Dynamic Reconstruction and Mesh Compression of 4D Volumetric Model Using Correspondence-Based Deformation for Streaming Service
Abstract
:1. Introduction
2. Fundamental Theory
2.1. Remeshing
2.2. Deformation Transfer
3. Dynamic Reconstruction of 4D Volumetric Model
3.1. Overview of the Proposed Algorithm
3.2. Key Frame Selection
- (1)
- When more than 15 frames have passed since adding a new key frame.
- (2)
- When the sum of the Euclidean distances between the corresponding points of the key frame and the target frame exceeds 20 cm.
- (3)
- The number of meshes between the key and current frames differs by more than 1000.
3.3. Remeshing
3.4. Correspondence Searching
3.5. Deformation of Key Frame
4. Three-Dimensional Model Compression
5. Experimental Result
5.1. Environment
5.2. Dynamic Reconstruction
5.3. Accuracy Analysis
5.4. Compression Result
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 834–849. [Google Scholar]
- Karami, A.; Menna, F.; Remondino, F. Combining Photogrammetry and Photometric Stereo to Achieve Precise and Complete 3D Reconstruction. Sensors 2022, 22, 8172. [Google Scholar] [CrossRef]
- Balde, A.Y.; Bergeret, E.; Cajal, D.; Toumazet, J.P. Low Power Environmental Image Sensors for Remote Photogrammetry. Sensors 2022, 22, 7617. [Google Scholar] [CrossRef] [PubMed]
- Łabędź, P.; Skabek, K.; Ozimek, P.; Rola, D.; Ozimek, A.; Ostrowska, K. Accuracy Verification of Surface Models of Architectural Objects from the iPad LiDAR in the Context of Photogrammetry Methods. Sensors 2022, 22, 8504. [Google Scholar] [CrossRef]
- Zhan, Z.; Zhou, G.; Yang, X. A Method of Hierarchical Image Retrieval for Real-Time Photogrammetry Based on Multiple Features. IEEE Access 2020, 8, 21524–21533. [Google Scholar] [CrossRef]
- Yin, H.; Yu, H. Incremental SFM 3D reconstruction based on monocular. In Proceedings of the 2020 13th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 12–13 December 2020; pp. 17–21. [Google Scholar] [CrossRef]
- Shin, M.j.; Park, W.; Kang, S.j.; Kim, J.; Yun, K.; Cheong, W.S. Understanding the Limitations of SfM-Based Camera Calibration on Multi-View Stereo Reconstruction. In Proceedings of the 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Jeju, Republic of Korea, 28–30 June 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Yuan, Y.; Ding, Y.; Zhao, L.; Lv, L. An Improved Method of 3D Scene Reconstruction Based on SfM. In Proceedings of the 2018 3rd International Conference on Robotics and Automation Engineering (ICRAE), Guangzhou, China, 17–19 November 2018; pp. 228–232. [Google Scholar] [CrossRef]
- Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohi, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A. KinectFusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; pp. 127–136. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Xu, F.; Yu, T.; Liu, X.; Dai, Q.; Liu, Y. Real-Time Geometry, Albedo, and Motion Reconstruction Using a Single RGB-D Camera. ACM Trans. Graph. 2017, 36, 1. [Google Scholar] [CrossRef]
- Ge, X. Non-rigid registration of 3D point clouds under isometric deformation. ISPRS J. Photogramm. Remote Sens. 2016, 121, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Marinov, M.; Kobbelt, L. Optimization methods for scattered data approximation with subdivision surfaces. Graph. Model. 2005, 67, 452–473. [Google Scholar] [CrossRef]
- Estellers, V.; Schmidt, F.; Cremers, D. Robust Fitting of Subdivision Surfaces for Smooth Shape Analysis. In Proceedings of the 2018 International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 277–285. [Google Scholar] [CrossRef]
- Guo, K.; Lincoln, P.; Davidson, P.; Busch, J.; Yu, X.; Whalen, M.; Harvey, G.; Orts-Escolano, S.; Pandey, R.; Dourgarian, J.; et al. The Relightables: Volumetric Performance Capture of Humans with Realistic Relighting. ACM Trans. Graph. 2019, 38, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Pietroszek, K.; Eckhardt, C. Volumetric Capture for Narrative Films. In Proceedings of the 26th ACM Symposium on Virtual Reality Software and Technology (VRST’20), Virtual, 1–4 November 2020; Association for Computing Machinery: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Schreer, O.; Feldmann, I.; Ebner, T.; Renault, S.; Weissig, C.; Tatzelt, D.; Kauff, P. Advanced Volumetric Capture and Processing. SMPTE Motion Imaging J. 2019, 128, 18–24. [Google Scholar] [CrossRef]
- Schreer, O.; Feldmann, I.; Renault, S.; Zepp, M.; Worchel, M.; Eisert, P.; Kauff, P. Capture and 3D Video Processing of Volumetric Video. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 4310–4314. [Google Scholar] [CrossRef]
- Newcombe, R.A.; Fox, D.; Seitz, S.M. DynamicFusion: Reconstruction and Tracking of Non-Rigid Scenes in Real-Time. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Alliez, P.; Ucelli, G.; Gotsman, C.; Attene, M. Recent Advances in Remeshing of Surfaces. In Shape Analysis and Structuring; De Floriani, L., Spagnuolo, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 53–82. [Google Scholar]
- Alliez, P.; de Verdire, E.; Devillers, O.; Isenburg, M. Isotropic surface remeshing. In Proceedings of the 2003 Shape Modeling International, Seoul, Republic of Korea, 12–15 May 2003; pp. 49–58. [Google Scholar] [CrossRef] [Green Version]
- Shewchuk, J.R. What is a good linear element? Interpolation, conditioning, anisotropy, and quality measures. In Proceedings of the 11th International Meshing Roundtable, Ithaca, NY, USA, 15–18 September 2002; p. 115. [Google Scholar]
- Wang, Y.; Yan, D.M.; Liu, X.; Tang, C.; Guo, J.; Zhang, X.; Wonka, P. Isotropic Surface Remeshing without Large and Small Angles. IEEE Trans. Vis. Comput. Graph. 2019, 25, 2430–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melzi, S.; Marin, R.; Musoni, P.; Bardon, F.; Tarini, M.; Castellani, U. Intrinsic/extrinsic embedding for functional remeshing of 3D shapes. Comput. Graph. 2020, 88, 1–12. [Google Scholar] [CrossRef]
- Sahillioǧlu, Y.; Yemez, Y. Coarse-to-fine combinatorial matching for dense isometric shape correspondence. In Computer Graphics Forum; Blackwell Publishing Ltd.: Oxford, UK, 2011; Volume 30, pp. 1461–1470. [Google Scholar]
- Lipman, Y.; Funkhouser, T. Möbius Voting for Surface Correspondence. ACM Trans. Graph. 2009, 28, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ovsjanikov, M.; Ben-Chen, M.; Solomon, J.; Butscher, A.; Guibas, L. Functional Maps: A Flexible Representation of Maps between Shapes. ACM Trans. Graph. 2012, 31, 1–11. [Google Scholar] [CrossRef]
- Li, H.; Sumner, R.W.; Pauly, M. Global correspondence optimization for non-rigid registration of depth scans. In Computer Graphics Forum; Blackwell Publishing Ltd.: Oxford, UK, 2008; Volume 27, pp. 1421–1430. [Google Scholar]
- Li, H.; Adams, B.; Guibas, L.J.; Pauly, M. Robust Single-View Geometry and Motion Reconstruction. ACM Trans. Graph. 2009, 28, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Xu, F.; Wang, Y.; Liu, Y.; Dai, Q. Robust Non-Rigid Motion Tracking and Surface Reconstruction Using L0 Regularization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Cao, V.T.; Tran, T.T.; Laurendeau, D. A two-stage approach to align two surfaces of deformable objects. Graph. Model. 2015, 82, 13–28. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, G.; Xia, S. Templateless Non-Rigid Reconstruction and Motion Tracking With a Single RGB-D Camera. IEEE Trans. Image Process. 2017, 26, 5966–5979. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Cheng, W.; Guo, K.; Zhou, G.; Dai, Q.; Fang, L. FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras. IEEE Trans. Vis. Comput. Graph. 2018, 24, 2284–2297. [Google Scholar] [CrossRef]
- Collet, A.; Chuang, M.; Sweeney, P.; Gillett, D.; Evseev, D.; Calabrese, D.; Hoppe, H.; Kirk, A.; Sullivan, S. High-Quality Streamable Free-Viewpoint Video. ACM Trans. Graph. 2015, 34, 1–13. [Google Scholar] [CrossRef]
- Budd, C.; Huang, P.; Klaudiny, M.; Hilton, A. Global non-rigid alignment of surface sequences. Int. J. Comput. Vis. 2013, 102, 256–270. [Google Scholar] [CrossRef] [Green Version]
- Kirsanov, D. Minimal Discrete Curves and Surfaces; Harvard University: Cambridge, MA, USA, 2004. [Google Scholar]
- Ying, X.; Wang, X.; He, Y. Saddle Vertex Graph (SVG): A Novel Solution to the Discrete Geodesic Problem. ACM Trans. Graph. 2013, 32, 1–12. [Google Scholar] [CrossRef]
- Crane, K.; de Goes, F.; Desbrun, M.; Schröder, P. Digital Geometry Processing with Discrete Exterior Calculus. In ACM SIGGRAPH 2013 Courses; Association for Computing Machinery: New York, NY, USA, 2013; SIGGRAPH’13. [Google Scholar] [CrossRef]
- Mann Inc. Available online: http://www.mn-nh.com/webgl/ (accessed on 1 December 2021).
- Girardeau-Montaut, D. CloudCompare, official website of the CloudCompare project. Available online: http://www.cloudcompare.org/ (accessed on 30 December 2016).
- Bronstein, A.M. Numerical Geometry of Non-Ridig Shapes. Available online: https://paperswithcode.com/dataset/tosca (accessed on 30 November 2010).
Method | Error Distance | Error Ratio | Processing Time | Time Ratio |
---|---|---|---|---|
Xuming [12] | 1.17 mm | 0.00% | 312 ms | 0.00% |
Marinov et al. [13] | 0.32 mm | 72.65% | 431 ms | 138.14% |
Estellers et al. [14] | 0.24 mm | 79.49% | 445 ms | 142.63% |
Ours | 0.06 mm | 94.88% | 520 ms | 166.67% |
Key Frame | Target Frame | Total | ||||
---|---|---|---|---|---|---|
Frame A | Frame B | Frame C | ||||
Raw | Vertices | 19,522 | 19,249 | 19,013 | 19,999 | 77,783 |
Face | 39,040 | 38,494 | 38,022 | 39,994 | 155,550 | |
Byte (MB) | 3.4 | 3.35 | 3.3 | 3.49 | 13.54 | |
Remesh | Vertices | 10,583 | 10,421 | 10,324 | 10,712 | 42,040 |
Face | 21,162 | 20,838 | 20,644 | 21,420 | 84,064 | |
Byte (MB) | 1.7 | 1.68 | 1.67 | 1.73 | 6.78 | |
Residual | Vertices | 10,583 | 4749 | 4828 | 5011 | 25,171 |
Face | 21,162 | 6032 | 6420 | 6618 | 40,232 | |
Byte (MB) | 1.7 | 0.25 | 0.28 | 0.27 | 2.5 | |
Ratio (%) | Vertices | 54.21% | 24.67% | 25.39% | 25.06% | 32.36% |
Face | 54.21% | 15.67% | 16.88% | 16.55% | 25.86% | |
Byte (MB) | 50.00% | 7.46% | 8.39% | 7.68% | 18.43% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.-S.; Lee, S.; Park, J.-T.; Kim, J.-K.; Kim, W.; Seo, Y.-H. Dynamic Reconstruction and Mesh Compression of 4D Volumetric Model Using Correspondence-Based Deformation for Streaming Service. Sensors 2022, 22, 8815. https://doi.org/10.3390/s22228815
Park B-S, Lee S, Park J-T, Kim J-K, Kim W, Seo Y-H. Dynamic Reconstruction and Mesh Compression of 4D Volumetric Model Using Correspondence-Based Deformation for Streaming Service. Sensors. 2022; 22(22):8815. https://doi.org/10.3390/s22228815
Chicago/Turabian StylePark, Byung-Seo, Sol Lee, Jung-Tak Park, Jin-Kyum Kim, Woosuk Kim, and Young-Ho Seo. 2022. "Dynamic Reconstruction and Mesh Compression of 4D Volumetric Model Using Correspondence-Based Deformation for Streaming Service" Sensors 22, no. 22: 8815. https://doi.org/10.3390/s22228815
APA StylePark, B. -S., Lee, S., Park, J. -T., Kim, J. -K., Kim, W., & Seo, Y. -H. (2022). Dynamic Reconstruction and Mesh Compression of 4D Volumetric Model Using Correspondence-Based Deformation for Streaming Service. Sensors, 22(22), 8815. https://doi.org/10.3390/s22228815