
Citation: Abdou, M.; Kamal, H.A.

SDC-Net: End-to-End Multitask

Self-Driving Car Camera Cocoon

IoT-Based System. Sensors 2022, 22,

9108. https://doi.org/10.3390/

s22239108

Academic Editors: Sachin Kumar and

Prayag Tiwari

Received: 27 October 2022

Accepted: 17 November 2022

Published: 24 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

SDC-Net: End-to-End Multitask Self-Driving Car Camera
Cocoon IoT-Based System
Mohammed Abdou 1,* and Hanan Ahmed Kamal 2

1 Valeo Egypt, Cairo 12577, Egypt
2 Department of Electronics and Communications Engineering, Faculty of Engineering, Cairo University,

Giza 12613, Egypt
* Correspondence: mohammed.abdou@valeo.com or d.mabdou258@gmail.com

Abstract: Currently, deep learning and IoT collaboration is heavily invading automotive applications
especially in autonomous driving throughout successful assistance functionalities. Crash avoidance,
path planning, and automatic emergency braking are essential functionalities for autonomous driving.
Trigger-action-based IoT platforms are widely used due to its simplicity and ability of doing receptive
tasks accurately. In this work, we propose SDC-Net system: an end-to-end deep learning IoT hybrid
system in which a multitask neural network is trained based on different input representations from
a camera-cocoon setup installed in CARLA simulator. We build our benchmark dataset covering
different scenarios and corner cases that the vehicle may expose in order to navigate safely and
robustly while testing. The proposed system aims to output relevant control actions for crash
avoidance, path planning and automatic emergency braking. Multitask learning with a bird’s
eye view input representation outperforms the nearest representation in precision, recall, f1-score,
accuracy, and average MSE by more than 11.62%, 9.43%, 10.53%, 6%, and 25.84%, respectively.

Keywords: autonomous driving; deep learning; computer vision; multitask learning; crash avoidance;
path planning; automatic emergency braking; camera-cocoon; IoT; system

1. Introduction

Recently, deep learning and computer vision are invading the automotive field. Sophis-
ticated features have become essential in order to achieve a self-driving car, including: lane
keeping assist (LKA) [1], path planning [2], adaptive cruise control (ACC) [3], automatic
emergency braking (AEB) [4], traffic jam assist (TJA) [5], and crash avoidance (CA) [6]. AEB
aims to force a brake control especially in case of an object in front of the ego-vehicle, LKA
aims to control the ego-vehicle steering angle within the same lane with at constant speed.
ACC aims to control the ego-vehicle’s speed while keeping a safe distance away from the
front vehicle. TJA aims to continuously measure the surrounding vehicles’ speed especially
when ACC is activated; the car automatically follows the vehicle in front, accelerates,
and brakes all by itself, at all speeds below 60 kmph. CA aims to detect the possibility
of the occurrence of crashes and try to avoid them by taking corrective control actions.
Path planning aims to take the relevant control steering and acceleration to maneuver and
move the vehicle from the current lane to the next lane. All of the previously mentioned
functionalities are not fully-integrated in all different ways and levels.

All of the previous actions are completed based on having a highly accurate level of
environmental perception that depends on sensor fusion [7]. Sensor fusion is the ability
to gather inputs from multiple sensors lidars, cameras, and radars in order to precept the
environment around the vehicle. The outcome from this perception is robust and accurate
because it combines the strength points of these different sensors. Each sensor has some
strengths and weaknesses. For example, radar is often used in estimating distance and
speed even in bad weather conditions [8]; however, radar fails in detecting traffic road signs.

Sensors 2022, 22, 9108. https://doi.org/10.3390/s22239108 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239108
https://doi.org/10.3390/s22239108
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8257-3352
https://doi.org/10.3390/s22239108
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239108?type=check_update&version=2


Sensors 2022, 22, 9108 2 of 19

The use of a camera is common in these situations: classifying and detecting traffic signs,
vehicles, pedestrians, etc.; however, cameras fail in the case of darkness, dirt, and sunny
weather, so lidars are helpful in these situations for estimating distance from other objects.

Currently, crash avoidance, path planning [2] and automatic emergency braking
functionalities are considered as the most important features in self-driving cars. These
functionalities are not fully-integrated in all different ways and levels. For example, if there
is an accident, the currently implemented solutions perform many actions such as:

• Warn the driver that there is an accident in front of them. Then, the driver will have
the ability to take a reasonable corrective action. This is called the forward collision
warning (FCW) functionality;

• Apply automatic emergency braking (AEB) functionality; however, this functionality
is specific to low speeds.

The internet of things (IoT) allows devices to be connected wirelessly to a cloud system.
The automotive industry has used IoT to cover difficult scenarios that self-driving cars may
expose. Recently, self-driving cars have been coupled with an IoT-based technology system
that shares huge amounts of information including traffic, navigation, roads, behaviors,
scenarios, and more. Self-driving cars’ computer systems benefit from this information
by doing extensive analyses to help vehicles move autonomously. With the advent of
new telecommunication technologies such as 5G-networks [9] and vehicle-to-vehicle (V2V)
communications [10], cooperative perception [11,12] is becoming a promising paradigm
that enables sensor information to be shared between vehicles and roadside devices in
real-time. The shared information can then augment the field of view of individual vehicles
and convey the intentions and path plans of nearby vehicles, thus offering the potential
to improve driving safety, particularly in accident-prone scenarios. Digital automation
platforms are considered to be IoT platforms that are extremely useful services that enable
users to connect applications and automate workflows. The software is currently directed
towards specialized and centralized cloud applications. IoT [13] automation platforms are
noncoding programming languagse that provides some APIs which can be automatically
called or accessed. IoT platforms are a trigger-action programming method that facilitate
the integration of many devices using a fascinating user interface and are capable of making
some types of decisions.

In this paper, we introduce an SDC-Net (self-driving car) system which is an end-to-
end multitask deep convolutional neural network. SDC-Net is designed to allow vehicles
to navigate safely while performing tasks such as crash avoidance, path planning, and au-
tomatic emergency braking. In order to perform these tasks, we also created a dataset that
serves our application using a CARLA simulator. A camera cocoon setup with views 360◦

around the ego-vehicle—to have improved perception of the environment—was configured
to capture images from front, left, right, and rear positions. Traditional path planning was
implemented and integrated with the CARLA simulator using model predictive control
(MPC) in order to control vehicle’s actions: steering, throttle, and braking with the help of
the provided waypoints generated from the predefined map information from the CARLA
simulator. Different scenarios and corner cases for path planning, crash avoidance, and
automatic braking are covered in our dataset to navigate safely within CARLA towns. Our
collected dataset (i.e., cocoon cameras with the corresponding control actions) is saved
in order to retrieve the data easily while training or testing the multitask network. The
SDC-Net system is also considered as an IoT-based solution that aims to enrich other
connected vehicles with relevant information especially in case of accidents or crashes.
Extensive experiments were conducted based on two combined factors: different input
representations (front image, panorama, and bird’s eye view) and single/multi output
head (crash avoidance only, path planning and AEB only, or both).

The remainder of the paper is distributed as follows: Section 2 provides a literature
review on the self-driving vehicle functionalities, sensor fusion and different digital automa-
tion IoT platforms. Section 3 describes system architecture, neural networks models using
different input representations, and the best automation IoT platform used. Furthermore,



Sensors 2022, 22, 9108 3 of 19

a literature review on open-source datasets and the dataset setup are described in Section 4.
Moreover, experimental results are shown in Section 5. Lastly, a summarized conclusion is
in Section 6.

2. Literature Review

Artificial intelligence (AI) is becoming more commonly used in many applications
especially autonomous driving (AD) ones such as augmented reality (AR) [14], auto-
matic emergency braking (AEB) [15], lane keeping assist (LKA) [16], active cruise control
(ACC) [17], and crash avoidance (CA) [18]. Forward collision warning (FCW) [19] and
automatic emergency braking (AEB) are considered as the initial trials to integrate crash
avoidance functionality. In FCW, the vehicle is able to only warn the driver that there is
an object in front of you, so the driver should take corrective actions. However, in AEB
the vehicle starts taking action by braking when the vehicle approaches an object that is
in front of the vehicle. Fully autonomous driving was forbidden due to the presence of
some restricted laws that prevent autonomous cars because of the fear that accidents could
occur. However, researchers have recently worked to create a research field with the aim of
achieving a functioning self-driving car.

Path planning [20] is essential for autonomous driving cars because the vehicle requires
full knowledge of the surrounding environment in order to take relevant actions. Path
planning can be achieved using traditional methods or a deep learning approach:

• Perception [21], which is responsible for perceiving the surrounding environment;
• Trajectory prediction [22,23] for the surrounding objects;
• Trajectory planning [24], which computes the trajectory based on the perception and

prediction for the environment;
• Control [25,26], which is responsible for taking proper actions depending on all the

information that is gathered by the previous block.

Fusion of multiple sensors such as cameras, lidars, and radars which are widely
used in self-driving vehicles, ensures accurate detection and robust perception even dur-
ing bad weather conditions that may lead to a failure of some of the sensors. Recent
related studies have developed vehicle detection methods by fusing lidar and radar signals
together. STMVDNet [27] presents a teacher–student multimodal mutual learning frame-
work in addition to a sensor noise model that can be used in data augmentation for both of
these sensors.

Sensors are fundamental to conduct the perception task for self-driving cars that are
exploring their surrounding environment. Fusing multiple sensor readings together can
ensure a feasible autonomous vehicle. Wang et al. conducted a survey [28] discussing the
different strategies of multisensor fusion in automated driving in recent years, including
radars, lidars, cameras, ultrasonic sensors, and V2X. De Jong et al. conducted a review [29]
evaluating the capabilities and the performance of the most commonly used sensors in
autonomous vehicles, focusing on a large selection of vision cameras, lidar, and radar
sensors with the many different conditions that sensors may experience. Their survey
also presented an overview of the three primary categories of sensor calibration and
reviewed existing open-source calibration packages for multisensor calibration and their
compatibility with commercial sensors.

It is agreed that vehicle-infrastructure cooperation is required to achieve Level-5
full driving automation. Unfortunately, still, there is NO available real dataset from real
scenarios available for researchers to work on vehicle-infrastructure cooperation-related
problems. DAIR-V2X Dataset [30] is released to accelerate computer vision research and
innovation for Vehicle-Infrastructure Cooperative Autonomous Driving (VICAD). DAIR-
V2X Dataset is the first large-scale, multimodality, multiview dataset from real scenarios
for VICAD, it comprises 70 K Lidar and Camera frames with 3D annotations. It is released
for the problem of collaboratively locating and identifying 3D objects using sensory inputs
from both vehicle and infrastructure, in addition to solving traditional 3D object detection



Sensors 2022, 22, 9108 4 of 19

problems taking into consideration the temporal asynchronous problem between vehicle
and infrastructure sensors and the data transmission cost between them.

CoBEVT [31] is a multiagent, multicamera perception framework that can coopera-
tively generate BEV map predictions. It is a transformer-based architecture with a fused
axial attention module (FAX). It aims to sparsely capture local and global spatial interactions
across views and agents. It achieved the state-of-the-art performance for BEV semantic
segmentation when tested on a OPV2V [32], which is a large-scale V2V perception dataset
collected to facilitate multivehicle cooperation in CARLA [33] and OpenCDA [34], which
is a generalized framework and tool for developing and testing cooperative driving au-
tomation (CDA) systems in a simulation. OPV2V employs a simple agent-wise single-head
attention to fuse all features together.

DiscoGraph [35] is a novel distilled collaboration graph that aims to model train-
able, pose-aware, and adaptive collaboration among agents that utilize IoT to share lidar
information for better scene understanding. A teacher–student framework is used to
train DiscoGraph via knowledge distillation [36], in which the teacher model employs
an early collaboration with holistic-view inputs; the student model is based on interme-
diate collaboration with single-view inputs. Multiple agents with the shared DiscoNet
could collaboratively approach the performance of a hypothetical teacher model with a
holistic view. DiscoGraph was tested on V2X-Sim [37], which is a large-scale multiagent
3D object detection dataset for autonomous driving scenarios based on CARLA and the
SUMO cosimulation platform [33]. It achieves better performance–bandwidth trade-off
and lower communication latency than the state-of-the-art intermediate collaboration meth-
ods. V2X-Sim is a comprehensive simulated multiagent perception dataset for V2X-aided
autonomous driving that provides multiagent sensor recordings from the roadside unit
(RSU) and multiple vehicles that enable collaborative perception, multimodality sensor
streams that facilitate multimodality perception, and diverse ground truths that support
various perception tasks.

V2VNet [10] proposes to circulate the intermediate features extracted from 3D back-
bones (intermediate fusion), then utilize a spatial-aware graph neural network for multi-
agent feature aggregation. V2VNet is a vehicle-to-vehicle (V2V) communication setting
where each vehicle can broadcast and receive information to/from nearby vehicles (within
a 70 m radius). It also utilizes a spatially aware graph neural network (GNN) to aggregate
the information received from all the nearby self-driving cars, which allows it to intelli-
gently combine information from different points in time and viewpoints. It was also tested
on V2X-Sim. COOPERNAUT [38] is an end-to-end learning model that uses cross-vehicle
perception for vision-based cooperative driving. It encodes lidar information into compact
point-based representations that can be transmitted as messages between vehicles via real-
istic wireless channels. The authors also developed a CARLA-based simulation framework
AUTOCASTSIM with very challenging accident-prone scenarios.

Many research studies show the capabilities of digital automation IoT platforms for use
in different IoT applications. In 2021 Mohammed Abdou et al. [39] conducted a comparative
study between the five most famous digital automation platforms: Zapier [40], IFTTT [41],
Integromat [42], Parapola [43], and Microsoft power automate [44]. The comparative
study was based on different comparison metrics related to integrability, accessibility,
and integrability. Valeo proposed an automotive standardization platform called digital
gate system [45] that aims to connect a vehicle’s network (including CAN, Flexray, Ethernet,
etc.) to cloud computation platforms as well as to the automation platforms and vice
versa. Moreover, the digital gate system provides the capability of creating proof of
concepts (POCs) and prototypes for automotive developers. Furthermore, it facilitates
and accelerates the development cycle. Another comparative study was carried by Amir
Rahmati et al. [46] differentiating between the capabilities of Zapier and IFTTT comparing
the available functions, distribution of channels, and the common functions they share.
Additionally, Amir Rahmati et al. analyzed the growth of these frameworks and discuss
future research opportunities in this domain. In 2020, Lucas Carlberg and Olivia Shamon’s



Sensors 2022, 22, 9108 5 of 19

Bachelor thesis [47] researched the most optimal cloud integration platform, which allowed
them to automate simple repetitive tasks.

3. System Methodology

In this section, we tackle the proposed system architecture shown in Figure 1 in detail,
and then we will describe the proposed neural networks models.

Figure 1. System architecture.

3.1. Input Representations

The proposed system depends on a camera cocoon setup that covers 360◦ around the
ego vehicle in which the input images can be adapted to different input representations.
Input representations are shown in Figure 2 and can be front image only, normal stitching,
equirectanguler, and bird’s eye view (BEV) warped images.

Figure 2. (a–c) Different input representation.

3.1.1. Panorama—Normal Stitching

Normal stitching panorama is achieved following the method shown in Figure 3 in
which the front image will be in the middle, the left image is stitched to the left, and the
right image is stitched to the right; however, the rear image is split into two subimages,
where the right image is stitched to the right and the rear left image is stitched to the left.
Figure 4 is an example of applying the normal stitching on the CARLA simulator. However,
this view has a great drawback because the 4 images are not differentiated from each other,
so it may fool the network when doing feature extraction.



Sensors 2022, 22, 9108 6 of 19

Figure 3. Normal stitching technique.

Figure 4. Normal stitching example.

3.1.2. Panorama—Equirectangular Stitching

Equirectanguler stitching panorama is achieved following the same method of the
normal stitching as shown in Figure 5. This stitching method solved the drawback of the
normal stitching method in tilting the images from their edges (based on a tuned radius
r) in order to differentiate between them, as shown in Figure 6. Figure 7 is an example of
applying the normal stitching in the CARLA simulator. This example is simpler for use
with the neural network than the normal stitching for doing features extraction and for
differentiating between the 4 images.

Figure 5. Panorama stitching technique.

Figure 6. Tilting image with radius r.

Figure 7. Panorama stitching example.



Sensors 2022, 22, 9108 7 of 19

3.1.3. Bird’s Eye View (BEV)

Bird’s eye view is one of the most famous and trending types of view that is currently
used in automotive applications. It depends on the camera calibration parameters. Intrin-
sic and extrinsic parameters warp the images taken from the bird’s eye view. Intrinsic
parametersallow for mapping between the pixel coordinates and camera coordinates in the
image frame, for example: optical center, focal length, and radial distortion coefficients of
the lens when using a fisheye camera. Extrinsic parameters describe the orientation and
location of the camera, where rotation and translation of the camera correspond to a world
coordinate system.

The warping algorithm is an image-transformation algorithm that depends on 8 predefined
points: 4 points for the current view of the image and 4 points for the target transformed
view. Figure 8 contains a vehicle view that is the normal front camera from the CARLA
simulator with 4 red points (1, 2, 3, 4) and 4 green points (1, 2, 3, 4). The red points, and the
trapezoidal shape, represent the vehicle view (current view), and the green points, and the
rectangular shape, represent the target view (the image taken from this view). So, the main
of warping algorithm is to transform these red points to green ones as shown in the bird’s
eye view in Figure 8. Following the same procedure of warping to be applied on the left,
right, and rear images as well, the full shape of the BEV is generated, but the question that
remains to be answer is:what is this black square in the middle of the image? In fact, it is
the ego-vehicle itself. After warping the 4 images part of the ego-vehicle appears, so it was
necessary to remove it from the image in order to avoid fooling the neural network (which
could lead to the vehicle taking incorrect actions, for example).

Figure 8. BEV transformation.

3.2. Multitask Neural Network

The proposed system Figure 9 takes one of the input representations to SDC-Net, a
multitask deep neural network that aims to perform two tasks together, as shown in Figure
1. Multitask network is defined as two output heads with different loss functions for each
task; however, they are common in the same input representation and feature extraction
part (backbone, neck, etc). First, the upper block is the crash detection network where a
binary output is expected (i.e., 0 means no crash and 1 means crash). Thus, the second
lower block is path planning and the AEB network that outputs the vehicle’s continuous
control actions (i.e., steer, throttle, and brake).



Sensors 2022, 22, 9108 8 of 19

Figure 9. SDC-Net: multitask deep neural network.

Multitask deep neural network, inspired by [48] with some modifications, starts with
an input normalization phase to achieve a zero mean and one standard deviation. Then,
eight convolution layers in which the first convolution layer has a (5, 5) kernel size, then
the next seven convolution layers have a (3, 3) kernel size, and the number of filters
applied are 32, 64, 128, and 256, respectively, for every two consecutive convolution layers.
Every convolution layer is followed by relu activation function introducing nonlinearties,
and every two convolution layers are followed by a max pooling layer with a (2, 2) kernel
size. The output from the eighth convolution layer is flattened with dropout, and then
two fully connected layers each have 256 neurons applied. The output of the second
fully connected layer is divided into two paths. The first upper path is responsible for
a crash detection network that aims to classify the scenes if there is a crash or when not
using the binary cross entropy loss function. However, the second lower path passes
through a concatenation layer with the feature extraction (two fully connected layers with
128 neurons) for the input speed, and then passes through another two fully connected
layers with 256 neurons each. This second output aims to output the vehicle control
actions by using a regression mean square error loss function. The output heads consist of
downsized fully connected layers with dropouts where the classification path ended with a
softmax layer to output the probabilities, and the regression path ended with a sigmoid
layer to output the normalized continuous values for throttling, braking, and steering
between 0 and 1. Table 1 shows each layer with the output shape, the number of parameters
per layer, and the total number of parameters.



Sensors 2022, 22, 9108 9 of 19

Table 1. Multitask network parameters.

Layer Output Shape Number of Parameters

Input Layer (None, 120, 300, 3) -

Conv1 (None, 120, 300, 32) 2432
Conv2 (None, 120, 300, 32) 9248

MaxPool1 (None, 60, 150, 32) -

Conv3 (None, 60, 150, 64) 18,496
Conv4 (None, 60, 150, 64) 36,928

MaxPool2 (None, 30, 75, 64) -

Conv5 (None, 30, 75, 128) 73,856
Conv6 (None, 30, 75, 128) 147,584

MaxPool3 (None, 15, 38, 128) -

Conv7 (None, 15, 38, 256) 295,168
Conv8 (None, 15, 38, 256) 590,080

MaxPool4 (None, 8, 19, 256) -

Flatten (None, 38,912) -
FC1-256 (None, 256) 9,961,728
FC2-256 (None, 256) 65,792

Input Speed (None, 1) -
FC1-128 (None, 128) 256
FC2-128 (None, 128) 16,512

Concat (FC2-256, FC2-128) (None, 384) -
FC3-256 (None, 256) 98,560
FC4-256 (None, 256) 65,792

Crash Head (FC1-10) (None, 10) 2570
Crash Head (FC2-1) (None, 1) 11

Softmax (None, 1) -

Control Head (FC1-10) (None, 10) 2570
Control Head (FC2-3) (None, 3) 33

Sigmoid (None, 3) -

11,387,616

The normalization phase is considered to be a preprocessing phase applied on CARLA
input images to ensure they have the same distribution. Eight convolutions are used as
the starting point with a relatively large kernel size (5, 5) to initially incorporate more
information with a large receptive field. Then, finer kernel sizes of (3, 3) are used to avoid
the overfitting problem of using too many weights. The proposed network follows the rule
of thumb "deeper is better than wider", because deeper networks learn more interesting
features such as super features of the previous layer’s features. Thus, the number of filters
applied is increased to encode the extracted features in the depth information while going
deeper. Maxpooling layers are used to downsize the spatial features focusing on the most
important features only. The second part of the network, especially the concatenation
and fully connected layers, occur after the flattened layer that aims to mix the extracted
features with CARLA signals that connect all the layers, and then prepare the network for
the multiheads.

3.3. IoT Automation Platform

IoT digital automation platform is a trigger-action-based platform, if the trigger occurs,
the IoT platform directly takes predefined actions using placeholder information. Reflecting
this to our proposed system, the IoT platform aims to take the output from the crash
detection network. Thus, if a crash is detected (trigger), then the IoT platform will act
accordingly to provide the connected vehicles and traffic emergency patrols with relevant
information about the accident (action). The shared information will be: the location of



Sensors 2022, 22, 9108 10 of 19

the accident, severity, and whether other vehicles are able to perform path planning to
avoid accidents or must change their route. Otherwise, in case of no crash, there will not
be a trigger, so no action is taken. The proposed system is integrated with the digital gate
platform [45]—let’s do platform (LDO) [49] proposed by Valeo, which is considered an
automotive standardization platform as shown in Figure 10.

Figure 10. Digital gate system [49].

Digital gate system is a system responsible for propagating data from vehicle commu-
nication buses (CAN, LIN, etc.) to automation platforms or microservices. Automation
platforms are used for implementing trigger-action workflows. In addition, separate mi-
croservices are used to perform some of the logic needed for prototyping and proof of
concept (POC) applications. A digital gate system consists of four main components, as
presented in Figure 10. Vehicle abstraction layer is the first component in the system’s
pipeline; it adapts data extraction from a vehicle and delivers this data to the gateway
adapter library and also from the gateway adapter library to the vehicle. Gateway adapter
library is responsible for communicating data between the vehicle abstraction layer and a
web service. Moreover, the web service takes the role of routing the data, whether directly to
the automation platforms or to the microservices, in order to process this data. Afterwards,
the processed data goes to automation platforms or back to the vehicle. Furthermore, web
services can interact with automation platforms (such as Zapier, IFTTT, Integromat, etc.) to
perform user-customized work flows.

By projecting the previously described system into our proposed system, the multitask
deep neural network is deployed onto one of the microservices. The camera cocoon images
are sent from the vehicle abstraction layer to the web service via the gateway adapter.
Accordingly, the web service routes the cocoon images to the SDC-Net microservice. SDC-
Net adapts the cocoon to the best input representation (i.e., BEV, as we will see in the
experimental results Section 5). Then, it sends information to the outputs of crash classifica-
tion output (0 or 1) and vehicle continuous control actions (Throttle, steer, brake) ranges
between 0 and 1 throughout the multiheads outputs. A postprocessing phase is performed
to denormalize the control actions, then the web service receives these control actions and
crash/no crash decision from SDC-Net microservice. Control actions are routed back to the
vehicle abstraction layer via the gateway adapter where the vehicle controller applies these
actions. However, crash/no crash decision is routed to the IoT automation platforms, where
a previously created zap, applet, or scenario in Zapier, IFTTT, or Integromat, respectively.
This zap/applet/scenario is a trigger-action-based workflow, so that if the trigger happens,
the action is immediately taken. In case a crash decision is received, the workflow fires
automatically to perform some specific tasks such as informing the connected vehicles of



Sensors 2022, 22, 9108 11 of 19

the location of a crash, its severity, and more. However, in case of a no crash decision, the
workflow will not fire and actions are taken.

4. Dataset Setup

Our proposed system is based on a camera cocoon setup using front, left, right, and rear
cameras as shown in the system input in Figure 1 with different input representations
as shown in Figure 2. As the proposed neural network is based on multitask learning,
the cocoon cameras have two types of groundtruths, classification and regression labels.
The classification label for crash detection is used with a binary label where zero:no crash
detected and one:crash detected; however, the regression label for path planning and
automatic emergency braking is used with continuous vehicle actions: throttle, steer,
and brake. Due to lack of benchmarks that serve our proposed idea, we built our own
dataset based on the CARLA simulator [33] covering difficult and various scenarios or
situations that the vehicle may expose.

The CARLA dataset collection phase is composed of three main phases: waypoints
generator, model predictive control (MPC), and scenarios saver. In the first phase, the
CARLA simulator already generates waypoints (green points in Figure 11) based on the
predefined maps (towns). A postprocessing is applied on these waypoints to act as the
traditional baseline for path planning functionality. In the second phase, a model predictive
control (MPC) [50] is used to control throttle, steer, and brake; it depends on a simple
kinematic model to model the ego-vehicle which is a simplification for dynamic models
ignoring tire forces, gravity, and mass since we are already using a simulator. MPC
considers the task of following a trajectory as an optimization problem where the solution is
the path the car should take. The idea is to simulate different actuator inputs (steer, throttle,
and brake) and predict a resulting trajectory by selecting the one with the minimum cost.
The car follows that trajectory and obtains a new input to calculate a new set of trajectories
in order to optimize its path (blue points in Figure 11). The model utilizes a “horizon
controller” which performs a trajectory recalculation for every new state, since the defined
trajectory is just an approximation. The state vector is represented by [x, y, ψ, ν, cte, eψ]
where: (x, y) is the ego-vehicle position, ψ is the ego-vehicle orientation, ν is the ego-vehicle
velocity, cte is cross track error that is the difference between CARLA trajectory waypoints
and current vehicle position in y coordinate, and eψ is the orientation error. For simplicity,
brake and throttle are merged into a single actuation parameter (a), in addition to the
steering actuation parameter (δ). MPC requires actuator constraints. This is why we put
two constraints:

a ∈ [−1, 1] (1)

δ ∈ [−25◦, 25◦] (2)

Figure 11. Carla simulator waypoints.



Sensors 2022, 22, 9108 12 of 19

The trajectory parameters are the number of time steps, N, separated in time by dt.
Values for N and dt are chosen as 10 and 0.05 which causes the controller to predict 10 steps
with a 0.5 section (500 ms) total duration. These values are chosen based on trial and error
in order to achieve improved vehicle motion performance, where various combinations of
N and dt produced erratic behavior due to the heavy processing that is needed. It is not
necessary to use a large number of steps because the algorithm recalculates the trajectory
for every step. Additionally, the large N is more costly to compute and causes the car to go
off its path (especially > 20). The same occurs for dt. Smaller time steps are more costly,
but larger values mean a lot of things happen between each calculation. The larger values
cause the car run off track (especially 0.1). Accordingly, the controller predicts the trajectory
of the vehicle during the preceding 0.5 s in the future. A 0.5 s prediction is sufficient for
town 4, where the training data is collected, and 10 steps gives the balance between a
discrete prediction and a reasonable processing time. The vehicle model state vector can be
calculated from Equations (3)–(5), (7), and (8).

xt+1 = xt + νt ∗ cos(ψt) ∗ dt (3)

yt+1 = yt + νt ∗ sin(ψt) ∗ dt (4)

ψt+1 = ψt +
νt

L f
∗ δt ∗ dt (5)

νt+1 = νt + at ∗ dt (6)

ctet+1 = f (xt)− yt + νt ∗ sin(eψt) ∗ dt (7)

eψt+1 = ψt − ψdest +
νt

L f
∗ δt ∗ dt (8)

where L f is the radius formed by running the vehicle in the simulator around in a circle
with a constant steering angle and velocity on a flat terrain, its value equals (2.9–3.0) in
the CARLA simulator town. f (xt) is the substitution of xt in the polynomial function
of waypoints generated by CARLA. The loss function aims to minimize the difference
between the trajectory created by the CARLA simulator and the vehicle’s current position
(cte). Additionally, the orientation error (eψ) can be seen across N time steps, as shown in
Figure 9.

J =
N

∑
t=1

(ctet − ctere f )
2 + (eψt − eψre f )

2 (9)

Our benchmark dataset is collected using around 500 episodes that contain 125 K
dataframes: 380 dataframes with 95 K samples; 80 K samples for training; and 15 K samples
for validation using town 4 only. However, there are 120 dataframes with 30 K samples for
testing using town 5. Table 2 shows that the training data is split into 35 K crash samples
and 45 K no crash samples. Validation data is also split into 6 K crash samples and 9 K no
crash samples. The testing data is split equally into 15 K crash and no crash samples each.
The CARLA autopilot functionality is used to augment our collected dataset especially
for no crash samples depending on the simple rule-based path planning provided by
CARLA. In the third phase, each dataframe saves front, left, right, and rear camera images
in addition to the vehicle control actions of throttle, brake, and steer. Each episode starts
from a random location from predefined locations set on the map and finishes when the
vehicle reaches the destination. The number of vehicles, its types, and colors are also tuned.
Our data is collected to cover many various and different scenarios including when the
ego-vehicle is moving and other vehicles are static and when the ego-vehicle and other
vehicles are dynamic in order to ensure we had a robust dataset. Training, validation, and
testing data cover many scenarios; some of these scenarios are as follows:

• Front crash when the ego-vehicle moves to right most, left most, and middle lanes;
• Left crash when the ego-vehicle moves the same and to a right lane;
• Right crash when the ego-vehicle moves the same and to a left lane;



Sensors 2022, 22, 9108 13 of 19

• Front vehicle moves with lower speed to check lane overtaking;
• Two static front adjacent vehicles block the ego-vehicle;
• Two dynamic front adjacent vehicles move at the same velocity;
• Two dynamic front adjacent vehicles move at different velocities;
• Left vehicle moves beside the ego-vehicle at the same velocity;
• Ego-vehicle crashes with a front vehicle (achieved by using large number of time steps

N in MPC), etc.

Table 2. Number of Samples.

Training Data Validation Data Testing Data

Crashes 35 K 6 K 15 K

No Crashes 45 K 9 K 15 K

The CARLA simulator provides the ego-vehicle information, (speed, steer, and brake),
that can be saved during the data collection phase. The simulator also provides built-in
sensor fusion algorithms that are able to localize and track other vehicles, so the ego-vehicle
knows all of the relevant environmental information. One of these datapoints is the position
of each vehicle that can be represented as bounding boxes such as center, length, width,
and height data with respect to the global coordinates as shown in Figure 12. Although the
CARLA simulator has collision information, our proposed system also generates crash
labels on a processing phase as shown in the flowchart in Figure 13 and it is composed of
the following steps:

• Filter the objects by keeping only the concerned objects such as vehicles, pedestrians,
etc.

• Loop over all the bounding boxes centers received from the CARLA simulator;
• Calculate the distances between bounding boxes centers;
• Check if the distances are greater than the threshold tunable distance. If yes, no crash

label is applied; however, if no, this means that we have two or more vehicle centers
in close proximity to each other;

• Adapt the bounding boxes information to the plotly [51] python library to check if
there are two intersecting boxes;

• Check if the boxes are intersecting. If yes, apply the crash label. If no, apply the no
crash label.

Figure 12. Carla example with projected bounding boxes.



Sensors 2022, 22, 9108 14 of 19

Figure 13. Crash labels processing flowchart.

For the path planning and AEB, safety aspects are also taken into consideration where
the ego-vehicle will not be able to perform lane overtaking if and only if one of the adjacent
lanes is empty, otherwise the ego-vehicle will perform AEB. Lane overtaking is performed
if the waypoints shrink and the CARLA simulator detects that there is an object in front of
the ego-vehicle. Traffic lights are also respected, especially in the augmented autopilot data.
This means that is is difficult for the neural network to learn the differentiation between
AEB and stops that are respecting traffic lights.

5. Results

Experiments were conducted based on two variants: different input representation and
one/multi head outputs. The first variant used was front camera only, panorama (stitched),
and bird’s eye view (BEV); however, the second variant used was the proposed system with
one output head: crash detection only (classification), control actions only (regression), and
then both output heads together. The main aim behind the second variant of experiments
was to test the multitask effectiveness. The most common measurement metrics (KPIs) that
we depended on for our results for the classification problem are accuracy, precision, recall,
and F1-score, while for the regression problem we used the mean square error (MSE).

Based on the previously mentioned variants, our experimental results are shown in
Table 3. We show the different input representation in rows and different experiments
in columns. For each experiment, the relevant metrics are reported for the testing data



Sensors 2022, 22, 9108 15 of 19

(i.e., precision, recall, F1-score, accuracy for classification, and MSE for regression). We
categorized experimental results by experiments, then within each experiment. Finally, we
compared between the different input representations.

Table 3. Measurement metrics comparison.

Experiments

Crash Avoidance
Only

Path Planning
and AEB

Only

Crash Avoidance,
Path Planning and

AEB

Input
Representations

Precision Recall F1-Score Accuracy MSE throttle MSE Steer MSE brake Precision Recall F1-Score Accuracy MSE throttle MSE Steer MSE brake
Front Camera 0.5513 0.4804 0.5134 0.71 0.2214 0.2552 0.3285 0.6589 0.6 0.628 0.79 0.1933 0.1902 0.2655

Panorama 0.6218 0.604 0.6127 0.78 0.2176 0.2333 0.2805 0.7785 0.7915 0.7849 0.86 0.1552 0.1414 0.1966
Bird Eye View (BEV) 0.7106 0.6715 0.6904 0.82 0.1988 0.2279 0.2794 0.8947 0.8858 0.8902 0.92 0.1135 0.1081 0.1433

5.1. Crash Avoidance Only Results

The crash avoidance only experiment is considered a single-head classification output
network (not multitask) where the experiment is conducted three times: one using only the
front camera, one using only the panorama view, and the last one using only the BEV.
Due to the classification problem, the measurement metrics are precision, recall, f1-score,
and accuracy. It is obvious that BEV results are better than the panorama camera and
front camera results in precision by 8.88% and 15.93%, respectively; in recall by 6.75% and
19.11%, respectively; in f1-score by 7.77% and 17.7%, respectively; and in accuracy by 4%
and 11%, respectively.

5.2. Path Planning and AEB Only Results

The path planning and AEB only experiment is considered to be another single-head
experiment but with a regression output network (not multitask) where the experiment is
also conducted three times: one using only the front camera, one using only the panorama
view, and the last one using only BEV. Due to the regression problem, the measurement
metric is MSE for the control actions (throttle, steer, and brake). It is obvious that the BEV
results are better than the panorama camera and front camera results in throttle MSE by
8.64% and 10.2%, respectively; in steer MSE by 2.314% and 10.7%, respectively; in brake
MSE by 0.3932% and 14.946%, respectively.

5.3. Crash Avoidance, Path Planning, and AEB Results

Crash avoidance, path planning, and AEB experiments are considered to be a multi-
head classification–regression output networks (multitask) where the experiment is con-
ducted three times: one using only the front camera, one using only the panorama view,
and the last one using only using the BEV. Due to the multitask problem, the measure-
ment metrics are the already previously mentioned ones of precision, recall, f1-score, and
accuracy, in addition to the control actions MSE. It is obvious that the BEV results are
better than panorama camera and front camera results in precision by 11.62% and 23.58%,
respectively; in recall by 9.43% and 28.58%, respectively; in f1-score by 10.53% and 26.22%,
respectively; in accuracy by 6% and 13%, respectively; in throttle MSE by 26.86% and
41.28%, respectively; in steer MSE by 23.55% and 43.16%, respectively; and in brake MSE
by 27.11% and 46.026% respectively.

As a discussion for the crash avoidance functionality, the experiments using only
the front camera succeeded in detecting crashes that occurred in the FOV of the camera in
front of the ego-vehicle only; however, it failed in detecting crashes beside or behind the
ego-vehicle. This is because the ego-vehicle was not visually seeing these crashes, so the
measurement metrics for front camera experiments are not so good, which was already
expected. However, the panorama and BEV experimental setups depended on a cocoon
camera covering 360◦ around the ego vehicle, so both of them had better measurement
metrics, but why did the BEV experiments outperform the panorama experiments? BEV
depends on warping images where distance features are extracted easily by the neural



Sensors 2022, 22, 9108 16 of 19

network detecting if the vehicles collide with each other or not; however, the panorama
input representation depends on stitching images, taken directly from the cameras, together
as mentioned previously, so the neural networks may not be able to estimate the distances
between vehicles (collision detection).

As a discussion for path planning and AEB functionalities, the experiments using
only the front camera succeeded in performing AEB very well because it depended only
on the front scene; however, regarding path planning, the experiment with only the front
camera failed in scenarios with other vehicles beside the ego-vehicle. This is because there
is a lack of information about the sides and rear of the vehicle, so the front camera only
method is not safe for path planning. However, panorama and BEV experiments fill the
gap in the information by using a camera cocoon setup, so both of them provided better
measurement metrics compared with using only the front camera. Again, we must ask why
the BEV experiments outperformed the panorama experiments? The panorama input
representation depended on stitching images taken directly from the cameras together, as
mentioned previously, so the neural network is not always able to differentiate between
front, left, right, and rear cameras while performing path planning. On the other hand,
BEV depends on warping images where the front camera image is located in the upper
part of the warped/projected image, the left camera image is located in the left part of
the warped/projected image, the right camera image is located in the right part of the
warped/projected image, and the rear camera image is located in the lower part of the
warped/projected image. The warping or projection helps the neural network to extract
the surrounding features effectively and then conduct the path planning.

Conceptually, multitask networks perform very well and also perform better than
single-purpose networks because both tasks help each other to achieve improved perfor-
mance. Figure 14 shows the bar charts for precision, recall, f1-score, and accuracy for all the
experiments we conducted; multitask with the BEV input bar is the best higher one in the
whole metric. Figure 15 shows the bar charts for the MSE of throttle, brake, and steer for the
all the conducted experiments; multitask with BEV input bar is also the best lower one in
the whole metric. Overall, the multitask experiments are better than other experiments. The
front camera experiments proved that when we neglect some environmental information
(left, right, and rear images), the results are not good when compared with panorama
and BEV input representations. The panorama results are good; however, BEV is the best
thanks to the warping/projection that gives additional information to the neural network,
especially for crash avoidance and path planning.

Figure 14. Precision, recall, f1-score, and accuracy for crash avoidance only vs. multitask.



Sensors 2022, 22, 9108 17 of 19

Figure 15. MSE throttle, steer, and brake for path planning for AEB only vs. multitask.

6. Conclusions

The dream of a self-driving car can be achieved through the collaboration between
sensor fusion, deep learnin, and IoT. Crash avoidance, path planning, and automatic emer-
gency braking are essential to achieve an autonomous driving system. As a result, we
proposed SDC-Net: an end-to-end multitask system based on camera cocoon and IoT.
Our system is able to automatically control vehicles to accelerate, maneuver, and brake in
addition to detecting crashes and sharing the crash information with all connected vehicles.
Our benchmark dataset based on the CARLA simulator was built to cover difficult and var-
ied scenarios because of the lack of benchmarks serving our system. Extensive experiments
were conducted using different input representations, and the experiments proved that the
multitask neural network with a BEV input outperformed the other methods.

Author Contributions: Conceptualization, M.A.; methodology, M.A.; software, M.A.; validation, M.A.;
investigation, M.A.; data curation, M.A.; writing—original draft preparation, M.A.; writing—review and
editing, M.A. and H.A.K.; visualization, M.A.; supervision, H.A.K.; All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, H.; Liu, B.; Qiao, J. Advanced High-Speed Lane Keeping System of Autonomous Vehicle with Sideslip Angle Estimation.

Machines 2022, 10, 257. [CrossRef]
2. Yu, J.; Liu, G.; Xu, J.; Zhao, Z.; Chen, Z.; Yang, M.; Wang, X.; Bai, Y. A Hybrid Multi-Target Path Planning Algorithm for

Unmanned Cruise Ship in an Unknown Obstacle Environment. Sensors 2022, 22, 2429. [CrossRef] [PubMed]
3. Kamal, M.A.S.; Hashikura, K.; Hayakawa, T.; Yamada, K.; Imura, J.I. Adaptive Cruise Control with Look-Ahead Anticipation for

Driving on Freeways. Appl. Sci. 2022, 12, 929. [CrossRef]
4. Guo, J.; Wang, Y.; Yin, X.; Liu, P.; Hou, Z.; Zhao, D. Study on the Control Algorithm of Automatic Emergency Braking System

(AEBS) for Commercial Vehicle Based on Identification of Driving Condition. Machines 2022, 10, 895. [CrossRef]
5. Ahmed, H.U.; Huang, Y.; Lu, P.; Bridgelall, R. Technology Developments and Impacts of Connected and Autonomous Vehicles:

An Overview. Smart Cities 2022, 5, 382–404. [CrossRef]
6. Xiao, Y. Application of Machine Learning in Ethical Design of Autonomous Driving Crash Algorithms. Comput. Intell. Neurosci.

2022, 2022, 2938011 . [CrossRef] [PubMed]

http://doi.org/10.3390/machines10040257
http://dx.doi.org/10.3390/s22072429
http://www.ncbi.nlm.nih.gov/pubmed/35408049
http://dx.doi.org/10.3390/app12020929
http://dx.doi.org/10.3390/machines10100895
http://dx.doi.org/10.3390/smartcities5010022
http://dx.doi.org/10.1155/2022/2938011
http://www.ncbi.nlm.nih.gov/pubmed/36248938


Sensors 2022, 22, 9108 18 of 19

7. Xu, X.; Zhang, L.; Yang, J.; Cao, C.; Wang, W.; Ran, Y.; Tan, Z.; Luo, M. A Review of Multi-Sensor Fusion SLAM Systems Based on
3D LIDAR. Remote Sens. 2022, 14, 2835. [CrossRef]

8. Diaz-Ruiz, C.A.; Xia, Y.; You, Y.; Nino, J.; Chen, J.; Monica, J.; Chen, X.; Luo, K.; Wang, Y.; Emond, M.; et al. Ithaca365: Dataset
and Driving Perception Under Repeated and Challenging Weather Conditions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 21383–21392.

9. Hakak, S.; Gadekallu, T.R.; Ramu, S.P.; Maddikunta, P.K.R.; de Alwis, C.; Liyanage, M. Autonomous Vehicles in 5G and beyond:
A Survey. arXiv 2022, arXiv:2207.10510.

10. Wang, T.H.; Manivasagam, S.; Liang, M.; Yang, B.; Zeng, W.; Urtasun, R. V2vnet: Vehicle-to-vehicle communication for joint
perception and prediction. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 605–621.

11. Aoki, S.; Higuchi, T.; Altintas, O. Cooperative perception with deep reinforcement learning for connected vehicles. In Proceedings
of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020; pp. 328–334.

12. Chen, Q.; Tang, S.; Yang, Q.; Fu, S. Cooper: Cooperative perception for connected autonomous vehicles based on 3d point clouds.
In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA,
7–10 July 2019; pp. 514–524.

13. Ogbodo, E.U.; Abu-Mahfouz, A.M.; Kurien, A.M. A Survey on 5G and LPWAN-IoT for Improved Smart Cities and Remote Area
Applications: From the Aspect of Architecture and Security. Sensors 2022, 22, 6313. [CrossRef]

14. Riegler, A.; Riener, A.; Holzmann, C. Augmented reality for future mobility: Insights from a literature review and hci workshop.
i-com 2021, 20, 295–318. [CrossRef]

15. Decker, J.A.; Haus, S.H.; Sherony, R.; Gabler, H.C. Potential benefits of animal-detecting automatic emergency braking systems
based on US driving data. Transp. Res. Rec. 2021, 2675, 678–688. [CrossRef]

16. Sallab, A.E.; Abdou, M.; Perot, E.; Yogamani, S. End-to-end deep reinforcement learning for lane keeping assist. arXiv 2016,
arXiv:1612.04340.

17. Yang, Z.; Wang, Z.; Yan, M. An optimization design of adaptive cruise control system based on MPC and ADRC. Actuators 2021,
10, 110. [CrossRef]

18. Abdou, M.; Mohammed, R.; Hosny, Z.; Essam, M.; Zaki, M.; Hassan, M.; Eid, M.; Mostafa, H. End-to-end crash avoidance deep
IoT-based solution. In Proceedings of the 2019 31st International Conference on Microelectronics (ICM), Cairo, Egypt, 15–18
December 2019; pp. 103–107.

19. Yue, L.; Abdel-Aty, M.; Wu, Y.; Ugan, J.; Yuan, C. Effects of forward collision warning technology in different pre-crash scenarios.
Transp. Res. Part F Traffic Psychol. Behav. 2021, 76, 336–352. [CrossRef]

20. Sang, H.; You, Y.; Sun, X.; Zhou, Y.; Liu, F. The hybrid path planning algorithm based on improved A* and artificial potential field
for unmanned surface vehicle formations. Ocean Eng. 2021, 223, 108709. [CrossRef]

21. Shin, D. A cross-national study on the perception of algorithm news in the East and the West. J. Glob. Inf. Manag. 2021, 29, 77–101.
[CrossRef]

22. Lin, L.; Li, W.; Bi, H.; Qin, L. Vehicle Trajectory Prediction Using LSTMs with Spatial–Temporal Attention Mechanisms. IEEE
Intell. Transp. Syst. Mag. 2021, 14, 197–208. [CrossRef]

23. Wang, C.; Chen, X.; Wang, J.; Wang, H. ATPFL: Automatic Trajectory Prediction Model Design Under Federated Learning
Framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
19–24 June 2022; pp. 6563–6572.

24. Quintanar, A.; Fernández-Llorca, D.; Parra, I.; Izquierdo, R.; Sotelo, M. Predicting vehicles trajectories in urban scenarios with
transformer networks and augmented information. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya,
Japan, 11–17 July 2021; pp. 1051–1056.

25. Abdou, M.; Kamal, H.; El-Tantawy, S.; Abdelkhalek, A.; Adel, O.; Hamdy, K.; Abaas, M. End-to-end deep conditional imitation
learning for autonomous driving. In Proceedings of the 2019 31st International Conference on Microelectronics (ICM), Cairo,
Egypt, 15–18 December 2019; pp. 346–350.

26. Guo, K.; Liu, W.; Pan, J. End-to-End Trajectory Distribution Prediction Based on Occupancy Grid Maps. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 2242–2251.

27. Li, Y.J.; Park, J.; O’Toole, M.; Kitani, K. Modality-Agnostic Learning for Radar-Lidar Fusion in Vehicle Detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 918–927.

28. Wang, Z.; Wu, Y.; Niu, Q. Multi-sensor fusion in automated driving: A survey. IEEE Access 2019, 8, 2847–2868. [CrossRef]
29. Yeong, D.J.; Velasco-Hernandez, G.; Barry, J.; Walsh, J. Sensor and sensor fusion technology in autonomous vehicles: A review.

Sensors 2021, 21, 2140. [CrossRef]
30. Yu, H.; Luo, Y.; Shu, M.; Huo, Y.; Yang, Z.; Shi, Y.; Guo, Z.; Li, H.; Hu, X.; Yuan, J.; et al. DAIR-V2X: A Large-Scale Dataset for

Vehicle-Infrastructure Cooperative 3D Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 21361–21370.

31. Xu, R.; Tu, Z.; Xiang, H.; Shao, W.; Zhou, B.; Ma, J. CoBEVT: Cooperative bird’s eye view semantic segmentation with sparse
transformers. arXiv 2022, arXiv:2207.02202.

http://dx.doi.org/10.3390/rs14122835
http://dx.doi.org/10.3390/s22166313
http://dx.doi.org/10.1515/icom-2021-0029
http://dx.doi.org/10.1177/03611981211012416
http://dx.doi.org/10.3390/act10060110
http://dx.doi.org/10.1016/j.trf.2020.12.004
http://dx.doi.org/10.1016/j.oceaneng.2021.108709
http://dx.doi.org/10.4018/JGIM.2021030105
http://dx.doi.org/10.1109/MITS.2021.3049404
http://dx.doi.org/10.1109/ACCESS.2019.2962554
http://dx.doi.org/10.3390/s21062140


Sensors 2022, 22, 9108 19 of 19

32. Xu, R.; Xiang, H.; Xia, X.; Han, X.; Li, J.; Ma, J. Opv2v: An open benchmark dataset and fusion pipeline for perception with
vehicle-to-vehicle communication. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA),
Philadelphia, PA, USA, 23–27 May 2022; pp. 2583–2589.

33. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In Proceedings of the
Conference on Robot Learning, PMLR Mountain View, California, USA 13–15 November 2017; pp. 1–16.

34. Xu, R.; Guo, Y.; Han, X.; Xia, X.; Xiang, H.; Ma, J. OpenCDA: An open cooperative driving automation framework integrated with
co-simulation. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis,
IN, USA, 19–22 September 2021; pp. 1155–1162.

35. Li, Y.; Ren, S.; Wu, P.; Chen, S.; Feng, C.; Zhang, W. Learning distilled collaboration graph for multi-agent perception. Adv. Neural
Inf. Process. Syst. 2021, 34, 29541–29552.

36. Chen, D.; Mei, J.P.; Zhang, H.; Wang, C.; Feng, Y.; Chen, C. Knowledge Distillation with the Reused Teacher Classifier. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022;
pp. 11933–11942.

37. Li, Y.; Ma, D.; An, Z.; Wang, Z.; Zhong, Y.; Chen, S.; Feng, C. V2X-Sim: Multi-agent collaborative perception dataset and
benchmark for autonomous driving. IEEE Robot. Autom. Lett. 2022, 7, 10914–10921. [CrossRef]

38. Cui, J.; Qiu, H.; Chen, D.; Stone, P.; Zhu, Y. COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
19–24 June 2022; pp. 17252–17262.

39. Abdou, M.; Ezz, A.M.; Farag, I. Digital automation platforms comparative study. In Proceedings of the 2021 4th International
Conference on Information and Computer Technologies (ICICT), Hawaii, GA, USA, 11-14 March 2021; pp. 279–286.

40. Zapier. The Easiest Way to Automate Your Work. Available online: https://zapier.com/ (accessed on 10 November 2022).
41. IFTTT. Helps Every Thing Work Better Together. Available online: https://ifttt.com/ (accessed on 10 November 2022).
42. Integromat. The Glue of the Internet. Available online: https://www.make.com/en (accessed on 10 November 2022).
43. Microsoft Power Automate Microsoft Power Automate. Available online: https://powerautomate.microsoft.com/en-us/

(accessed on 10 November 2022).
44. Parabola. Automate your Manual, Repetitive Data Tasks. Available online: https://parabola.io/ (accessed on 10 November

2022).
45. Ezz, A.M.; Nabil, A.; Ali, W.; Abdou, M.; Azer, M.; Farag, I.; Agamawi, M. Digital Gate: Automotive Gateway to Automation

Platforms. In Proceedings of the 2021 4th International Conference on Information and Computer Technologies (ICICT), Hawaii,
GA, USA, 11–14 March 2021; pp. 174–180. [CrossRef]

46. Rahmati, A.; Fernandes, E.; Jung, J.; Prakash, A. IFTTT vs. Zapier: A comparative study of trigger-action programming
frameworks. arXiv 2017, arXiv:1709.02788.

47. Shamon, O.; Carlberg, L. iipax one as a Service in Cloud Integration Platforms: A Comparison of Zapier, IFTTT and Power Automate;
Linköping University: Linköping, Sweden, 2020. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165631
(accessed on 10 November 2022).

48. Naumann, M.; Poggenhans, F.; Lauer, M.; Stiller, C. Coincar-sim: An open-source simulation framework for cooperatively
interacting automobiles. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018;
pp. 1–6.

49. ElHakim, R.; Elqadi, A.; Torky, M.; Zayed, M.; Farag, I.; Agamawi, M. Let’s DO-Automotive Platform for Interoperability. In
Proceedings of the 2021 4th International Conference on Information and Computer Technologies (ICICT), Hawaii, GA, USA,
11–14 March 2021; pp. 294–299.

50. Afram, A.; Janabi-Sharifi, F. Theory and applications of HVAC control systems—A review of model predictive control (MPC).
Build. Environ. 2014, 72, 343–355. [CrossRef]

51. Plotly Technologies Inc. Collaborative Data Science; Plotly Technologies Inc.: Montreal, QB, Canada, 2015. Avaialble online:
https://plotly.com/python/ (accessed on 10 November 2022).

http://dx.doi.org/10.1109/LRA.2022.3192802
https://zapier.com/
https://ifttt.com/
https://www.make.com/en
https://powerautomate.microsoft.com/en-us/
https://parabola.io/
http://dx.doi.org/10.1109/ICICT52872.2021.00036
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165631
http://dx.doi.org/10.1016/j.buildenv.2013.11.016
https://plotly.com/python/

	Introduction
	Literature Review
	System Methodology
	Input Representations
	Panorama—Normal Stitching
	Panorama—Equirectangular Stitching
	Bird's Eye View (BEV)

	Multitask Neural Network
	IoT Automation Platform

	Dataset Setup
	Results
	Crash Avoidance Only Results
	Path Planning and AEB Only Results
	Crash Avoidance, Path Planning, and AEB Results

	Conclusions
	References

