
Citation: Momin, M.S.; Sufian, A.;

Barman, D.; Dutta, P.; Dong, M.;

Leo, M. In-Home Older Adults’

Activity Pattern Monitoring Using

Depth Sensors: A Review. Sensors

2022, 22, 9067. https://doi.org/

10.3390/s22239067

Academic Editors: Antonio Celesti

and Antoni Martínez Ballesté

Received: 12 September 2022

Accepted: 15 November 2022

Published: 23 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

In-Home Older Adults’ Activity Pattern Monitoring Using
Depth Sensors: A Review
Md Sarfaraz Momin 1,2, Abu Sufian 3 , Debaditya Barman 2, Paramartha Dutta 2 , Mianxiong Dong 4

and Marco Leo 5,*

1 Department of Computer Science, Kaliachak College, University of Gour Banga, Malda 732101, India
2 Department of Computer & System Sciences, Visva-Bharati University, Bolpur 731235, India
3 Department of Computer Science, University of Gour Banga, Malda 732101, India
4 Department of Science and Informatics, Muroran Institute of Technology, Muroran 050-8585, Hokkaido, Japan
5 National Research Council of Italy, Institute of Applied Sciences and Intelligent Systems, 73100 Lecce, Italy
* Correspondence: marco.leo@cnr.it

Abstract: The global population is aging due to many factors, including longer life expectancy
through better healthcare, changing diet, physical activity, etc. We are also witnessing various
frequent epidemics as well as pandemics. The existing healthcare system has failed to deliver the
care and support needed to our older adults (seniors) during these frequent outbreaks. Sophisticated
sensor-based in-home care systems may offer an effective solution to this global crisis. The monitoring
system is the key component of any in-home care system. The evidence indicates that they are more
useful when implemented in a non-intrusive manner through different visual and audio sensors.
Artificial Intelligence (AI) and Computer Vision (CV) techniques may be ideal for this purpose. Since
the RGB imagery-based CV technique may compromise privacy, people often hesitate to utilize
in-home care systems which use this technology. Depth, thermal, and audio-based CV techniques
could be meaningful substitutes here. Due to the need to monitor larger areas, this review article
presents a systematic discussion on the state-of-the-art using depth sensors as primary data-capturing
techniques. We mainly focused on fall detection and other health-related physical patterns. As gait
parameters may help to detect these activities, we also considered depth sensor-based gait parameters
separately. The article provides discussions on the topic in relation to the terminology, reviews, a
survey of popular datasets, and future scopes.

Keywords: classification of sensor data; computer vision; depth imagery; fall detection; gait analysis;
HAR; smart home; survey

1. Introduction

The number of older adults (seniors) is increasing globally and different epidemics
and pandemics are frequently arising that place pressure on global healthcare infrastruc-
ture [1–3]. These challenges largely affect seniors. Since seniors who live alone often
encounter problems such as falls, breathing issues, heart attacks, etc., they have been
greatly affected by inadequate health care facilities. Among these, falls are a common
problem for seniors, which may cause serious health issues [4–6]. As the required care is
dependent on the response and rescue time, falls need to be detected as quickly as possible
to prevent any substantial damages to health. Due to the steady increase in the number
of seniors, existing health care infrastructure as well as the number of trained medical
professionals have been proven to be insufficient [7,8].

Therefore, in-home care systems for seniors are an attractive solution. These systems
are also effective for patients who are in the recovery phase. Monitoring is the primary
part of care; however, engaging a human to monitor the activity pattern of a senior 24 × 7
is a tedious task. Fortunately, it can be achieved using an intelligent system by analyzing
the collected data of different sensors in real-time [9–13]. This system can be developed by
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integrating both wearable and non-wearable sensors. Many systems have been proposed
using wearable sensors [14]. However, wearing sensors 24 × 7 is very uncomfortable
and sometimes the person may forget to wear these. Additionally, wearable sensors need
to be carefully used to prevent any damage. The CV technique with sensors and IoT
devices can leverage state-of-the-art activity detection algorithms to complete this task in
non-intrusive or un-obtrusive ways [15,16]. However, these visual sensors, especially RGB
cameras, may compromise privacy; the size of the RGB frame is also high. To mitigate
this problem, depth, thermal, and audio sensor imagery could be used [17–19]. Due to
the larger scope of the area, this article focuses on only depth sensor-based approaches.
The depth sensor measures the distance of the object and shows the 3D shape of the object
with different color intensities at different distances [20]. After the real-time depth video
data are captured, they need to be analyzed. To process and analyze those data, cloud
computing is generally used [21,22]. However, a significant amount of time is required
to respond, and high bandwidth data communication is necessary. Moreover, there exist
data security and privacy issues. These challenges could be addressed if the data are
processed close to the origin. It may minimize the response time as well as the network
overload. Thus, a monitoring system can incorporate edge computing to process data near
the source [16,23]. These edge devices later interact with the cloud to complete the whole
process. Several articles show that the analysis of some gait parameters could provide a
fall risk assessment as well as an assessment of other activity [6]. In this paper, we review
fall detection and other health-related activity pattern analyses by further classifying them,
according to the use of gait features. We also study machine learning, deep learning
and other feature-engineering methods to see which of these approaches has been used
most frequently.

Contributions of This Article

In this article, we focused on the computing perspective of the problem and reported
several state-of-the-art techniques which use depth sensors-based data. Depending on
the broad objectives, these techniques may be grouped into the following two categories:
human fall detection and activity pattern analysis. These technique mostly use either the
depth image classification technique without gait parameter or with gait parameter. The
following are the contributions of our article:

• A discussion on why in-home care monitoring systems using depth sensors are relevant;
• A systematic review on state-of-the-art computing techniques for in-home monitoring

systems for seniors based on depth data;
• Survey on benchmark depth information datasets related to in-home seniors’ activities;
• Discussion on future directions and potential ideas for future research.

The rest of the paper is organized as follows. We first introduce the terminology and
background in Section 2, followed by a review on the state-of-the-art, Section 3 presents
a detailed review of fall detection and an activity analysis which is further classified into
two subsections. Related benchmark datasets are reported in Section 4. Discussions on
state-of-the-art techniques and possible future scopes are included in Section 5. Finally,
Section 6 presents the conclusion.

2. Terminology and Backgrounds

This section introduces relevant terminology and the background of our focused study.

2.1. In-Home Monitoring Systems for Seniors

Monitoring is the most essential part of any in-home care system for seniors. The
approach can be either intrusive or non-intrusive. Different types of wearable sensors
are generally used in the intrusive approach, whereas CV-based techniques are deployed
in the non-intrusive approach. In CV-based techniques, depth or thermal imagery is
preferable over RGB due to privacy issues. Additionally, in-house local computation may
also introduce privacy as well as latency issues.
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A typical working pipeline is shown in Figure 1, where depth sensor-based cameras
are used to monitor seniors 24 × 7 with the help of edge-IoTs.

Figure 1. A working overview of a smart home for senior care.

This is a scenario of a smart home with an older adult; a depth sensor camera has
also been connected for monitoring, which is basically an edge device. It collects raw
data, processes them in a local computer and if any dangers are detected, it sends alerts to
the nearest caregiver centre or hospitals as well as the concerned relatives. It also sends
results to the cloud for future uses. This approach might be helpful to resolve the latency
issue. Despite privacy concerns, depth sensor cameras have been used which can recognize
activities such as falls, abnormal breathing, chest or head pain, and so on. Here, our main
focus is on fall detection as well as other activity pattern analyses using depth imagery and
gait analysis. We discuss the detection of falls along with several other damaging events in
the next section.

2.1.1. Human Fall

Due to the rise in the number of seniors in developing countries [24,25], in-home-care
and patient monitoring systems have gained increased attention. Although researchers are
constantly trying to improve the system, we still have a long way to go [26–28]. Sometimes,
we fall unintentionally due to abnormal health conditions. This may become fatal for seniors.
It may lead to serious health problems or even death. So, the fall detection mechanism is an
essential feature for any in-home-care patient monitoring system. Therefore, we focus on fall
detection using depth sensors including a gait analysis [17,29–31].

2.1.2. Other Elderly Activities

Besides falls, other physical health-related events, such as daily patterns, mobility,
heart attack, breathing patterns, etc., need to be analyzed too. The modern AI-based
computer vision techniques can predict damaging events for an elderly or a patient by
analyzing their activity pattern [32–34]. Since seniors often need 24 × 7 care facilities, a
continuous activity analysis could detect probable health problems such as heart attacks,
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pain, etc. In activity analysis, daily activities (e.g., standing, sitting, walking, sleeping,
coughing, eating, etc.), behavior, posture, and facial expressions are recorded and analyzed.
When any deviation from the normal pattern has been observed, the system first tries
to predict the cause. If it indicates an emergency situation, then an alert is sent to the
nearest caregiver centers and hospitals immediately. Emergency contacts, as well as family
members, are notified.

2.2. Computing

In this smart in-home-health monitoring or care system, various types of computing
techniques are used, such as classical machine learning (ML) [35], deep learning (DL) [36,37],
edge computing(EC) [38], etc. These computational techniques obtain real-time spatial data
(video frames) captured by an installed depth camera inside the home. This paper briefly
discusses suitable computing techniques in the following subsections.

2.2.1. Machine Learning

Nowadays, when discussing artificial intelligence (AI), machine learning (ML) algo-
rithms come to mind first; ML algorithms are successfully applied in various domains. It
is a subfield of AI which largely depends on data and their features. The term ML itself
explains that machines can learn from data and features [35,39]. It helps the system to
learn and improve from past observation without being explicitly programmed. Generally,
classical ML techniques use hand-crafted features; therefore, the method is sometimes
referred to as feature-based learning. There exist many ML algorithms in the literature and
the algorithmic techniques have been improving day by day. Some classical algorithms
are: Linear Regression [40], Decision Tree [41], Support Vector Machine (SVM) [42], etc.
There are many applications that use ML algorithms, such as speech recognition, traffic
prediction, product recommendation, healthcare delivery, etc. [43–45].

2.2.2. Deep Learning

Deep Learning (DL) is a data-driven ML technique [36,37]. The term deep usually
refers to the number of hidden layers in the network. The deeper we go, the more features
we obtain, and the greater the accuracy that is achieved. Therefore, more data are required
for training. In order to handle more data, more computational power is required. Nowa-
days, technologies that can facilitate the level of power required, such as GPU(graphics
processing unit), make DL highly popular. The advantage of using DL over the classical
ML algorithm is that it solves many complex problems with better accuracy and requires
less human intervention as it extracts features automatically.

The most popular DL algorithms are: Convolutional Neural Network (CNN) [46] for
CV, Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Networks
for Natural Language Processing (NLP), etc., [47,48]. Most of the advanced applications
are: self driving cars, smart healthcare, virtual assistants, etc., [49,50]. Additionally, many
application areas will be enhanced in the near future based on this DL-based computational
technique due to its higher accuracy [43,51].

2.2.3. Edge Computing

Internet of things (IoT) [52] systems include multiple interconnected devices with
various sensing capabilities. These devices have become a part of our daily life and generate
a huge amount of data. Cloud computing [53,54] is used to process this huge amount of
data. However, cloud computing introduces an unwanted delay in the computing process.
Moreover, it has some privacy as well as security issues and has higher costs too.

Edge computing (EC) and fog computing [55,56] have often been used to overcome
these issues. Both Fog and Edge computing share almost the same concept, i.e., to move
computing and storage away from the centralized data center (cloud). Edge computing is a
distributed computing paradigm focused on bringing computation to the edge (end points),
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i.e., close to the source of data. Apart from reducing latency, this approach also minimizes
bandwidth as well as reducing the overhead of the cloud, and offers better privacy.

Fog computing is an extension of cloud computing and acts as a mediator between
the edge and the cloud. When edge devices send huge amounts of data to the cloud server,
fog nodes receive the data and analyze them before passing them towards the cloud. Then,
the fog nodes transfer the important data and drop the unimportant data or keep them for
further processing.

2.3. Depth Sensor and Imagery

As far as privacy is concerned, a depth sensor is a good option over RGB. Additionally,
the depth sensor does not require any ambient light. Traditional cameras project the 3D
(three-dimensional) world into 2D but depth sensors sense 3D information by measuring
the distance from different viewpoints. Depth sensor cameras are basically two cameras
in one body. One is a traditional RGB camera, while the other is an infrared (IR) camera.
The IR camera is used to measure the distance between the camera and objects in the
scene. This information is then used to calculate the depth of field for each image. It
acquires multi-point distance information across a wide field of view and provides z-level
information of an image. It calculates depth according to the reflection of the light at
different points [20]. Depth sensors and their imagery techniques have been applied in
several areas where privacy is a concern, such as healthcare [57], facial recognition [58],
surveillance [59], etc., [60]. The recent advancement of in-depth sensors in association with
CV algorithms makes it more popular among researchers and developers. Microsoft Kinect
is an example of a popular depth sensor that is widely used for many purposes [61,62].
Figure 2 shows the formation of a 3D image using a depth sensor by acquiring z information
from the image.

Figure 2. A working scenario of Depth sensor.

It provides the depth intensity value, i.e., the RGB-D value that represents different
distances with different colors. It also measures the distance of each point of the object’s
body by transmitting invisible near-infrared light and measuring its “time of flight” after
it reflects off the objects. It also shows the foreground and background differences of the
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object. Although, there are some limitations of depth sensors, such as low resolution, short
sensing distance, and sensitivity to optical interference [63].

2.4. Gait Analysis

Gait analysis is a study of human motion including the comparative motion of different
body parts and joints. The gait analysis is also highly effective for in-home senior care,
as it produces a clear mobility pattern of seniors [64,65]. The gait analysis could easily be
performed using state-of-the-art techniques [66] with depth information. If a patient faces
any kind of health issues such as pain, breathing problems, etc., then their gait changes
accordingly. Therefore, gait parameters (e.g., speed, cadence, stride length, swing time,
weight distribution, etc.) can be used to reduce the risk of falls. Moreover, these parameters
can also be used to determine sudden changes while engaged in other activities (e.g.,
walking, sitting, standing, etc.). Different gait parameters indicate distinct health issues,
i.e., gait-speed indicates weakness, postures indicate spinal cord issues or issues with other
body parts, etc. A gait analysis might also indicate several other diseases (e.g., progressive
dementia, residual hemiplegia, Parkinson’s disease, etc.). It can also recognize symptoms
of falling by observing any abnormalities while walking or moving. It also helps to identify
any change in posture during movement. It does this by extracting the 3D kinetic joint
motion data of humans. A daily gait analysis may help seniors to live independently in
their homes. Thus, the early determination of gait might help to improve the quality of life
of seniors. It will also be helpful to recognize early symptoms of an oncoming health issue.

Figure 3 shows how a typical gait analysis works by extracting 3D joint information
and calculating the gait features of a person. Since gait analysis plays a vital role in any
in-home seniors’ care system, a detailed discussion is included in Section 3, along with
several potential applications.

Figure 3. Gait analysis scenario.

3. Survey on State-of-the-Art

The objective of this review is to present a systematic study on existing works of
in-home seniors’ care using depth sensors, for which the most popular application in this
research domain is human-to-fall detection. Moreover, there also exist several works on
the detection of other health-related physical activities. So, we defined a methodology as
discussed below to present the topics in a systematic way.

In this paper, we have reviewed older adult in-home monitoring approaches based on
depth sensors published since 2011. We selected different related papers from the Google
Scholar, Web of Science, Scopus, and PubMed databases using different combinations of
search keywords. We divided the keywords into two parts. In the first part, we used the
keywords related to falls (e.g., ”fall detection using depth sensor”, and “fall detection using
depth images”); then, we added the keyword ‘gait’ to these (e.g., “gait-based fall detection
using depth images”). In the second part, we used activity-related keywords (e.g., “activity
analysis using depth map). Then, we added added the same keyword ‘gait’ to these terms
(e.g., “gait-based activity analysis using depth videos”) and performed the search again.

By using all these keywords, we obtained a large number of articles from all four
databases. We prioritized those articles that are available in more than one database. In
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this way, we acquired around two hundred papers. Then, we read them, and manually
selected and reviewed the 59 works which fall into the scope of our work. Among these
59 articles, 18 are present in Web of Science, 31 are present in Scopus, 9 are present in
PubMed, and all 59 articles are present in Google Scholar. There were 91 more articles
available from the above databases, and they were used to identify the problem, highlight
related open issues and to validate the information, terms, data, etc. Two separate sections
are provided which present existing works on the applications of fall detection and other
activity pattern analysis.

3.1. Fall Detection

The field of automatic human fall detection has been extensively studied by different
researchers over the last two decades [31,67]. A steady increment in computational power
led to the development of sophisticated fall detection techniques with a high accuracy. The
following two sections discuss several state-of-the-art techniques for fall detection using
depth image classification without and with the gait parameter, respectively.

3.1.1. Fall Detection without Gait Parameter

Depth images are frequently used to detect falls. Several depth image classification-
based techniques without the gait parameter are reported here.

DL-based Methods: In a study in [68], a video-based fall detection system was pro-
posed by Chen et al. They used a fully convolutional architecture with residual connections
that takes a sequence of 3D poses as the input. Their model was trained and evaluated
on an NTU RGB+D Action Recognition Dataset and the outperform accuracy reached
99.83%. Khraief et al. proposed a multi-stream fall detection system using an RGB-D
sensor which is based on CNN in [69]. Their system combines four modalities such as
motion, shape, RGB, and depth information. Here, the motion images are based on the
optical flow displacement, amplitude, and orientation of optical flow to capture the velocity
and the direction. Transfer learning and data augmentation were used to supplement the
insufficient training data. They also incorporated the Adam optimizer and cross-entropy
loss function. The model was evaluated on three publicly available datasets, namely the
Multiple Cameras Fall (MCF), the UR Fall Detection (URFD) and Fall Detection Dataset
(FDD). Abobakr et al. presented an integrable, privacy-preserving fall detection system
using an RGB-D sensor in [70]. They used deep hierarchical visual representations and
complex temporal dynamics features extracted using Residual ConvNet. They also used re-
current LSTM networks to learn temporal dynamics that can differentiate between fall and
non-fall events. The model was trained end-to-end using backpropagated gradients. They
evaluated their model on a publicly available URFD fall detection dataset and achieved 98%
accuracy. Xu and Zhou proposed a home-health fall detection system for seniors based on
biomechanical features in [71]. They used 3D skeleton data and the Center of Mass (COM)
of different body segments as biochemical features. They employed an LSTM network
for fall detection and calculated Line of Gravity (LOG) and Base of Support (BOS). They
obtained 97.41% accuracy for the TST Fall detection database v2. Amrita et al. proposed an
effective fall detection system using the YOLOv2 network on depth videos in [72]. They
calculated parameters such as the subject’s height to width ratio and fall velocity. Their
proposed method incorporated CNN.

Classical ML-based Methods: Mazurek et al. proposed a depth silhouette image-
based unobtrusive fall detection method using an infrared depth sensor in [73]. They
used Kinematic and Mel-cepstrum features that yield highly correct classification results.
Three classification algorithms have been used here. These are: SVM, artificial neural
network (ANN), and Naive Bayes (NB) classifiers. Tests were conducted on two datasets,
namely the IRMTv1 and TSTv2 dataset and 98.6–100% and 93.9–97.7% accuracies were
obtained for the combined features. Another technique of human fall detection using
depth videos was proposed by Akagündüz et al. in [74]. Their work was based on a
shape sequence descriptor called Silhouette Orientation Volumes (SOV). To characterize
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and classify each action, they combined SOV with Bag-of-Words and an NB classifier.
They also used the k-medoids clustering algorithm for codebook generation. Codebook
generation is an important influence in Vector Quantization for lossy image compression.
They selected SDU-Fall and Weizmann action datasets for their experiment and achieved
an overall accuracy of 89.63%. Aslan et al. proposed a shape-based fall characterization
method based on depth videos in [75]. They used Curvature Scale Space (CSS) features and
Fisher Vector (FV) encoding. CSS is a method of mapping images from three-dimensional
space to a space that represents each point as a curvature with regard to the arc-length.
They experimented on the SDUFall dataset [76] and achieved an 88.83% accuracy using
an SVM classifier and overall accuracy of 64.67% for 6-class action recognition. Bian et al.
presented a fall detection technique based on human key joints which uses an infrared
depth camera that can operate even in low light or dark conditions in [77]. They employed
a Randomized Decision Tree (RDT) algorithm to extract key joints features of the body.
They also used an SVM classifier that uses 3D joint trajectory to detect falls. Despite being
a low computational cost model, their method returned better accuracy than several other
state-of-the-art methods. However, the proposed approach cannot detect a fall which leads
to lying on furniture, since the distance between the body and the floor is too high. Kepski
and Kwolek proposed a fall detection technique using a KNN classifier which was focused
on low computational cost and a reduction in the false-positive signal in [78]. They used
an accelerometer to reduce the processing overhead. It led to an almost 0% error after
evaluation with more than 45,000 depth images.

Other Feature Engineering-based Methods: Rougier et al. designed a fall detection
technique that accepts the depth video sequence as input in [79]. They proposed an
occlusion-based method where they used two features– one is human centroid height–
relative to body velocity and the ground. Here, it was mentioned that human fall may not
be correctly detected if a fall occurs behind any furniture, so they incorporated centroid
velocity features, human centroid height relative to the ground, and body velocity. They
also incorporated the V-disparity approach. It is constructed by calculating a horizontal
histogram of the disparity stereo image. This model has been tested on simulated falls and
normal activities (such as walking, sitting down, crouching down). In another study in [80],
Nghiem et al. proposed an approach that detects the human head position based on depth
video. Here, the fall detection was achieved according to the speed of the head, the body
centroid, and their distance to the ground. They used a modified Histogram of Oriented
Gradient (HOG) approach. This approach was evaluated on a dataset of 30 fall, 18 crouch,
and 13 sit-down actions. This approach cannot work in cases of occlusion because the
algorithm needs to compute the distance to the ground. Zhang et al. presented a viewpoint-
independent statistical method for fall detection based on depth video in [81]. The speciality
of this system is that changing the camera viewpoint is easy and requires less effort, as
there is no need to train for new data. They used a background subtraction algorithm
for person detection with features such as distance from the floor, acceleration, and three
more additional features (e.g., smallest head height, total head drop, and fraction of frames)
for better accuracy. In [82], Kepski and Kwolek focused on a low computational cost fall
detection system. They used three main methods which are–Random Sample Consensus
(RANSAC) algorithm, v-disparity images, and Hough transform. They also extracted a
ground plane to calculate the distance of a person to the ground. Here, the fall alarm
will be raised based on the segmented person that uses updated depth-reference images.
Gasparrini et al. proposed a depth-based privacy-preserving fall detection system using an
ad-hoc segmentation algorithm in [83]. They incorporated features such as head–ground
and head–shoulder distance gap and head dimension. At first, the depth-frames were
preprocessed and then the segmentation technique was applied. After that, the algorithm
classifies the pixels and the system recognizes the human subject and detects if a fall occurs
or not. Yang et al. proposed a computationally efficient spatio-temporal context tracking
technique using Kinect-based 3D depth images to develop a powerful fall detection system
in [84]. In the pre-processing phase, they estimated the parameters of the Single Gauss



Sensors 2022, 22, 9067 9 of 26

Model (SGM) and extracted silhouettes. After that, they applied the dense spatio-temporal
context (STC) technique to track the head position and the distance from the floor. Their
method can also help to detect fall incidents in various orientations. Yang et al. proposed an
indoor fall detection method for elderly people using 3D depth images in [85]. They used a
median filter to pre-process depth images and then converted the images into a disparity
map. A least-square method was used to estimate the floor plane equation. The silhouettes
in each depth image were obtained by employing the background frames subtraction
technique. To detect the fall, they further calculated centroids of the human body and the
angle between the human body and the floor plane. The method is based on threshold
detection, which avoids feature extraction and classification. Chen et al. proposed the
asymmetry principle to recognize accidental fall and used the OpenPose [86] technique to
extract skeleton information of the human body in [87]. Here, falls were identified based
on three parameters. These are: a. speed of descent, b. the human body centreline angle
with the ground and c. width-to-height ratio of the body. Their method obtained a 97%
accuracy rate.

For faster and easier understanding, we have projected the above reviewed work
in Table 1.

Table 1. Overview of the fall detection using depth imagery without gait parameter from the last
decade.

Study with Year Key Points & Features Computing Technique Used

Amrita et al. [72], 2022 used subject’s height to width ratio and fall velocity. CNN

Chen et al. [68], 2022 Used 2D and 3D poses from depth video sequences. CNN

Z.Chen et al. [87], 2020 Used symmetry principle and calculated speed, angles and
width-to-height ratio. OpenPose algorithm

Khraief et al. [69], 2020
Combines motion, shape, color and depth information. Used
transfer learning and data augmentation technique to deal with
training data.

CNN and Transfer learning

Abobakr et al. [70], 2018 Deep hierarchical visual representation and complex temporal
dynamics using residual ConvNet. Recurrent LSTM

T. Xu and Y. Zhou [71], 2018 Accelerated velocity of Center-of-Mass (COM) and 3D skeleton
data LSTM network

Mazurek et al. [73], 2018 Kinematic feature and mel-frequency-cepstrum-related features SVM, ANN and Naïve Bayes
classifier(NBC)

Akagunduz et al. [74], 2016
Silhouette Orientation Volume (SOV) feature, bag-of-words
approach for characterization, K-medoids clustering for
constructing codebook.

Naïve Bayes classifier

Yang et al. [85], 2016 Floor plane and shape information, as well as the threshold were
calculated. Depth images were preprocessed by median filter.

V-disparity map and least
square method

Aslan et al. [75], 2015 Curvature Scale Space (CSS) features and Fisher Vector (FV)
encoding SVM classifier

Yang et al. [84], 2015 Extracted silhouette with SGM and calculates threshold for the
distances from head and centroid to the floor-plane. STC algorithm

Gasparrini et al. [83], 2014 Uses head–ground and head–shoulder distance gap and head
dimension features and calculates threshold for fall. Ad-Hoc segmentation algorithm

Bian et al. [77], 2014 3D human body joints extraction and tracking using RDT
algorithm. SVM classifier

M. Kepski & B. Kwolek [78],
2014

Accelerometer and features such as head–floor distance, person
area and shape’s major length to width were used. KNN classifier
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Table 1. Cont.

Study with Year Key Points & features Computing Technique Used

M. Kepski & B. Kwolek [82],
2013

Extracts ground plane distance and uses segmented depth
reference images.

v-disparity, Hough transform
and the RANSAC algorithm

Zhang et al. [81], 2012
Combines viewpoint invariance, simple system setup, and
statistical decision making. Uses features such as distance from
the floor and acceleration and computed threshold.

Background Subtraction
algorithm

Nghiem et al. [80], 2012 Uses centroid speed and position as the main features, and
incorporates the head detection algorithm Modified HOG Algorithm

Rougier et al. [79], 2011
Uses features such as human centroid height relative to the
ground and body velocity. Ground plane detection and
segmentation was were performed.

V-disparity approach

3.1.2. Fall Detection with Gait Parameter

Here, we reported several works on fall detection which used gait parameters.
DL-based Methods: Murthy et al. proposed a gait-based person fall detection tech-

nique using deep CNN in [88]. They used gait energy images (GEI) for the input that pre-
serves the dynamic and static information of a gait sequence. Their model obtained classifi-
cation results with an accuracy of 99.1% and a prediction ratio of 98.64%. M.Amsaprabhaa
et al. developed a Multimodal SpatioTemporal Skeletal Kinematic Gait Feature Fusion
(MSTSK-GFF) classifier for fall detection in [89]. They used two sets of spatiotemporal
kinematic gait features generated from a SpatioTemporal Graph Convolution Network
(STGCN) and 1D-CNN network model. They applied a hyena optimizer to update the
network’s weights. The experiments were evaluated using two datasets, namely UR Fall
detection (URFD) and a self-build dataset and achieved accuracies of 96.53% and 95.80%,
respectively.

Classical ML-based Methods: Xu et al. proposed a method based on skeleton tracking
and human body gesture recognition in [90]. They used an optimized BP neural network
to realize fall detection. They also used the NITE body tracker for testing and the Kinect
V2 sensor to process human joints. Their aim was to recognize activities such as standing,
sitting and lying positions. The experiment used the MSRDailyActivity3D dataset and
achieved a drop test accuracy of over 98%. Dubois and Charpillet developed a system to
prevent falls of seniors by analyzing the displacement of the center-of-mass of the persons
in [91]. They extracted three gait parameters to assess fall risk, which are: length and
duration of steps and the speed of the gait. They adopted a Hidden Markov Model (HMM)
for the activity analysis. Parajuli et al. presented a fall detection system by analyzing gait
and posture data, such as data on walking, sitting, standing, etc., in [92]. To analyze these
gait and posture data, they used SVM. The Radial Basis Function(RBF) kernel has also been
used here. They collected the following four datasets: normal walking, abnormal walking,
standing, and sitting for model evaluation. They performed posture recognition (sitting
versus standing) and gait recognition (normal walking versus abnormal walking).

Other Feature Engineering-based Methods: Stone and Skubic investigated Fall detec-
tion using gait analysis by measuring temporal and spatial gait parameters in [93]. They
used a Vicon motion capture system for ground truth. They also used the background
subtraction algorithm to extract the foreground. They collected 18 walking sequences from
three participants for model testing. Another study conducted by Stone and Skubic using
two types of data, i.e., anonymized video data and depth imagery data, can be found in [94].
They computed stride-to-stride gait variability and compared it with the Vicon system.
They also used the background subtraction technique to extract silhouettes from the raw
images. In total, 18 walking sequences were collected for model evaluation. Baldewijns et
al. presented a non-intrusive gait analysis technique by measuring step length and time
and validated it using GAITRite in [95]. They further determined the center of mass using
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the mean position and also used connected component analysis to remove noises. Table 2
shows the above reviewed work in short.

Table 2. Overview of fall detection using depth imagery with gait parameter from the last decade.

Study with Year Key Points & Features Computing Technique Used

M.Amsaprabhaa et al. [89], 2022 used spatiotemporal kinemetic gait features. CNN.

Murthy et al. [88], 2021 Uses gait energy images Deep convolutional neural
network (DCNN)

Xu et al. [90], 2019 Skeleton tracking technology of Microsoft Kinect v2 sensor, Body tracker
(NITE) Optimized BP neural network

Baldewijns et al. [95], 2014 Calculates step length and time, centre of mass (COM), mean position, etc.
Used connected component analysis to remove noisy pixels Player detection algorithm

A. Dubois & F. Charpillet [91],
2014

Extracted length and duration of steps and speed of the gait, tracks
centre-of-mass. Hidden Markov Model (HMM)

Parajuli et al. [92], 2012 Measures gait and change in posture from sitting to standing or vice
versa. Data transformation, cleaning and reduction were performed. SVM classifier

E.E. Stone & M. Skubic [94], 2011 Measures stride-to-stride gait variability and assesses the ability of the
two vision-based monitoring systems. Background subtraction technique

E.E. Stone & M. Skubic [93], 2011 Measures temporal and spatial gait parameters, also measures walking
speed, stride length, stride time, etc. Background subtraction algorithm

3.2. Activity Analysis

Using an activity pattern analysis, we can analyze seniors or patients and can detect
any health problems they might be having. An activity analysis can predict heart attacks,
falls, and many other diseases. It will be more useful if we analyze it using gait parameters.
If a person is experiencing certain health issues, their gait is affected more than any other
activities. So, we integrated th gait parameter for a more effective analysis. In the following
section, we report some works on activity analysis through depth image classification
techniques without and with gait parameters.

3.2.1. Activity Analysis without Gait Parameter

Here, we have reported several important research works on activity pattern analysis
without gait parameters.

DL-based Methods: Jaouedi et al. presented the novel approach of a Human Activity
Recognition (HAR) system based on Skeleton Features and a DL model in [96]. For activity
classification, they used Gated Recurrent Unit (GRU)-based RNN with the Kalman filter
to improve its cognitive capability. They also used transfer learning CNN for feature
presentation. Their proposed system used three types of features, namely visual, temporal,
and 2D human skeleton. They used the HDM05-122 dataset for the evaluation and achieved
an accuracy of 91.5%. Phyo et al. proposed a DL-based intelligent HAR system using
Motions of skeletal joints in [97]. They used two features. The first one is motion history
which was extracted using Color Skeleton Motion History Images (Color Skl-MHI). The
second one is the relative distance which was obtained from the Relative Joint Images (RJI).
They used deep CNN (3D-DCNN) to recognize human actions. They aimed to develop this
as a consumer electronic product by reducing its computational cost. Skeletal joints were
used as inputs. They achieved a 97% based on an evaluation with UTKinect Action-3D
and CAD-60 datasets that include daily activities such as drinking water, answering the
phone, and cooking. Bagate and Shah proposed an RGB-D sensor-based HAR system using
CNN in [98]. Two features were used here. One is a spatial feature (skeletal joints) and the
other one is temporal features (i.e., sequential frame). Their model reduces the number
of convolution layers and provides better results compared to other LSTM-based models.
Their work focused on body gestures, motion, and the identification of multiple activities
performed at the same time. They used the SBU kinect interaction dataset and considered a
confusion matrix for evaluation and achieved 85% accuracy. GU et al. presented a depth
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MHI (motion history images)-based DL-model for the HAR system in [99]. They used
depth sequences as the input and a confusion matrix for model evaluation. ResNet-101
was chosen as the DL model. The proposed model was evaluated using both RGBD-
HuDaAct and NTU RGB+D datasets and achieved a top-1 accuracy of 84.44% and 67.97%
for each dataset.

Uddin et al. proposed a facial expression recognition system (FER) to develop a care
system for seniors using depth video data in [100]. They used a local directional position
pattern (LDPP) to extract the local directional strengths feature for each pixel. They also
incorporated a principal component analysis (PCA) and generalized discriminant analysis
(GDA) to improve the feature extraction process. They considered the following six facial
expressions: anger, happy, sad, surprise, disgust, and neutral. Finally, they used a Deep
belief network (DBN) for recognition and achieved an accuracy of 96.67%. X. Ji et al.
proposed a novel and efficient method for human action recognition using depth map
sequence and 3D ResNet-based CNNs in [101]. To capture the appearance and motion,
they developed a depth-oriented gradient vector (DOGV) for short-term and CNNs-based
backbone for longer periods. The experimental results proved that the proposed approach
can achieve state-of-the-art performance on four benchmark datasets (NTU RGB+D, NTU
RGB+D 120, PKU-MMD and UOW LSC). To evaluate the proposed method, they employed
random cross subjects and random cross sample protocols. S.K.Yadav et al. proposed an
activity recognition and fall detection system using a deep convolutional long short-term
memory (ConvLSTM) network in [102], which involves a sequential fusion of convolutional
neural networks (CNNs), long short-term memory (LSTM) networks, and fully connected
layers. They used geometrical and kinematic features to construct the novel guided features.
Only skeleton joints coordinates along with suitable features were used for inputs in the
model. They also used cross-entropy and softmax activation to obtain the model loss and
performance measures. This proposed model has been evaluated on the KinectHAR video
dataset and achieved an accuracy of 98.89%.

Classical ML-based Methods: Jalal et al. presented a depth video-based HAR frame-
work in [103] using multi-features and embedded HMM. It has the ability to track human
body parts in real-time. Here, the temporal motion identification method was used to track
human movements. They made their own dataset for evaluation. Kamal et al. proposed a
depth video-based robust method using spatio-temporal features and modified the hidden
Markov model (M-HMM) in [104]. For classification, they fused the depth shape and
temporal joints features. They also used depth silhouettes and body joint information.
Silhouettes were extracted from noisy background subtraction and floor removal tech-
niques. They evaluated their model using two datasets, namely MSRDailyActivity3D and
IMDailyDepthActivity and achieved accuracies of 91.3% and 68.3% for each dataset. Farooq
et al. proposed an RGB-D Map-Based Human Tracking and Activity Recognition system
using the K-means clustering algorithm in [105]. They extracted depth silhouettes and
body skin joints features. The human joint point was computed using the Distance Position
and Centroid Distance Features. They evaluated the model using their own recorded depth
silhouette datasets and achieved 89.72% accuracy. The dataset contains nine activities, such
as walking, sitting down, exercise, preparing food, standing up, cleaning, watching TV,
eating a meal and lying down.

Chen et al. presented an action recognition method based on depth motion maps(DMMs)
in [106]. They employed local binary patterns (LBPs) as well as a kernel-based extreme
learning machine (KELM) for their model. Their model was tested with two different datasets,
namely the MSRAction3D and MSRGesture3D datasets.

Jalal et al. designed a lifelogging HAR (Human Activity Recognition) system for
seniors in [107]. They captured depth silhouettes that produce human skeletons with joint
information. They first collected data using a depth camera; then, features were generated.
Finally, they used the HMM for training and then began recognition to produce life logs.
Life logs contain records of daily human activity (e.g., activity name, time, number of
occurrences, etc.) using a video camera. They evaluated their system using life-logging
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features against the principal and independent component and achieved satisfactory results
compared to the conventional approaches. They also conducted their experiment on the
MSRDailyActivity3D dataset [108] and achieved a promising result.

Jalal and Kamal presented a depth-based human activity recognition model using
life logs in [109]. They used HMM as an activity recognizer. They also computed a set of
magnitude and direction angle features to compute body points. The experimental results
show an improvement in the accuracy rate (i.e., 89.33%) over other conventional systems.
Kospmopoulos et al. investigated human behavior based on depth and color videos using
a fused time series classifier in [110]. They extracted forward and backward feature vectors
from depth videos and color videos. They also extracted human blob features from color
videos and used these combined features as inputs for the classifier. They incorporated the
HMM in their proposed system. They tested their model on the RGBD-HuDaAct dataset
which includes twelve activities, including sit down and stand up. M.F. Bulbul and H.
Ali proposed a depth video oriented towards human action recognition approach using
the KELM classifier in [111]. They obtained motion history images (MHIs), static history
images (MHIs) and a 2D auto-correlation gradient feature vector. They also used the LBP
algorithm to represent motionless images as binary-coded images. This approach was
assessed on MSRAction3D, DHA, and UTD-MHAD datasets and achieved accuracies of
97.44%, 99.13% and 88.37%. The depth images of each dataset were used directly in the
model without any segmentation.

Others Feature Engineering-based Methods: Srivastav et al. proposed an end-to-end
solution incorporating a super resolution image estimator and a 2D multi-person pose
estimator in a joint architecture for Human Pose Estimation (HPE) problem on depth
images in [112]. Their architecture is a modification of the RTPose network [113]. They
used the MVOR dataset for evaluation and achieved an improved accuracy, of 6.5% above
the baseline RTPose 64 × 48 and 3.6% better than RTPose 80 × 60.

Above reviews have been shown in Table 3 shortly.

Table 3. Overview of the activity analysis using depth image classification without the gait parameter
from the last decade.

Study with Year Key Points & Features Computing Technique Used

S.K. Yadav et al. [102], 2022 Used geometrical and kinematic features. CNN, LSTM, Fully connected layer.

X. Ji et al. [101], 2021 Used frame-level feature termed depth-oriented gradient vector(DOGV)
and captured human appearance and motion. 3D ResNet-based CNN.

M.F. Bulbul and H. Ali [111],
2021

Motion and static history images were used. LBP algorithm and GLAC
descriptor were also used. KELM classifier.

Jaouedi et al. [96], 2020 Uses visual, temporal and 2D human skeleton features and kalman filter.
A hybrid combination of different models was used. RNN, CNN, Transfer learning.

Srivastav et al. [112], 2019 Integration of a super-resolution image estimator and a 2D multi-person
pose estimator in a joint architecture Modified RTPose network

Phyo et al. [97], 2019 Motion history images extracted using Color Skl-MHI and relative
distance using RJI. Used image processing. DCNN

A. Bagate & M. Shah [98], 2019 Uses spatial, i.e., skeletal joints and temporal features and reduces the
convolution layer. Convolution Neural Network

Gu et al. [99], 2018 MHI and evaluated on both 3D human action datasets RGBD-HuDaAct
and NTU RGB+D. ResNet-101

Uddin et al. [100], 2017 Local directional strengths features were extracted by PCA, GDA and
LDPP Deep Belief network (DBN)

Jalal et al. [103], 2017 Extracts 3D human silhouettes and spatiotemporal joints and several
other features are also fused to make some changes. Hidden Markov Model (HMM)

Chen et al. [106], 2015 Depth motion maps (DMMs) and local binary patterns (LBPs) were used
to capture motion cues and to achieve compact feature representation. KELM classifier
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Table 3. Cont.

Study with Year Key Points & Features Computing Technique Used

Jalal et al. [107], 2014 Skeletal model and joint position were collected and life logs that contains
human daily activities were generated. Hidden Markov Model (HMM)

Jalal et al. [109], 2014
Human skeletal images with joint information were produced that
generate life logs and also utilize magnitude and directional angular
features from the joint points.

Hidden Markov Model (HMM)

A. Jalal & S. Kamal [110], 2013
Fused color and depth video, extracted forward and backward feature
vectors and calculated some other features that describes human body
information.

Hidden Markov Model(HMM) and
Fused time-series classifier

Kamal et al. [104], 2016
Spatial depth shape and temporal joints features were fused. Human
silhouettes extracted using noisy background subtraction and floor
removal techniques.

Modified Hidden Markov model
(M-HMM)

Farooq et al. [105], 2015 Extracts depth silhouettes & body skin joint features using distance
position and centroid distance. K-means clustering

3.2.2. Activity Analysis with Gait Parameter

Here, different activity pattern analysis techniques using gait parameter have been ex-
plored.

In [114], Uddin and Kim proposed a DL-based human gait posture recognition system
based on depth video using Local Directional Patterns (LDP) for feature extraction. After
that, a DBN was trained to recognize postures. The pre-training was performed based on
Restricted Boltzmann Machine (RBM) and then weights were applied with the fine-tuned
algorithm. They built a depth gait database for normal and abnormal gait activities that
consists of 1000 images.

Bari and Gavrilova proposed a DL-based gait recognition model in [115]. They intro-
duced two new features, namely the Joint Relative Triangle Area (JRTA) and Joint Relative
Cosine Dissimilarity (JRCD). These are the view and pose invariant geometric features. To
enhance the performance of the system, they incorporated the Adam optimizer. They used
two publicly available benchmark datasets, namely the UPCV gait dataset and Kinect gait
biometry dataset and achieved accuracies of 95.30% and 98.08%. Wang et al. proposed a
multichannel CNN-based human gait recognition scheme in [116], where they introduced a
new feature called TriTuple Gait Silhouettes(TTGS). They achieved multichannel abilities by
incorporating more input channels. The evaluation was performed with two gait datasets,
namely CASIA and OU-ISIR. Uddin et al. presented a depth image-based human activity
recognition system using HMM in [117]. This system analyzes daily activities and generates
an alarm if it detects abnormal gait. They applied PCA and ICA (Independent Component
Analysis) to extract spatiotemporal features. The proposed system achieved an average
accuracy of 92.50% for normal and 95% for the abnormal gait recognition.

Gabel et al. presented a low-cost, non-intrusive gait analysis system based on a Kinect
sensor and software development kit (SDK) in [66]. They measured arm kinematics and
used the whole body to measure stride intervals. Supervised learning was used to measure
gait parameters. Skeleton information was converted into a large set of features, which are
fed into a regression tree to predict the values of interest. To learn the regression model,
they used the Multiple Additive Regression Trees (MART) algorithm.

In another study in [118], Nandy and Chakraborty proposed a new approach of
human gait analysis to find an intrinsic gait posture using the Kinect Xbox device. They
used an NB classifier for classification and minimized segmentation errors using the
automated background subtraction technique. The proposed system has been compared
with the Intelligent Gait Oscillation Detector (IGOD) [119] and produced encouraging
results. Chaaraoui et al. proposed an abnormal gait analysis method using the Bag of
KeyPoses classification algorithm that relies on skeletal pose representation in [120]. They
used the novel spatio-temporal feature to locate skeletal joints and the motion’s age. Their
approach mainly focused on gait monitoring, rehabilitation and the early diagnosis of
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cognitive impairment. After evaluation on a publicly available dataset from the SPHERE
project [121], they were able to detect abnormal gait with high performance.

Another Kinect-based gait analysis with a visualization system was presented in [122]
by Dao et al. that captured the human skeleton and generated a Bio-vision Hierarchy
(BVH) file. Their system contains the following two components: motion analysis and
visualization. The motion analysis component processes and encodes data into the BVH
file and assesses the extracted gait feature. The motion visualization component helps to
visualize the walking motion. Their proposed model used a linear SVM classifier for the
gait classification. They used their own dataset that consists of 20 normal and 30 abnormal
walking motions and achieved 88% accuracy, which is higher than the existing performance
accuracy rate (86.63%).

Another privacy-preserving low-cost system was proposed by Dubois and Charpillety
in [123] which analyzes the displacement of seniors by applying local computing. They
measured gait by analyzing the trajectory of the centre of mass of the person and used
the HMM for fall detection. Their proposed system extracted features such as the centre
of mass and vertical distribution silhouette. Bei et al. introduced a new concept called
‘Gait symmetry’ to measure the similarity of leg swing motion in [124]. They extracted
spatio-temporal parameters, such as the step length and gait cycle using a zero-cross
detection method. They also extracted leg swing characteristics formed by hip, knee, and
ankle joints. They applied the K-means and Bayesian method in their model. They mainly
focused on gait analysis using frontal walking sequences and mostly extracted very simple
features, e.g., the step length and gait cycle. They also applied gait symmetry to achieve
better accuracy.

Table 4 shows the above reviews in short.

Table 4. Overview of activity analysis using depth image classification with gait parameter.

Study with Year Key Points & Features Computing Technique Used

Wang et al. [116], 2020 Trituple gait silhouettes(TTGS) feature Multichannel CNN

A.H. Bari & M.L.
Gavrilova [115], 2019

Two features of joint relative triangle area (JRTA) and joint relative cosine
dissimilarity (JRCD) DL model

Bei et al. [124], 2018 Step length and gait cycle extracted using the zero-crossing detection
method, combining gait symmetry and spatiotemporal parameters. K-means and Bayesian method

A. Dubois & M. Charpillet [123],
2017

Centre of mass and vertical distribution silhouette features were
extracted, measuring the degree of frailty. Hidden Markov model (HMM)

M.Z. Uddin & M.R. Kim [114],
2016 Local directional feature and Restricted Boltzman Machine (RBM) Deep Belief Network (DBN)

Dao et al. [122], 2015
Generates BVH file, uses motion analysis, motion visualization and
integrates data capturing, data filtering, body reconstruction, and
animation.

SVM classifier

Chaaraoui et al. [120], 2015 Joint motion history feature (JMH) encodes spatial and temporal
information. BagOfKeyPoses algorithm

A. Nandy & P.
Chakraborty [118], 2015

Knee and hip angular movement, using IGOD biometric suit. Features
were measured by Fisher’s discriminant analysis.

Naïve Bayes’ rule and k-Nearest
Neighbor

M. Gabel et al. [66], 2012 Measures arm kinematics, stride duration, used 3D virtual skeleton to
extract body gaits

Supervised learning approach,
MART algorithm, and regression
trees

Uddin et al. [117], 2011
Spatiotemporal features were extracted and feature space was generated
using ICA and PCA, with the background removed by Gaussian
probability distribution function.

Hidden Markov Model (HMM)

4. Survey of Benchmark Datasets

Data are the fuel for any data-driven computing engine such as DL-based computing.
To develop a useful in-home care system for seniors, the predictive model part of the
system needs to be trained using a dataset that is preferably labeled. Therefore, a survey is
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necessary to explore the availability of different high-quality datasets. Below, we review
some benchmark datasets.

Cheng et al. proposed the first multi-view RGBD dataset, ACT42 in [125], for human
daily action analysis. It contains 6844 actions clips from four viewpoints and two sources.
The aim of the dataset was to facilitate smart houses or e-healthcare by focusing on the
different daily activities of humans. They invited 24 people to perform 14 different activities
such as sit-down, sit-up, drink, etc., in order to create the dataset. Another dataset, namely
Kinect 3D Active (K3Da) for human motion analysis was released by Leightley et al. in [126]
using Kinect One. It collects data from different ages of people ranging from 18 to 81 years.
A total of 54 participants were chosen to perform different types of tests, including walking,
sitting, standing, and other balance assessments. Shahroudy et al. introduced the NTU
RGB+D dataset for human action recognition using Microsoft Kinect sensor in [127]. It
consists of 56,880 RGB-D video items captured from 40 different human subjects, with their
ages ranging from 10 to 35 years. The dataset has 60 different classes including eating,
falling, hugging, etc. Liu et al. presented a skeleton-based human action understanding
dataset PKU-MMD in [128]. It contains color and depth images, infrared sequences, and
skeleton joints. The dataset contains 1076 long video sequences performed by 66 subjects
ranging between 18 and 40 years old. It also contains around 20,000 action instances,
5.4 million frames, and 3000 min of videos. It has 51 action classes, such as drinking,
hugging, waving hands, shaking hands, etc. Aloba et al. developed a child and adult
Motion Capturing dataset named Kinder-Gator using Kinect V1.0 that tracks joints such
as the elbows, knees, hips, etc. in [129]. They collected 58 different motions such as hand
waving, kicking a ball, etc., performed by 10 children (ages 5 to 9) and 10 adults (ages 19
to 32). This dataset also includes RGB videos and 1159 motion trials. Jang et al. released
a dataset called ETRI-Activity3D to recognize daily seniors’ activity using the Kinect v2
sensor in [130]. It contains 112,620 samples of 100 people performing 55 daily activities.
Out of 100, the age of 50 people is in the range of 64 to 88 years and others were in their 20s.
They used various subjects of different age ranges to properly observe and understand the
behavior of individuals. The dataset includes RGB videos, depth maps, and the skeleton
sequences of 25 body joints. Fiorini et al. proposed a gesture and activity recognition
dataset named VISTA, which is a combination of inertial sensor and depth camera data
in [131]. The dataset includes 7682 action instances for the training phase and 3361 action
instances for the testing phase. The dataset includes basic gestures, such as walk, ADL,
drink, eat, brush teeth, use laptop etc., and scenes such as having lunch, house cleaning,
relaxing, etc. Table 5 shows the above reviewed datasets in short.

Table 5. Overview of the in-home health dataset using depth sensor from the last decade.

Dataset Year Activity Brief Description Recently Used in

VISTA dataset [131] 2022 Basic gestures and
daily activities

Contains 7682 action instances for the training phase and 3361
action instances for the testing phase.

New dataset (no
published work
available)

ETRI-
Activity3D [130] 2020 Daily seniors’

Activity

It contains 112,620 samples including RGB videos, depth maps,
and skeleton sequences and 100 subjects performed 55 daily
activities.

[132–134]

Kinder-Gator [129] 2018 Human Motion
Recognition

The dataset contains joint positions for 58 motions, such as wave,
walk, kick, etc., from ten children (ages 5 to 9) and ten adults
(ages 19 to 32). It also contains 19 RGB videos and 1159 motion
trials.

[135–137]

PKU-MMD [128] 2017 Human Action
Analysis

Collection of 1076 long action sequences and 51 action classes. It
also contains around 20,000 action instances and 5.4 millions
frames.

[138–140]

NTU RGB+D [127] 2016 Human Activity
Analysis

Consists of 60 different classes and 56,880 video samples captured
from 40 distinct human subjects using 80 camera viewpoints. [141–143]
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Table 5. Cont.

Dataset Year Activity Brief Description Recently Used in

K3Da [126] 2015 Human Motion
Analysis

It includes motions collected from fifty-four participants of young
and older men and women aged from 18–81 years. It captured
balancing, walking, sitting, and standing.

[144–146]

ACT42 [125] 2012 Human Daily
Action

The dataset contains 6844 action clips with both color and depth
information, collected from 4 viewpoints. [147–149]

5. Discussions and Future Scopes

In-home monitoring systems for seniors have become necessary requirements. Several
methods have been proposed over the years. As shown in Section 3, frequently used
techniques are DL, HMM, SVM, and NB classifiers, etc. Different types of features such as
human joint information, center-of-mass, silhouettes, spatio-temporal, various distance,
etc., are extracted using different techniques. The datasets that are frequently used are MSR
DailyActivity3D, SDUFall dataset, etc.

All the selected works which are discussed in Section 3 are summarized in Tables 1–4.
In these four tables key points, features, and used computing techniques are mainly men-
tioned. The data in these tables have been arranged year-wise in descending order so that
the latest works can easily be found.

Additionally, we compare different methods based on the accuracy, condition and
activities which are shown in Table 6. We also describe the datasets in terms of accuracy
and the drawbacks of the methods in Table 6.

It can be observed from Figure 4 and the tables provided above that ML-based tech-
niques are frequently used. These ML techniques are SVM, NB, HMM, and DL.

Figure 4. Different Computing Techniques used from the last decade.
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Table 6. Comparison of some Methods with activities and their drawbacks.

Study with
Year Methods Dataset with Accuracy Used Resources Running Time Activities Conditions Drawbacks

In [102], 2022 ConvLSTM KinectHAR (98.89%) NVidia
TITAN-XGPU. Not mentioned

Standing, walking slow, walking
fast, sitting, bending, fall, and
lying down activities.

Independent of the pose,
position of the camera,
individuals, clothing, etc.

Provides very high accuracy but
is costly due to its complex
model structure.

In [111], 2021 KELM Classifier
MSRAction3D (97.44%),
DHA (99.13%) and
UTD-MHAD (88.37%)

Desktop with intel
i5-7500 Quad-core
processor and 16 GB
RAM

731.4 ± 48.8
ms/40 frames

Sport actions, daily activities,
and training exercises.

In consistent real-time operation,
it processes 40 depth images in
less than a second.

This method did not remove the
noise to improve the
performance, thus, some
misclassifications were observed
in activities such as waving,
clapping, skipping, etc.

In [150], 2020 Multichannel CNN
(MCNN)

CASIA gait B and
OU-ISIR Not mentioned Not mentioned Dynamic gait recognition

When there is a pause in the
walking cycle, the leg is agile,
walking wearing coats and
walking carrying bags.

Performance reduces as they
used only silhouette images,
though they obtained original
gait videos.

In [97], 2019 Image Processing
and Deep Learning

UTKinect (97%) and
CAD-60 (96.15%) Not mentioned

0.0081 s
(UTKinect
Action-3D)

Daily activities such as drinking
water, answering the phone, and
cooking.

In real time embedded systems

Complex actions related to
health-problems, such as
headaches and vomiting cannot
be detected with this approach.

In [124], 2018 K-means and
Bayesian

Own dataset of 120
walking

Lenovo Y700-15ISK
with an i7-6700HQ
CPU and 16G RAM

Not mentioned

Kinematic leg swing
characteristics in combination
with spatiotemporal parameters
such as the step length and gait
cycle.

Focused on gait analysis using
frontal walking sequences.

Variation of clothing of the
object decreases the accuracy.

In [105], 2015 K-means Clustering
Own dataset with 9
different activities.
(89.72%)

PC as Intel Pentium
IV 2.63GHz having
2GB RAM

Not mentioned

Walking, sit down, exercise,
prepare food, stand up, cleaning,
watching TV, eating meal and
lying down.

In complex activities such as
self-occlusion, overlapping
among people, and hidden body
parts, etc.

Comparatively low accuracy
rate as it handles complex
activities.
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Although recently proposed techniques are mostly DL-based, the number is not
exceptionally high. If we observe the bars in the graph mentioned in Figure 4, we can
observe that the data-driven approaches are gaining popularity. These observations are
based on the articles published by major publishers in the last decade.

Many researchers have proposed in-home monitoring techniques with depth sensors,
but these methods still present various challenges which need to be overcome. Moreover,
researchers rarely use local and federated computing methods. These methods might be
useful to overcome several challenges regarding latency, privacy, and data security. As in
the healthcare sector, the dataset might not be suitable or available for end-to-end training;
transfer learning can then be used to train the model with fewer data. Transfer learning
is an ML method where a model is trained to perform task A; then, the trained model
is deployed to perform a similar task, labelled Task B. For the second task, the previous
model acts as a good starting point. In short, the pre-trained model is reused to solve a
new related problem. Moreover, transfer learning is suited to DL as deep transfer learning
(DTL) is a highly effective data-driven approach.

There also exist recently proposed meta-learning techniques such as Few Shot Learning
(FSL). FSL works with less labeled data. This is useful when training instances are either
rare or costly. A typical example is drug discovery, i.e., discovering various properties
of new molecules to develop a new useful drug. Another example is in the medical field
where a small number of X-ray images of a particular part of the body are available. In
these fields, collecting a lot of data to train a neural network is very difficult. FSL could be
used in these situations. There are many application where FSL has been used successfully,
such as in face verification, character recognition, video classification, motion prediction,
etc., [150].

IoTs capability could be enhanced by deploying a pre-trained model. It can now
process some of the data in the edge and can reduce the workload in the cloud. Another
problem often faced by these systems is a disturbance in network connectivity. So, a backup
system is required to perform recovery. The algorithms could also be optimized to produce
faster outputs. The privacy issue of the in-home care system could be resolved using depth
sensors; however, the data security issue has yet to be resolved.

A large storage system is needed to store all the data which are generated due to
continuous monitoring. These huge amounts of data can be utilized for the long-term
health assessment of seniors. Imbalance and biases in the dataset are concerns which may
be handled via different techniques. Some qualitative data also needed to be analyzed to
understand whether our seniors are comfortable or not with this continuous technology-
based monitoring system. The monitoring system could be modified according to the
feedback provided by the seniors to make it more friendly. Affordability is the most crucial
feature of any in-home care system. It should be designed in such a way that it becomes
affordable without sacrificing the quality of life-saving features of the system. In the future,
the research direction could help to find solutions for the above-mentioned problems.

6. Conclusions

In this paper, we reviewed different computational techniques which were proposed
to develop in-home monitoring systems for older adults which primarily use depth sensor
data. At first, we reviewed fall detection with and without the gait-based depth image
classification technique; we then reviewed the activity pattern analysis using the same
classification. Although existing in-home senior monitoring systems provide various
useful features as well as high levels of accuracy in predicting various events, some basic
challenges (e.g., privacy, security, latency, storage, etc.) are yet to be overcome. Ideal
in-home care for older adults should facilitate them in their homes with minimum cost,
ensuring their privacy as well as assisting them in an emergency situation. We strongly
believe that the newly proposed techniques such as transfer learning, few-shot learning,
incremental learning, etc., should be incorporated into such a system for faster processing
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and accurate activity detection with a low computational burden. Edge computing and
federated learning may mitigate the challenges that cloud computing has. However, we
may need to use the cloud server, as without this, the process cannot be completed for many
reasons. IoT devices and sensors need to be more intelligent so that they can achieve faster
processing and remove the overhead of the edge as well as the cloud server. This paper
shows the methods and approach that researchers used in the last decade. Furthermore,
we provided the most recent work first in the tables to make it easier to review the latest
progress. The evaluation of the use of ML, DL and other feature engineering methods is
presented in the graph. Overall, this paper provides a review of the current techniques,
future scopes, challenges and some solutions for in-home care systems for seniors using
depth sensor imagery.
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