossRef]
- Roy, T.; Saito, T.; Matsagar, V. Multihazard framework for investigating high-rise base-isolated buildings under earthquakes and long-duration winds. Earthq. Eng. Struct. Dyn. 2021, 50, 1334–1357. [Google Scholar] [CrossRef]
- Beirami Shahabi, A.; Zamani Ahari, G.; Barghian, M. Base Isolation Systems–A State of the Art Review According to Their Mechanism. J. Rehabil. Civ. Eng. 2020, 8, 37–61. [Google Scholar]
- Hartog, D.J.; Ormondroyd, J. The theory of the damped vibration absorber. Trans. ASME-J. Appl. Phys. 1928, 50, 09–22. [Google Scholar]
- Den Hartog, J.P. Mechanical Vibrations; Courier Corporation: Chelmsford, MA, USA, 1985. [Google Scholar]
- Lenzen, K.H. Vibration of steel joist-concrete slab floors. AISC Eng. J. 1966, 3, 133–136. [Google Scholar]
- Elias, S.; Matsagar, V. Research developments in vibration control of structures using passive tuned mass dampers. Annu. Rev. Control 2017, 44, 129–156. [Google Scholar] [CrossRef]
- Elias, S.; Matsagar, V. Distributed multiple tuned mass dampers for wind vibration response control of high-rise building. J. Eng. 2014, 2014, 198719. [Google Scholar] [CrossRef] [Green Version]
- Elias, S.; Matsagar, V.; Datta, T.K. Along-wind response control of chimneys with distributed multiple tuned mass dampers. Struct. Control Health Monit. 2019, 26, e2275. [Google Scholar] [CrossRef] [Green Version]
- Elias, S.; Matsagar, V.; Datta, T. Effectiveness of distributed tuned mass dampers for multi-mode control of chimney under earthquakes. Eng. Struct. 2016, 124, 1–16. [Google Scholar] [CrossRef]
- Elias, S.; Matsagar, V.; Datta, T. Dynamic response control of a wind-excited tall building with distributed multiple tuned mass dampers. Int. J. Struct. Stab. Dyn. 2019, 19, 1950059. [Google Scholar] [CrossRef]
- Patil, V.B.; Jangid, R.S. Optimum multiple tuned mass dampers for the wind excited benchmark building. J. Civ. Eng. Manag. 2011, 17, 540–557. [Google Scholar] [CrossRef]
- Pietrosanti, D.; De Angelis, M.; Basili, M. Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI). Earthq. Eng. Struct. Dyn. 2017, 46, 1367–1388. [Google Scholar] [CrossRef]
- Marian, L.; Giaralis, A. Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems. Probab. Eng. Mech. 2014, 38, 156–164. [Google Scholar] [CrossRef]
- Kaveh, A.; Fahimi Farzam, M.; Hojat Jalali, H. Statistical seismic performance assessment of tuned mass damper inerter. Struct. Control Health Monit. 2020, 27, e2602. [Google Scholar] [CrossRef]
- Wang, Z.; Giaralis, A. Enhanced motion control performance of the tuned mass damper inerter through primary structure shaping. Struct. Control Health Monit. 2021, 28, e2756. [Google Scholar] [CrossRef]
- Pietrosanti, D.; De Angelis, M.; Giaralis, A. Experimental study and numerical modeling of nonlinear dynamic response of SDOF system equipped with tuned mass damper inerter (TMDI) tested on shaking table under harmonic excitation. Int. J. Mech. Sci. 2020, 184, 105762. [Google Scholar] [CrossRef]
- Cao, L.; Li, C.; Chen, X. Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration. Smart Struct. Syst. Int. J. 2020, 26, 49–61. [Google Scholar]
- Djerouni, S.; Ounis, A.; Elias, S.; Abdeddaim, M.; Rupakhety, R. Optimization and performance assessment of tuned mass damper inerter systems for control of buildings subjected to pulse-like ground motions. Structures 2022, 38, 139–156. [Google Scholar] [CrossRef]
- Prakash, S.; Jangid, R. Optimum parameters of tuned mass damper-inerter for damped structure under seismic excitation. Int. J. Dyn. Control 2022, 10, 1322–1336. [Google Scholar] [CrossRef]
- Djerouni, S.; Elias, S.; Abdeddaim, M.; Rupakhety, R. Optimal design and performance assessment of multiple tuned mass damper inerters to mitigate seismic pounding of adjacent buildings. J. Build. Eng. 2022, 48, 103994. [Google Scholar] [CrossRef]
- Djerouni, S.; Abdeddaim, M.; Elias, S.; Rupakhety, R. Optimum Double Mass Tuned Damper Inerter for Control of Structure Subjected to ground motions. J. Build. Eng. 2021, 44, 103259. [Google Scholar] [CrossRef]
- De Angelis, M.; Giaralis, A.; Petrini, F.; Pietrosanti, D. Optimal tuning and assessment of inertial dampers with grounded inerter for vibration control of seismically excited base-isolated systems. Eng. Struct. 2019, 196, 109250. [Google Scholar] [CrossRef]
- Smith, M.C. Synthesis of mechanical networks: The inerter. IEEE Trans. Autom. Control 2002, 47, 1648–1662. [Google Scholar] [CrossRef] [Green Version]
- Petrini, F.; Giaralis, A.; Wang, Z. Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants’ comfort serviceability performance and energy harvesting. Eng. Struct. 2020, 204, 109904. [Google Scholar] [CrossRef]
- Taflanidis, A.; Giaralis, A.; Patsialis, D. Multi-objective optimal design of inerter-based vibration absorbers for earthquake protection of multi-storey building structures. J. Frankl. Inst. 2019, 356, 7754–7784. [Google Scholar] [CrossRef]
- Giaralis, A.; Taflanidis, A.A. Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria. Struct. Control Health Monit. 2018, 25, e2082. [Google Scholar] [CrossRef]
- Marian, L.; Giaralis, A. The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting. Smart Struct. Syst. 2017, 19, 665–678. [Google Scholar]
- Abdeddaim, M.; Djerouni, S.; Ounis, A.; Djedoui, N. Double tuned mass damper inerter for seismic response reduction of structures. In Proceedings of the EURODYN 2020 Proceedings of the XI International Conference on Structural Dynamics, Greece, Athens, 23–26 November 2020; Institute of Research and Development for Computational Methods in Engineering Sciences: Greece, Athens, 2020; pp. 1433–1444. [Google Scholar]
- De Domenico, D.; Qiao, H.; Wang, Q.; Zhu, Z.; Marano, G. Optimal design and seismic performance of Multi-Tuned Mass Damper Inerter (MTMDI) applied to adjacent high-rise buildings. Struct. Des. Tall Spec. Build. 2020, 29, e1781. [Google Scholar] [CrossRef]
- Ruiz, R.; Taflanidis, A.; Giaralis, A.; Lopez-Garcia, D. Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for the seismic protection of multi-storey building structures. Eng. Struct. 2018, 177, 836–850. [Google Scholar] [CrossRef]
- Sugimura, Y.; Goto, W.; Tanizawa, H.; Saito, K.; Nimomiya, T. Response control effect of steel building structure using tuned viscous mass damper. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012; pp. 24–28. [Google Scholar]
- Kareem, A. Reduction of wind induced motion utilizing a tuned sloshing damper. J. Wind Eng. Ind. Aerodyn. 1990, 36, 725–737. [Google Scholar] [CrossRef]
- Kareem, A. The next generation of tuned liquid dampers. In Proceedings of the First World Conference on Structural Control, Los Angeles, CA, USA, 3–5 August 1994; pp. 19–28. [Google Scholar]
- Kareem, A.; Kijewski, T.; Tamura, Y. Mitigation of motions of tall buildings with specific examples of recent applications. Wind Struct. 1999, 2, 201–251. [Google Scholar] [CrossRef] [Green Version]
- Konar, T.; Ghosh, A. A review on various configurations of the passive tuned liquid damper. J. Vib. Control 2022. [Google Scholar] [CrossRef]
- Suthar, S.J.; Jangid, R.S. Design of tuned liquid sloshing dampers using nonlinear constraint optimization for across-wind response control of benchmark tall building. Structures 2021, 33, 2675–2688. [Google Scholar] [CrossRef]
- Tamura, Y.; Fujii, K.; Ohtsuki, T.; Wakahara, T.; Kohsaka, R. Effectiveness of tuned liquid dampers under wind excitation. Eng. Struct. 1995, 17, 609–621. [Google Scholar] [CrossRef]
- Wakahara, T.; Shimada, K.; Tamura, Y. Practical application of tuned liquid damper for tall buildings. In Structures Congress XII; ASCE: Reston, VA, USA, 1994; pp. 851–856. [Google Scholar]
- Chaiviriyawong, P.; Prachaseree, W. Applications of passive mass dampers for civil engineering structural control: A review. In Proceedings of the Sixth Regional Symposium on Infrastructure Development (RSID6), Bangkok, Thailand, 12–13 January 2009. [Google Scholar]
- Sakai, F. Tuned liquid column damper-new type device for suppression of building vibration. In Proceedings of the 1st International Conference on Highrise Buildings, Nanjing, China, 25–27 March 1989; pp. 926–931. [Google Scholar]
- Shimizu, K.; Teramura, A. Development of vibration control system using U-shaped tank. In Proceedings of the 1st International Workshop and Seminar on Behavior of Steel Structures in SEISMIC Areas, Timisoara, Romania, 26 June–1 July 1994. [Google Scholar]
- Masri, S.; Caughey, T. On the stability of the impact damper. J. Appl. Mech. 1966, 33, 586. [Google Scholar] [CrossRef]
- Reed, W.H., III. Hanging-chain impact dampers-A simple method for damping tall flexible structures. In Proceedings of the International Research Seminar: Wind Effects on Buildings and Structures, Ottawa, ON, Canada, 11–15 September 1967. [Google Scholar]
- Lu, Z.; Wang, Z.; Masri, S.F.; Lu, X. Particle impact dampers: Past, present, and future. Struct. Control Health Monit. 2018, 25, e2058. [Google Scholar] [CrossRef]
- Naeim, F.; Lew, M.; Carpenter, L.D.; Youssef, N.F.; Rojas, F.; Saragoni, G.R.; Adaros, M.S. Performance of tall buildings in Santiago, Chile during the 27 February 2010 offshore Maule, Chile earthquake. Struct. Des. Tall Spec. Build. 2011, 20, 1–16. [Google Scholar] [CrossRef]
- Fukuda, Y.; Matsumoto, Y.; Seto, K. Bending and torsional vibration control of flexible structures arranged in parallel. In Proceedings of the 3rd International Conference on Motion and Vibration Control (MOVIC), Chiba, Japan, 1–6 September 1996; pp. 12–17. [Google Scholar]
- Luco, J.E.; De Barros, F.C. Optimal damping between two adjacent elastic structures. Earthq. Eng. Struct. Dyn. 1998, 27, 649–659. [Google Scholar] [CrossRef]
- Etienne, J. Les nouvelles technologies du bâtiment au Japon; Ambassade de France au Japon: Tokyo, Japan, 2005; 62p. [Google Scholar]
- De Domenico, D.; Ricciardi, G.; Takewaki, I. Design strategies of viscous dampers for seismic protection of building structures: A review. Soil Dyn. Earthq. Eng. 2019, 118, 144–165. [Google Scholar] [CrossRef]
- Bhaskararao, A.; Jangid, R. Optimum viscous damper for connecting adjacent SDOF structures for harmonic and stationary white-noise random excitations. Earthq. Eng. Struct. Dyn. 2007, 36, 563–571. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y. Vibration analysis of two buildings linked by Maxwell model-defined fluid dampers. J. Sound Vib. 2000, 233, 775–796. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, Y.; Lu, X. Experimental seismic study of adjacent buildings with fluid dampers. J. Struct. Eng. 2003, 129, 197–205. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, Y. Optimum parameters of Maxwell model-defined dampers used to link adjacent structures. J. Sound Vib. 2005, 279, 253–274. [Google Scholar] [CrossRef]
- Matsagar, V.A.; Jangid, R. Base-isolated building connected to adjacent building using viscous dampers. Bull. N. Z. Soc. Earthq. Eng. 2006, 39, 59–80. [Google Scholar] [CrossRef]
- Richardson, A.; Walsh, K.K.; Abdullah, M.M. Closed-form equations for coupling linear structures using stiffness and damping elements. Struct. Control Health Monit. 2013, 20, 259–281. [Google Scholar] [CrossRef]
- Patel, C.; Jangid, R. Dynamic response of identical adjacent structures connected by viscous damper. Struct. Control Health Monit. 2014, 21, 205–224. [Google Scholar] [CrossRef]
- Basili, M.; Angelis, M.D.; Pietrosanti, D. Dynamic response of a viscously damped two adjacent degree of freedom system linked by inerter subjected to base harmonic excitation. Procedia Eng. 2017, 199, 1586–1591. [Google Scholar] [CrossRef]
- Impollonia, N.; Palmeri, A. Seismic performance of buildings retrofitted with nonlinear viscous dampers and adjacent reaction towers. Earthq. Eng. Struct. Dyn. 2018, 47, 1329–1351. [Google Scholar] [CrossRef]
- Karabork, T.; Aydin, E. Optimum design of viscous dampers to prevent pounding of adjacent structures. Earthq. Struct. 2019, 16, 437–453. [Google Scholar]
- SkyscraperCity.com. Available online: www.skyscrapercity.com/showthread.php?t=374753 (accessed on 15 October 2022).
- Akkermann, J.; Hewener, A.; Constantinescu, D. Djamaâ El Djazaïr—The Great Mosque of Algeria. Struct. Eng. Int. 2015, 25, 224–229. [Google Scholar] [CrossRef]
- Constantinescu, D.; Dietlinde, K. The Minaret of the Great Mosque in Algiers, a structural challenge. Open J. Civ. Eng. 2013, 3, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Khalatbarisoltani, A.; Soleymani, M.; Khodadadi, M. Online control of an active seismic system via reinforcement learning. Struct. Control Health Monit. 2019, 26, e2298. [Google Scholar] [CrossRef]
- Zuk, W. Kinetic Structures. J. Civ. Eng. 1968, 39, 62–64. [Google Scholar]
- Yao, J.T. Concept of structural control. J. Struct. Div. 1972, 98, 1567–1574. [Google Scholar] [CrossRef]
- Chang, J.C.; Soong, T.T. Structural control using active tuned mass dampers. J. Eng. Mech. Div. 1980, 106, 1091–1098. [Google Scholar] [CrossRef]
- Abdel-Rohman, M. Optimal design of active TMD for buildings control. Build. Environ. 1984, 19, 191–195. [Google Scholar] [CrossRef]
- Samali, B.; Yang, J.; Yeh, C. Control of lateral-torsional motion of wind-excited buildings. J. Eng. Mech. 1985, 111, 777–796. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J. Active control of transmission tower under stochastic wind. J. Struct. Eng. 1998, 124, 1302–1312. [Google Scholar] [CrossRef]
- Yamamoto, M.; Aizawa, S.; Higashino, M.; Toyama, K. Practical applications of active mass dampers with hydraulic actuator. Earthq. Eng. Struct. Dyn. 2001, 30, 1697–1717. [Google Scholar] [CrossRef]
- Ikeda, Y.; Sasaki, K.; Sakamoto, M.; Kobori, T. Active mass driver system as the first application of active structural control. Earthq. Eng. Struct. Dyn. 2001, 30, 1575–1595. [Google Scholar] [CrossRef]
- Wang, A.-P.; Lin, Y.-H. Vibration control of a tall building subjected to earthquake excitation. J. Sound Vib. 2007, 299, 757–773. [Google Scholar] [CrossRef]
- Guclu, R.; Yazici, H. Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers. J. Sound Vib. 2008, 318, 36–49. [Google Scholar] [CrossRef]
- Kobori, T.; Koshika, N.; Yamada, K.; Ikeda, Y. Seismic-response-controlled structure with active mass driver system. Part 1: Design. Earthq. Eng. Struct. Dyn. 1991, 20, 133–149. [Google Scholar] [CrossRef]
- Elias, S.; Salah, D.; Dario, D.D.; Mahdi, A.; Ouni, M.E. Seismic Response Control of Building Structures under Pulse Type Ground Motions by Active Vibration Controller. J. Low Freq. Noise Vib. Act. Control 2022, 41, 292–329. [Google Scholar] [CrossRef]
- Ümütlü, R.C.; Ozturk, H.; Bidikli, B. A robust adaptive control design for active tuned mass damper systems of multistory buildings. J. Vib. Control 2021, 27, 2765–2777. [Google Scholar] [CrossRef]
- Yanik, A.; Aldemir, U.; Bakioglu, M. A new active control performance index for vibration control of three-dimensional structures. Eng. Struct. 2014, 62, 53–64. [Google Scholar] [CrossRef]
- Yanik, A. Absolute instantaneous optimal control performance index for active vibration control of structures under seismic excitation. Shock Vib. 2019, 2019, 4207427. [Google Scholar] [CrossRef] [Green Version]
- Yanik, A.; Aldemir, U.; Bakioglu, M. Active Control of Three-Dimensional Structures. In Dynamics of Civil Structures, Volume 4; Springer: Cham, Switzerland, 2014; pp. 479–486. [Google Scholar]
- Preumont, A.; Seto, K. Active Control of Structures; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Seto, M.; Toba, Y.; Matsumoto, Y. Reduced order modeling and vibration control methods for flexible structures arranged in parallel. In Proceedings of the 1995 American Control Conference-ACC’95, Seattle, WA, USA, 21–23 June 1995; pp. 2344–2348. [Google Scholar]
- Seto, K. A structural control method of the vibration of flexible buildings in response to large earthquakes and strong winds. In Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, 13 December 1996; pp. 658–663. [Google Scholar]
- Yamada, Y.; Ikawa, N.; Yokoyama, H.; Tachibana, E. Active control of structures using the joining member with negative stiffness. In Proceedings of the First World Conference on Structural Control, Los Angeles, CA, USA, 3–5 August 1994. [Google Scholar]
- Christenson, R.; Spencer Jr, B.; Johnson, E. Coupled building control using active and smart damping strategies. Optim. Control Civ. Struct. Eng. 1999, 187, 195. [Google Scholar]
- Mitsuta, S.; Okawa, E.; Seto, K.; Ito, H. Active vibration control of structures arranged in parallel. JSME Int. J. Ser. C Dyn. Control Robot. Des. Manuf. 1994, 37, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.K.; Yang, J.N. Optimal polynomial control of seismically excited linear structures. J. Eng. Mech. 1996, 122, 753–761. [Google Scholar] [CrossRef]
- Yang, J.; Agrawal, A.; Chen, S. Optimal polynomial control for seismically excited non-linear and hysteretic structures. Earthq. Eng. Struct. Dyn. 1996, 25, 1211–1230. [Google Scholar] [CrossRef]
- Haramoto, H.; Seto, K.; Koike, Y. Active Vibration Control of Triple Flexible Structures Arranged in Parallel. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 2000, 43, 712–718. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Ying, Z.; Soong, T. An optimal nonlinear feedback control strategy for randomly excited structural systems. Nonlinear Dyn. 2001, 24, 31–51. [Google Scholar] [CrossRef]
- Ying, Z.; Ni, Y.; Ko, J. Stochastic optimal coupling-control of adjacent building structures. Comput. Struct. 2003, 81, 2775–2787. [Google Scholar] [CrossRef]
- Chung, L.; Lin, R.; Soong, T.; Reinhorn, A. Experimental study of active control for MDOF seismic structures. J. Eng. Mech. 1989, 115, 1609–1627. [Google Scholar] [CrossRef]
- Chung, L.; Reinhorn, A.; Soong, T. Experiments on active control of seismic structures. J. Eng. Mech. 1988, 114, 241–256. [Google Scholar] [CrossRef]
- Loh, C.H.; Lin, P.Y.; Chung, N.H. Experimental verification of building control using active bracing system. Earthq. Eng. Struct. Dyn. 1999, 28, 1099–1119. [Google Scholar] [CrossRef]
- Lu, L.-Y. Discrete-time modal control for seismic structures with active bracing system. J. Intell. Mater. Syst. Struct. 2001, 12, 369–381. [Google Scholar] [CrossRef]
- Preumont, A. Tendon control of cable structures. In Vibration Control of Active Structures; Springer: Cham, Switzerland, 2018; pp. 377–415. [Google Scholar]
- Yang, J.-N. Application of optimal control theory to civil engineering structures. J. Eng. Mech. Div. 1975, 101, 819–838. [Google Scholar] [CrossRef]
- Abdel-Rohman, M.; Leipholz, H.H. Active control of tall buildings. J. Struct. Eng. 1983, 109, 628–645. [Google Scholar] [CrossRef]
- Soong, T. State-of-the-art review: Active structural control in civil engineering. Eng. Struct. 1988, 10, 74–84. [Google Scholar] [CrossRef]
- Sarbjeet, S.; Datta, T. Open-closed-loop linear control of building frames under seismic excitation. J. Struct. Eng. 1998, 124, 43–51. [Google Scholar] [CrossRef]
- Suhardjo, J.; Spencer, B., Jr.; Kareem, A. Frequency domain optimal control of wind-excited buildings. J. Eng. Mech. 1992, 118, 2463–2481. [Google Scholar] [CrossRef]
- Johansen, J.D. Active Control of Frame Structures: A Decentralized Approach; University of California Santa Barbara: Santa Barbara, CA, USA, 2008. [Google Scholar]
- Mohebbi, M.; Dadkhah, H.; Rasouli Dabbagh, H. Modified H2/LQG control algorithm for designing a multi-objective semi-active base isolation system. J. Vib. Control 2018, 24, 5693–5704. [Google Scholar] [CrossRef]
- Yang, J.; Wu, J.; Reinhorn, A.; Riley, M.; Schmitendorf, W.; Jabbari, F. Experimental verifications of H∞ and sliding mode control for seismically excited buildings. J. Struct. Eng. 1996, 122, 69–75. [Google Scholar] [CrossRef]
- Abdel-Rohman, M.; Leipholz, H.H. General approach to active structural control. J. Eng. Mech. Div. 1979, 105, 1007–1023. [Google Scholar] [CrossRef]
- Yang, J.N.; Li, Z.; Liu, S. Instantaneous optimal control with acceleration and velocity feedback. In Stochastic Structural Dynamics 2; Springer: Cham, Switzerland, 1991; pp. 287–306. [Google Scholar]
- Utkin, V.I. Sliding Modes and Their Applications in Variable STRUCTURE Systems; Mir: Moscow, Russia, 1978. [Google Scholar]
- Yang, J.N.; Wu, J.; Agrawal, A.; Li, Z. Sliding mode control for seismic-excited linear and nonlinear civil engineering structures. In National Center for Earthquake Engineering Research, Technical Report NCEER-94-0017; American Society of Civil Engineers: Reston, VA, USA, 1994. [Google Scholar]
- Sarbjeet, S.; Datta, T. Nonlinear sliding mode control of seismic response of building frames. J. Eng. Mech. 2000, 126, 340–347. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, R.; Soong, T. Non-linear feedback control for improved peak response reduction. Smart Mat. Struct. 1995, 4, A140. [Google Scholar] [CrossRef]
- Shefer, M.; Breakwell, J. Estimation and control with cubic nonlinearities. J. Optim. Theory Appl. 1987, 53, 1–7. [Google Scholar] [CrossRef]
- Suhardjo, J.; Spencer Jr, B.; Sain, M. Non-linear optimal control of a Duffing system. Int. J. Non-Linear Mech. 1992, 27, 157–172. [Google Scholar] [CrossRef]
- Ghaboussi, J.; Joghataie, A. Active control of structures using neural networks. J. Eng. Mech. 1995, 121, 555–567. [Google Scholar] [CrossRef]
- Chen, H.; Tsai, K.; Qi, G.; Yang, J.; Amini, F. Neural network for structure control. J. Comput. Civ. Eng. 1995, 9, 168–176. [Google Scholar] [CrossRef]
- Bani-Hani, K.; Ghaboussi, J. Nonlinear structural control using neural networks. J. Eng. Mech. 1998, 124, 319–327. [Google Scholar] [CrossRef]
- Djedoui, N.; Ounis, A.; Mahdi, A.; Zahrai, S.M. Semi-active fuzzy control of tuned mass damper to reduce base-isolated building response under harmonic excitation. Jordan J. Civ. Eng. 2018, 12, 435–448. [Google Scholar]
- Battaini, M.; Casciati, F.; Faravelli, L. Fuzzy control of structural vibration. An active mass system driven by a fuzzy controller. Earthq. Eng. Struct. Dyn. 1998, 27, 1267–1276. [Google Scholar] [CrossRef]
- Kurata, N.; Kobori, T.; Takahashi, M.; Niwa, N.; Midorikawa, H. Actual seismic response controlled building with semi-active damper system. Earthq. Eng. Struct. Dyn. 1999, 28, 1427–1447. [Google Scholar] [CrossRef]
- Tani, A.; Kawamura, H.; Seiko, R. Intelligent fuzzy optimal control of building structures. Eng. Struct. 1998, 20, 184–192. [Google Scholar] [CrossRef]
- Adeli, H.; Kim, H. Wavelet-hybrid feedback-least mean square algorithm for robust control of structures. J. Struct. Eng. 2004, 130, 128–137. [Google Scholar] [CrossRef]
- Kim, H.; Adeli, H. Hybrid feedback-least mean square algorithm for structural control. J. Struct. Eng. 2004, 130, 120–127. [Google Scholar] [CrossRef]
- Kim, H.; Adeli, H. Wavelet-hybrid feedback linear mean squared algorithm for robust control of cable-stayed bridges. J. Bridge Eng. 2005, 10, 116–123. [Google Scholar] [CrossRef]
- Goh, C.; Caughey, T. On the stability problem caused by finite actuator dynamics in the collocated control of large space structures. Int. J. Control 1985, 41, 787–802. [Google Scholar] [CrossRef]
- Baz, A.; Poh, S.; Fedor, J. Independent modal space control with positive position feedback. J. Dyn. Syst. Meas. Control 1992, 114, 96–103. [Google Scholar] [CrossRef]
- Høgsberg, J.R.; Krenk, S. Linear control strategies for damping of flexible structures. J. Sound Vib. 2006, 293, 59–77. [Google Scholar] [CrossRef]
- Preumont, A.; Dufour, J.-P.; Malekian, C. Active damping by a local force feedback with piezoelectric actuators. J. Guid. Control Dyn. 1992, 15, 390–395. [Google Scholar] [CrossRef]
- Balas, M.J. Direct velocity feedback control of large space structures. J. Guid. Control 1979, 2, 252–253. [Google Scholar] [CrossRef]
- Karnopp, D.; Crosby, M.J.; Harwood, R. Vibration control using semi-active force generators. J. Eng. Ind. 1974, 96, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Hrovat, D.; Barak, P.; Rabins, M. Semi-active versus passive or active tuned mass dampers for structural control. J. Eng. Mech. 1983, 109, 691–705. [Google Scholar] [CrossRef]
- Symans, M.D.; Constantinou, M.C. Semi-active control systems for seismic protection of structures: A state-of-the-art review. Eng. Struct. 1999, 21, 469–487. [Google Scholar] [CrossRef]
- Spencer, B.; Sain, M.K. Controlling buildings: A new frontier in feedback. IEEE Control Syst. Mag. 1997, 17, 19–35. [Google Scholar] [CrossRef]
- Spencer, B., Jr. Civil engineering applications of smart damping technology. In Proceedings of the 5th International Conference on Vibration Engineering, Nanjing, China, 18–20 September 2002; pp. 771–782. [Google Scholar]
- Bhaiya, V.; Bharti, S.; Shrimali, M.; Datta, T. Genetic algorithm based optimum semi-active control of building frames using limited number of magneto-rheological dampers and sensors. J. Dyn. Syst. Meas. Control 2018, 140, 101013. [Google Scholar] [CrossRef]
- Feng, Q. Use of a variable damper for hybrid control of bridge response under earthquake. In Proceedings of the Proc. US National Workshop on Struct. Control Research, Los Angeles, CA, USA, 25–26 October 1990; USC Publication: Los Angeles, CA, USA, 1990. [Google Scholar]
- Kawashima, K.; Unjoh, S. Seismic response control of bridges by variable dampers. Doboku Gakkai Ronbunshu 1994, 1994, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Patten, W.N.; Sack, R.L.; He, Q. Controlled semiactive hydraulic vibration absorber for bridges. J. Struct. Eng. 1996, 122, 187–192. [Google Scholar] [CrossRef]
- Symans, M.D.; Constantinou, M.C. Seismic testing of a building structure with a semi-active fluid damper control system. Earthq. Eng. Struct. Dyn. 1997, 26, 759–777. [Google Scholar] [CrossRef]
- Sack, R.L.; Patten, W. Semiactive hydraulic structural control. In International Workshop on Structural Control; University of Southern Los Angeles: Los Angeles, CA, USA, 1994; pp. 417–431. [Google Scholar]
- Neff Patten, W.; Sun, J.; Li, G.; Kuehn, J.; Song, G. Field test of an intelligent stiffener for bridges at the I-35 Walnut Creek Bridge. Earthq. Eng. Struct. Dyn. 1999, 28, 109–126. [Google Scholar] [CrossRef]
- Symans, M.D.; Kelly, S.W. Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems. Earthq. Eng. Struct. Dyn. 1999, 28, 37–60. [Google Scholar] [CrossRef]
- Jabbari, F.; Bobrow, J.E. Vibration suppression with resettable device. J. Eng. Mech. 2002, 128, 916–924. [Google Scholar] [CrossRef]
- Yang, J.N.; Kim, J.-H.; Agrawal, A.K. Resetting semiactive stiffness damper for seismic response control. J. Struct. Eng. 2000, 126, 1427–1433. [Google Scholar] [CrossRef]
- Kobori, T.; Takahashi, M.; Nasu, T.; Niwa, N.; Ogasawara, K. Seismic response controlled structure with active variable stiffness system. Earthq. Eng. Struct. Dyn. 1993, 22, 925–941. [Google Scholar] [CrossRef]
- Nagarajaiah, S. Structural Vibration Damper with Continuously Variable Stiffness. U.S. Patent No. 6,098,969, 8 August 2000. [Google Scholar]
- Nagarajaiah, S.; Mate, D. Semi-active control of continuously variable stiffness system. In Proceedings of the Second World Conference on Structural Control, Kyoto, Japan, 28 June–1 July 1998; pp. 397–405. [Google Scholar]
- Dyke, S.; Spencer, B., Jr.; Sain, M.; Carlson, J. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mat. Struct. 1996, 5, 565. [Google Scholar] [CrossRef]
- Dyke, S.; Spencer, B., Jr.; Sain, M.; Carlson, J. An experimental study of MR dampers for seismic protection. Smart Mat. Struct. 1998, 7, 693. [Google Scholar] [CrossRef] [Green Version]
- Suthar, S.J.; Patil, V.B.; Jangid, R.S. Optimization of MR Dampers for Wind-Excited Benchmark Tall Building. Pract. Period. Struct. Des. Constr. 2022, 27, 04022048. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Agrawal, A.K.; Friedman, A.; Phillips, B.; Ahn, R.; Dong, B.; Dyke, S.J.; Spencer, B.F.; Ricles, J.; Christenson, R. Performance validations of semiactive controllers on large-scale moment-resisting frame equipped with 200-kN MR damper using real-time hybrid simulations. J. Struct. Eng. 2014, 140, 04014066. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Min, K.-W. Design of MR dampers to prevent progressive collapse of moment frames. Struc. Eng. Mech. 2014, 52, 291–306. [Google Scholar] [CrossRef] [Green Version]
- Bhaiya, V.; Shrimali, M.; Bharti, S.; Datta, T. Modified semiactive control with MR dampers for partially observed systems. Eng. Struct. 2019, 191, 129–147. [Google Scholar] [CrossRef]
- Akbay, Z.; Aktan, H.M. Actively regulated friction slip devices. In Proceedings of the 6th Canadian Conference on Earthquake Engrg, Toronto, ON, Canada, 12–14 June 1991; pp. 367–374. [Google Scholar]
- Kannan, S.; Uras, H.M.; Aktan, H.M. Active control of building seismic response by energy dissipation. Earthq. Eng. Struct. Dyn. 1995, 24, 747–759. [Google Scholar] [CrossRef]
- Feng, M.Q.; Shinozuka, M.; Fujii, S. Friction-controllable sliding isolation system. J. Eng. Mech. 1993, 119, 1845–1864. [Google Scholar] [CrossRef]
- Yang, J.N.; Agrawal, A.K. Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes. Eng. Struct. 2002, 24, 271–280. [Google Scholar] [CrossRef]
- Garrett, G.T.; Chen, G.; Cheng, F.Y.; Huebner, W. Experimental characterization of piezoelectric friction dampers. In Smart Structures and Materials 2001: Smart Systems for Bridges, Structures, and Highways; SPIE: Bellingham, WA, USA, 2001; pp. 405–415. [Google Scholar]
- Tonoli, A.; Amati, N.; Silvagni, M. Electromechanical dampers for vibration control of structures and rotors. In Vibration Control; Sciyo: Scottsdale, AZ, USA, 2010; pp. 1–32. [Google Scholar]
- Kaveh, A.; Pirgholizadeh, S.; Hosseini, O.K. Semi-active tuned mass damper performance with optimized fuzzy controller using CSS algorithm. Asian J. Civ. Eng. 2015, 16, 587–606. [Google Scholar]
- Nagarajaiah, S.; Varadarajan, N. Novel semi-active variable stiffness tuned mass damper with real time tuning capability. In Proceedings of the 13th Engineering Mechanics Conference 2000, Svratka, Czech Republic, 15–18 May 2000. [Google Scholar]
- Gavin, H.; Alhan, C.; Oka, N. Fault tolerance of semiactive seismic isolation. J. Struct. Eng. 2003, 129, 922–932. [Google Scholar] [CrossRef]
- Madden, G.J.; Wongprasert, N.; Symans, M.D. Analytical and numerical study of a smart sliding base isolation system for seismic protection of buildings. Comput.-Aided Civ. Infrastruct. Eng. 2003, 18, 19–30. [Google Scholar] [CrossRef]
- Abdeddaim, M.; Djerouni, S.; Ounis, A.; Athamnia, B.; Farsangi, E.N. Optimal design of Magnetorheological damper for seismic response reduction of Base-Isolated structures considering Soil-Structure interaction. Structures 2022, 38, 733–752. [Google Scholar] [CrossRef]
- Ni, Y.; Ko, J.; Ying, Z. Random seismic response analysis of adjacent buildings coupled with non-linear hysteretic dampers. J. Sound Vib. 2001, 246, 403–417. [Google Scholar] [CrossRef]
- Bharti, S.D.; Dumne, S.M.; Shrimali, M.K. Seismic response analysis of adjacent buildings connected with MR dampers. Eng. Struct. 2010, 32, 2122–2133. [Google Scholar] [CrossRef]
- Golafshani, A.A.; Rahani, E.K.; Tabeshpour, M.R. A new high performance semi-active bracing system. Eng. Struct. 2006, 28, 1972–1982. [Google Scholar] [CrossRef]
- Dimentberg, M.; Iourtchenko, D. Random vibrations with impacts: A review. Nonlinear Dyn. 2004, 36, 229–254. [Google Scholar] [CrossRef]
- Afsharfard, A.; Farshidianfar, A. Modeling and analysis of magnetorheological inner mass single unit impact dampers. J. Intell. Mater. Syst. Struct. 2014, 25, 342–351. [Google Scholar] [CrossRef]
- Sakamoto, M. Practical Applications of Active Structural Response Control and Earthquake & Strong Wind Observation Systems. In Planning Workshop for the Hong Kong International Full-Scale Control TestFacility; Hong Kong University of Science & Technology: Hong Kong, China, 9–10 December 1993. [Google Scholar]
- Sakamoto, M.; Kobori, T. Applications of structural response control (reviews from the past and issues toward the future). In Proceedings of the 2nd International Workshop on Structure Control, Hong Kong, China, 18–20 December 1996; pp. 470–481. [Google Scholar]
- Tamura, Y.; Kohsaka, R.; Nakamura, O.; Miyashita, K.-I.; Modi, V.J. Wind-induced responses of an airport tower—Efficiency of tuned liquid damper. J. Wind Eng. Ind. Aerodyn. 1996, 65, 121–131. [Google Scholar] [CrossRef]
- Kim, H.; Adeli, H. Hybrid control of smart structures using a novel wavelet-based algorithm. Comput.-Aided Civ. Infrastruct. Eng. 2005, 20, 7–22. [Google Scholar] [CrossRef]
- Elias, S.; Matsagar, V. Seismic response control of steel benchmark building with a tuned mass damper. Asian J. Civ. Eng. 2020, 21, 267–280. [Google Scholar] [CrossRef]
- Samiee, H.R. Hybrid passive control system of TLD and TMD for seismic response mitigation of Tall Buildings. J. Vibroeng. 2017, 19, 3648–3667. [Google Scholar] [CrossRef] [Green Version]
- Halperin, I.; Ribakov, Y.; Agranovich, G. Optimal viscous dampers gains for structures subjected to earthquakes. Struct. Control Health Monit. 2016, 23, 458–469. [Google Scholar] [CrossRef]
- Bitaraf, M.; Hurlebaus, S. Semi-active adaptive control of seismically excited 20-story nonlinear building. Eng. Struct. 2013, 56, 2107–2118. [Google Scholar] [CrossRef]
- Raut, B.R.; Jangid, R. Seismic analysis of benchmark building installed with friction dampers. IES J. Part A Civ. Struct. Eng. 2014, 7, 20–37. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, A.; Matsagar, V.A. Optimum design of nonlinear tuned mass damper for dynamic response control under earthquake and wind excitations. Struct. Control Health Monit. 2022, 29, e2960. [Google Scholar] [CrossRef]
- Suthar, S.J.; Jangid, R.S. Optimal Design of Tuned Liquid Column Damper for Wind-induced Response Control of Benchmark Tall Building. J. Vib. Eng. Technol. 2022, 1–11. [Google Scholar] [CrossRef]
- Koutsoloukas, L.; Nikitas, N.; Aristidou, P. Robust structural control of a real high-rise tower equipped with a hybrid mass damper. Struct. Des. Tall Spec. Build. 2022, 31, e1941. [Google Scholar] [CrossRef]
- Li, C.; Pan, H.; Cao, L. Tuned tandem mass dampers-inerters for suppressing vortex-induced vibration of super-tall buildings. Eng. Struct. 2022, 270, 114831. [Google Scholar] [CrossRef]
- Elias, S.; Matsagar, V.; Datta, T.K. Distributed tuned mass dampers for multi-mode control of benchmark building under seismic excitations. J. Earthq. Eng. 2019, 23, 1137–1172. [Google Scholar] [CrossRef]
Researcher(s) | Used Device | N° of Floors | Reduction in Dynamical Parameters of Interest | ||
---|---|---|---|---|---|
Peak Displacement | Peak Acceleration | Peak Base-Shear | |||
Elias and Matsagar [211] | TMD | 20 | 20% | 10% | 10% |
Elias et al. [220] | Multiple Distributed TMD | 20 | 30% | 40% | 35% |
Samiee [212] | TLD | 20 | 17.42% | 7.2% | / |
Halperin et al. [213] | Viscous damper | 20 | 30–42% | 70–82% | / |
Bitaraf and Hurlebaus [214] | MR damper | 20 | 46% | 55% | / |
Raut and Jangid [215] | Friction damper | 20 | 46.7% | 23.5% | 5.33% |
Researcher(s) | Used Device | N° of Floors | Reduction in Dynamical Parameters of Interest | ||
---|---|---|---|---|---|
Peak Displacement | Peak Acceleration | Peak Base-Shear | |||
Banerjee et al. [216] | TMD | 25 | 12.7% | 21.8% | / |
Suthar and Jangid [217] | TLCD | 76 | 35.5% | 38.8% | / |
Koutsoloukas et al. [218] | HMD | 15 | 23% | 37% | / |
Elias et al. [50] | Multiple Distributed TMD | 76 | 56% | 52% | |
Li et al. [219] | TTMDI | 25 | / | 42.81% | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Ouni, M.H.; Abdeddaim, M.; Elias, S.; Kahla, N.B. Review of Vibration Control Strategies of High-Rise Buildings. Sensors 2022, 22, 8581. https://doi.org/10.3390/s22218581
El Ouni MH, Abdeddaim M, Elias S, Kahla NB. Review of Vibration Control Strategies of High-Rise Buildings. Sensors. 2022; 22(21):8581. https://doi.org/10.3390/s22218581
Chicago/Turabian StyleEl Ouni, Mohamed Hechmi, Mahdi Abdeddaim, Said Elias, and Nabil Ben Kahla. 2022. "Review of Vibration Control Strategies of High-Rise Buildings" Sensors 22, no. 21: 8581. https://doi.org/10.3390/s22218581
APA StyleEl Ouni, M. H., Abdeddaim, M., Elias, S., & Kahla, N. B. (2022). Review of Vibration Control Strategies of High-Rise Buildings. Sensors, 22(21), 8581. https://doi.org/10.3390/s22218581