Study of a Fiber Optic Fabry-Perot Strain Sensor for Fuel Assembly Strain Detection
Abstract
:1. Introduction
2. Method
2.1. Sensing System Design
2.2. Strain Transfer Analysis
2.3. Thermal Effects
3. Experiments
3.1. Static Testing
3.2. Dynamic Testing
3.3. Thermal-Hydraulic Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horvath, A.; Rachlew, E. Nuclear power in the 21st century: Challenges and possibilities. Ambio 2016, 45, 38–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.P. Developments of analyses on grid-to-rod fretting problems in pressurized water reactors. Prog. Nucl. Energy 2018, 106, 293–299. [Google Scholar] [CrossRef]
- Christon, M.A.; Lu, R.; Bakosi, J.; Nadiga, B.T.; Karoutas, Z.; Berndt, M. Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors. J. Comput. Phys. 2016, 322, 142–161. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.G.; de Carvalho, A.A.; da Silva, D.D. A Strain Gauge Tactile Sensor for Finger-Mounted Applications. IEEE Trans. Instrum. Meas. 2002, 51, 18–22. [Google Scholar] [CrossRef]
- Veerabagu, S.; Fujihara, K.; Dasari, G.R.; Ramakrishna, S. Strain distribution analysis of braided composite bone plates. Compos. Sci. Technol. 2003, 63, 427–435. [Google Scholar] [CrossRef]
- Park, J.; You, I.; Shin, S.; Jeong, U. Material Approaches to Stretchable Strain Sensors. ChemPhysChem 2015, 16, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, M.Q.; Peng, Y. Tapered Hollow-Core Fiber Air-Microbubble Fabry–Perot Interferometer for High Sensitivity Strain Measurement. Adv. Mater. Interfaces 2018, 5, 1800886. [Google Scholar] [CrossRef]
- Ma, Z.B.; Cheng, S.L.; Kou, W.Y.; Chen, H.B.; Wang, W.; Zhang, X.X.; Guo, T.X. Sensitivity-Enhanced Extrinsic Fabry–Perot Interferometric Fiber-Optic Microcavity Strain Sensor. Sensors 2019, 19, 4097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Q.; Shen, C.Y.; Lou, W.M.; Shentu, C.Y. Intensity modulation type fiber-optic strain sensor based on a Mach–Zehnder interferometer constructed by an up-taper with a LPG. Opt. Commun. 2016, 364, 72–75. [Google Scholar] [CrossRef]
- Zhang, H.L.; Wu, Z.L.; Shum, P.P.; Wang, R.X.; Dinh, X.Q.; Fu, N.; Tong, W.J.; Tang, M. Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing. J. Opt. 2016, 18, 085705. [Google Scholar] [CrossRef]
- Villatoro, J.; Van Newkirk, A.; Antonio-Lopez, E.; Zubia, J.; Schulzgen, A.; Amezcua-Correa, R. Ultrasensitive vector bending sensor based on multicore optical fiber. Opt. Lett. 2016, 41, 832–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihailov, S.J.; Grobnic, D.; Smelser, C.W. High-temperature multiparameter sensor based on sapphire fiber Bragg gratings. Opt. Lett. 2010, 35, 2810–2812. [Google Scholar] [CrossRef] [PubMed]
- Statkiewicz-Barabach, G.; Kowal, D.; Szczurowski, M.K.; Mergo, P.; Urbanczyk, W. Hydrostatic Pressure and Strain Sensitivity of Long Period Grating Fabricated in Polymer Microstructured Fiber. IEEE Photonics Technol. Lett. 2013, 25, 496–499. [Google Scholar] [CrossRef]
- Gao, X.K.; Ning, T.G.; Zhang, C.B.; Xu, J.; Zheng, J.J.; Lin, H.; Li, J.; Pei, L.; You, H.D. A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing. Opt. Commun. 2020, 454, 124441. [Google Scholar] [CrossRef]
- Kaur, A.; Anandan, S.; Yuan, L.; Watkins, S.E.; Chandrashekhara, K.; Xiao, H.; Phan, N. Strain monitoring of bismaleimide composites using embedded microcavity sensor. Opt. Eng. 2016, 55, 037102. [Google Scholar] [CrossRef]
- Zhang, H.L.; Wu, Z.F.; Shum, P.P.; Dinh, X.Q.; Low, C.W.; Xu, Z.L.; Wang, R.X.; Dinh, X.Q.; Shao, X.G.; Fu, S.N.; et al. Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber. Sci. Rep. 2017, 7, 46633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, P.; Tan, Y.G.; Li, T.L.; Zhou, Z.D.; Lv, W.Q. A high-temperature resistant photonic crystal fiber sensor with single-side sliding Fabry-Perot cavity for super-large strain measurement. Sens. Actuator A Phys. 2021, 318, 112492. [Google Scholar] [CrossRef]
- Huang, P.J.; Wang, N.; Li, J.Y.; Zhang, J.; Xi, Z.D. Optical Fiber Demodulation System with High Performance for Assessing Fretting Damage of Steam Generator Tubes. Sensors 2018, 18, 201. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, J.; Chen, J.; Wang, N.; Zhang, J.; Zhu, Y. Study of a Fiber Optic Fabry-Perot Strain Sensor for Fuel Assembly Strain Detection. Sensors 2022, 22, 9097. https://doi.org/10.3390/s22239097
Jiao J, Chen J, Wang N, Zhang J, Zhu Y. Study of a Fiber Optic Fabry-Perot Strain Sensor for Fuel Assembly Strain Detection. Sensors. 2022; 22(23):9097. https://doi.org/10.3390/s22239097
Chicago/Turabian StyleJiao, Jianan, Jianjun Chen, Ning Wang, Jie Zhang, and Yong Zhu. 2022. "Study of a Fiber Optic Fabry-Perot Strain Sensor for Fuel Assembly Strain Detection" Sensors 22, no. 23: 9097. https://doi.org/10.3390/s22239097
APA StyleJiao, J., Chen, J., Wang, N., Zhang, J., & Zhu, Y. (2022). Study of a Fiber Optic Fabry-Perot Strain Sensor for Fuel Assembly Strain Detection. Sensors, 22(23), 9097. https://doi.org/10.3390/s22239097