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Abstract: Water molecules play a very important role in the hydration and dehydration process of
hydrates, which may lead to distinct physical and chemical properties, affecting their availability
in practical applications. However, miniaturized, integrated sensors capable of the rapid, sensitive
sensing of water molecules in the hydrate are still lacking, limiting their proliferation. Here, we realize
the high-sensitivity sensing of water molecules in copper sulfate pentahydrate (CuSO4·5H2O), based
on an on-chip terahertz whispering gallery mode resonator (THz-WGMR) fabricated on silicon material
via CMOS-compatible technologies. An integrated THz-WGMR with a high-Q factor of 3305 and a
resonance frequency of 410.497 GHz was proposed and fabricated. Then, the sensor was employed
to distinguish the CuSO4·xH2O (x = 5, 3, 1). The static characterization from the CuSO4·5H2O to
the copper sulfate trihydrate (CuSO4·3H2O) experienced blueshifts of 0.55 GHz/µmol, whereas the
dehydration process of CuSO4·3H2O to copper sulfate monohydrate (CuSO4·H2O) exhibited blueshifts
of 0.21 GHz/µmol. Finally, the dynamic dehydration processes of CuSO4·5H2O to CuSO4·3H2O
at different temperatures were monitored. We believe that our proposed THz-WGMR sensors with
highly sensitive substance identification capabilities can provide a versatile and integrated platform
for studying the transformation between substances, contributing to hydrated/crystal water-assisted
biochemical applications.

Keywords: terahertz (THz); whispering gallery mode (WGM); crystalline hydrate; dehydration; sensing

1. Introduction

Water molecules exist in many substances, such as copper sulfate pentahydrate
(CuSO4·5H2O) [1,2], α-lactose monohydrate (C12H22O11·H2O) [3], and sodium thiosulphate
pentahydrate (Na2S2O3·5H2O) [4–6]. Hydrate formation or dehydration of specific hydrates
may produce a great impact on material properties, such as elastic properties [7–9], thermal
structures [10–12], rheological properties [10,13–15], electrical properties [16], and activa-
tion energies [17]. The changes in the hydration state of crystalline compounds are usually
unavoidable throughout the manufacturing process; hence, highly sensitive sensors for
hydrates and hydration/dehydration monitoring are urgently required. At present, single-
crystal X-ray diffraction (SCXRD) [18], powder XRD [19], infrared spectroscopy (IR) [20,21],
Raman spectroscopy [22,23], nuclear magnetic resonance (NMR) spectroscopy [24], thermo-
gravimetric analysis (TGA) [25–28], and corresponding auxiliary technology are commonly
used to determine the content of crystal water. Compared with power XRD, SCXRD has
the advantage of unambiguous peak indexing; however, it requires a single crystal of an
adequate quality and size. IR and Raman spectroscopy fulfill the investigation of the vibra-
tional mode, but the resolution is the limitation. NMR spectroscopy has the disadvantage
of substantial cost. TGA requires a relatively large amount of samples (~mg) and a long
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time (~10 min) to perform. Therefore, a sensor with high accuracy and miniaturization is
needed for crystal water sensing.

Terahertz (THz) sensing has received more and more attention in recent years. Most
studies use terahertz time-domain spectroscopy (TDS) [29–32]. These kinds of methods
have disadvantages such as demanding the preparation of sample tablets and relatively
low-detection sensitivity. Terahertz resonators can be used for sensing and have the ad-
vantages of high accuracy and integration. Similar methods mainly focus on the terahertz
whispering gallery mode resonators (THz-WGMRs) [33–37], metasurfaces [38–41], and
photonic crystals [42–44]. THz-WGMRs possess high sensitivity because of high Q factors.
The higher the Q implies the narrower the resonance dip in the transmission spectrum.
High-Q microresonators can confine radiation with exquisitely low losses. Such low losses
give rise to ultra-narrow resonance features that imply very fine frequency selectivity.
Moreover, even a slight change in the surrounding medium will perturb the resonances to
a measurable extent, allowing for environmental sensitivity [45] Therefore, THz-WGMRs
have been employed in relevant research works in the fields of water vapor concentration
measurement [45], particle distance sensing [46], and so on. However, THz-WGMRs have
not been reported on crystal water sensing.

In this work, we designed an experiment to study the influence of CuSO4·xH2O (x = 5,
3, 1) on the THz spectrum of the THz-WGMR. Water molecules in CuSO4·5H2O combine
in different chemical combinations. Investigating their dehydration process provides an
auxiliary means to comprehend the chemical structure [17]. In addition, CuSO4·5H2O is
rich in crystal water, and the temperature required for material transformation is easy
to approach (less than 100 ◦C) [21,30]. Furthermore, the melting point is higher than the
dehydration temperature, and consequently, the distribution of the substances maintains
stability. The effect of crystal water on the refractive index and absorption coefficient of
the material was analyzed. The proposed THz-WGMRs could distinguish CuSO4·xH2O
(x = 5, 3, 1) with enhanced sensitivity and efficiency. The detection sensitivities of the
THz-WGMR for CuSO4·5H2O, copper sulfate trihydrate (CuSO4·3H2O), and copper sulfate
monohydrate (CuSO4·H2O) were 1.32, 0.77, and 0.56 GHz/µmol, respectively. Finally, we
used this sensor to monitor the dehydration process at different temperatures.

2. Design of Devices and Experiments

The THz-WGMR, shown in Figure 1a, consists of a straight coupling waveguide and
ring resonator, and the WGMs are excited through the terahertz waves in the straight
waveguide. First, the THz wave is coupled into the straight waveguide. Then, the THz wave
is coupled into the ring resonator where it is transmitted to the coupling region between the
ring resonator and straight waveguide. Finally, the THz waves pass through the sample and
export at the other end of the straight waveguide. The central resonant frequency f of the
ring resonator can be expressed as

f = mc/Le f f (1)

in which Leff represents the roundtrip length of the microring, m is an integer, and c represents
the speed of light in vacuum. The intensity transmissivity Tt and the phase φ transmissivity
of the microring resonator can be expressed as [47]

Tt =
r2 + a2 − 2ra cos ϕ

1 + r2a2 − 2ra cos ϕ
(2)

φ = ϕ + π + tan−1 r sin ϕ

a − r cos ϕ
+ tan−1 ar sin ϕ

1 − ar cos ϕ
, (3)

respectively, where r represents the self-coupling coefficient, a is the single-pass amplitude
transmission coefficient of the ring resonator, and ϕ represents the single-pass phase shift
of the ring. When the self-coupling coefficient r is equal to the single-pass amplitude
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transmission coefficient a, the THz-WGMR works in the critical coupling state, indicating
the sensor exhibits the highest sensitivity to the surrounding environment.
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supersaturated CuSO4 solution of 0.5 μL covers the ring resonator. The optical microscopic image 
on the right shows the coupling region of the THz-WGMR. (b) The illustration of the experimental 
setup. The heating plate under the chip is used to adjust and maintain the temperature. The end 
faces of the straight waveguide are aligned with the emitter and receiver, and the transmission spec-
trum is shown on the screen of the vector network analyzer (VNA). 

The measurements were performed using a vector network analyzer (VNA) (Ceyear 
3649B) with a frequency range of 0.325~0.5 THz, as shown in Figure 1b. The inner hole 
size of the metal waveguide was 508 × 254 μm2 (WR-2.2). A linearly polarized THz radia-
tion was generated from the emitter and received by the receiver. The VNA obtained the 
intensity transmission spectrum and phase spectrum of the THz-WGMR in the target fre-
quency band using frequency scanning. 
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[46], as shown in the inset of Figure 1a. The radius r of the ring resonator was 5.05 mm, 
and the width w of the straight waveguide was 304.02 μm. The width w of the ring wave-
guide was 298.83 μm. The total thickness of the chip was 120 μm, and the thickness of 
ridge H1 was 63.13 μm. The gap g between the straight waveguide and the microring was 
36.33 μm. The proposed THz-WGMR suppresses high-order modes, guaranteeing the pu-
rity of the spectrum. 
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the substance as the sensing theory, for which different substances usually have different 
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Figure 1. The schematic diagram of the terahertz whispering gallery mode resonator (THz-WGMR)
together with its sensing principle and the diagram of the experimental setup. (a) The schematic
diagram of the THz-WGMR. The inset in the lower left shows the cross-section of the ridge waveguide.
The spectra in the upper right illustrate the principle of sense. The photographs in the lower right
show the real chip which consists of a straight coupling waveguide and a ring resonator. The
supersaturated CuSO4 solution of 0.5 µL covers the ring resonator. The optical microscopic image on
the right shows the coupling region of the THz-WGMR. (b) The illustration of the experimental setup.
The heating plate under the chip is used to adjust and maintain the temperature. The end faces of
the straight waveguide are aligned with the emitter and receiver, and the transmission spectrum is
shown on the screen of the vector network analyzer (VNA).

The measurements were performed using a vector network analyzer (VNA) (Ceyear
3649B) with a frequency range of 0.325~0.5 THz, as shown in Figure 1b. The inner hole size
of the metal waveguide was 508 × 254 µm2 (WR-2.2). A linearly polarized THz radiation
was generated from the emitter and received by the receiver. The VNA obtained the intensity
transmission spectrum and phase spectrum of the THz-WGMR in the target frequency band
using frequency scanning.

In this work, a high-Q THz-WGMR based on high-resistance float-zone silicon (HRFZ-Si)
using traditional CMOS-compatible technologies was proposed and fabricated [46], as shown
in the inset of Figure 1a. The radius r of the ring resonator was 5.05 mm, and the width w of
the straight waveguide was 304.02 µm. The width w of the ring waveguide was 298.83 µm.
The total thickness of the chip was 120 µm, and the thickness of ridge H1 was 63.13 µm.
The gap g between the straight waveguide and the microring was 36.33 µm. The proposed
THz-WGMR suppresses high-order modes, guaranteeing the purity of the spectrum.

We used the THz-WGMR to measure the change in the complex refractive index of
the substance as the sensing theory, for which different substances usually have different
complex refractive indices which make different effects on the resonance dip of the resonator.
In detail, the substance overlapping with the evanescent field will change the mode extinc-
tion coefficient and mode refractive index corresponding to the change in the single-pass
amplitude transmission coefficient a and the roundtrip length Leff, which leads to the change
in the transmissivity Tt and resonance frequency f of the THz-WGMR, respectively.

In this experiment, the type (CuSO4·5H2O, CuSO4·3H2O, and CuSO4·H2O) of hydrate
and the amount of CuSO4·xH2O (x = 5, 3, 1) covering the THz-WGMR were independent
variables. The transmission spectrum of the THz-WGMR was measured to demonstrate
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the relationship between the complex refractive indices and the crystal water content. In
addition, the dynamic dehydration and transformation from CuSO4·5H2O to CuSO4·3H2O
at different temperatures was observed. To quantify the sample, the supersaturation CuSO4
solution with a concentration of 2 mol/L was first prepared. Then, the solution was trans-
ferred using a pipette (0.1~2.5 µL) quantitatively every time and then cooled to crystallize to
obtain CuSO4·5H2O.

3. Results and Discussion
3.1. Water Content Identification of CuSO4·xH2O (x = 5, 3, 1)

To verify the feasibility of the THz-WGMR for crystal water sensing, the device was
utilized to distinguish CuSO4·xH2O (x = 5, 3, 1) using complex refractive indices measure-
ment. We observed the extinction ratio (ER) and the frequency shift of the resonance dip,
which corresponded to the absorption coefficient and refractive index of the CuSO4·xH2O
(x = 5, 3, 1), respectively. The transmission spectra of the THz-WGMR with CuSO4·xH2O
(x = 5, 3, 1) on the ring resonator were measured.

To determine the change in the hydration state of the crystalline compounds, the
experimental procedure was specially designed. The specific operations are shown in
Supplementary Note S1. Briefly, we first prepared 2 mol/L of supersaturated CuSO4 solution
at 80 ◦C, then quantitatively transferred the liquid to the surface of the ring resonator with
a pipette, and finally, crystallized the solution at 25 ◦C to precipitate the CuSO4·5H2O
crystal based on a temperature control plate under the chip. Here, one drop of 0.5 µL of the
supersaturated CuSO4 solution was placed above the ring resonator, as shown in Figure 1a.
After cooling and crystallizing, one dot of 1 µmol of CuSO4·5H2O was successfully obtained
above the ring resonator. The above transfer method keeps the amount and distribution of
CuSO4·5H2O stable as far as possible in repeat experiments. Then, the method of heating
dehydration was used to realize the transformation from CuSO4·5H2O to CuSO4·3H2O and
finally, to CuSO4·H2O, as detailed in Supplementary Note S2. In general, CuSO4·5H2O will
gradually transform into CuSO4·3H2O when the heating temperature is higher than 50 ◦C,
and it will gradually transform into CuSO4·H2O when the heating temperature is higher than
90 ◦C [21,30]. After measuring the spectrum of the THz-WGMR with the CuSO4·5H2O, the
heating temperature was adjusted to 60 ◦C to fulfill the transformation from CuSO4·5H2O
to CuSO4·3H2O, then the spectrum of the THz-WGMR with the CuSO4·3H2O was recorded.
Similarly, the heating temperature was adjusted to 100 ◦C to fulfill the transformation from
CuSO4·3H2O to CuSO4·H2O, and the spectrum of the THz-WGMR with the CuSO4·H2O
was finally acquired. This method possesses a high accuracy in the experimental results
by avoiding the complex operations of the addition and removal of substances during the
measurement. The ambient temperatures will change the ER and resonant frequency of the
resonator which affects the experimental results. Therefore, to keep the results reasonable,
all the transmission spectra were recorded at a temperature of 25 ◦C. The time for the
hydration of the CuSO4·H2O and CuSO4·3H2O by moisture adsorption at 25 ◦C beyond one
hour was far larger than the operational time, which was approximately 5 min to adjust the
temperature and the time to acquire and store the data (10 s), as illustrated in Supplementary
Note S3. The transformation from CuSO4·H2O to CuSO4·3H2O and from CuSO4·3H2O to
CuSO4·5H2O during the operational process was less than one percent.

The intensity transmission spectra of the THz-WGMR covered by one dot of 1 µmol
of CuSO4·xH2O (x = 5, 3, 1) are illustrated in Figure 2a. The insets illustrate the measured
intensity spectrum and the phase profile together with the fit lines, which demonstrate that
the THz-WGMR works in the critical coupling state with the Q value of 3305 at the resonant
frequency of 410.497 GHz. From the results, the substances increase the transmission loss
of the THz-WGMR which pushes the coupling state away from the critical coupling state,
therefore, leading to the decrease in the ER. In addition, the more the crystal water content
implies the smaller the ER of the resonance dip. Roughly, the water content possesses
a negative correlation with the ER, implying a positive correlation with the absorption
coefficient of the substances. Focusing on the frequency shift, as the effective roundtrip
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length of the THz-WGMR increases with the effect of the substances, the resonant frequency
of the THz-WGMR decreases. The more the crystal water content implies the greater the
frequency shifts of the resonance dip. Roughly, the water content possesses a positive
correlation with the frequency shift, implying a positive correlation with the refractive index.
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(a) The intensity spectra of the THz-WGMR covered with one dot of 1 µmol CuSO4·xH2O (x = 5, 3, 1).
The insets are the intensity spectrum and phase profile of the THz-WGMR. The black circles and red
lines in insets represent the experimental and analytical results, respectively. The intensity spectrum
of the THz-WGMR illustrates the resonance frequency of 410.497 GHz and the quality (Q) value
of 3305. The phase profile demonstrates a π shift, indicating the THz-WGMR works in the critical
coupling state. (b) The extinction ratios (ERs) and frequency shifts of the resonance dip caused by
one dot of 1 µmol (0.5 µL) CuSO4·xH2O (x = 5, 3, 1).

Further, from the transmission spectra in Figure 2a, the ER will change greatly when
the transmission loss of the THz-WGMR changes, especially for the THz-WGMR which is
close to the critical coupling state. Hence, these sensors possess advantages in tiny substance
detection. The ERs and frequency shifts were extracted from Figure 2a, and the experiments
were repeated three times. Figure 2b illustrates the mean values and standard deviations of
the ERs and frequency shifts caused by one dot of 1 µmol of CuSO4·xH2O (x = 5, 3, 1). As
shown in Figure 2b, the higher water contents imply lower ERs and higher frequency shifts.
Focusing on the standard deviation of the ER, the result from the CuSO4·H2O possesses
the largest value, which is 2.8 dB, per the above argument; as shown in Figure 2a, the
blue curve (CuSO4·H2O) is closer to the critical coupling state and, therefore, possesses
the most intense change in the ER from the deviation of the amount and distribution of
the substances. However, focusing on the standard deviations of the frequency shifts, the
result from the CuSO4·5H2O possesses the largest value, which is 0.16 GHz, resulting
from the largest refractive index, for which the deviation of the amount and distribution
of the CuSO4·5H2O on the ring resonator will bring remarkable deviations. Nevertheless,
these sensors distinguish CuSO4·xH2O (x = 5, 3, 1) clearly both in the ERs and frequency
shifts corresponding with the substance absorption coefficients and refractive indexes. It
is noteworthy that these sensors exhibit application potential in trace amount crystalline
hydrate sensing.

3.2. Sensitivity Characterization

To demonstrate the sensitivity of the THz-WGMR for CuSO4·xH2O (x = 5, 3, 1),
different amounts of CuSO4·xH2O (x = 5, 3, 1) were used to perform the sensing and
characterization of the sensitivity.
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In this experiment, six drops of supersaturated CuSO4 solution with a concentration of
2 mol/L and a volume of 0.1 µL per drop were first transferred onto the surface of the ring
resonator discretely using a pipette and then cooled to crystallize at 25 ◦C to obtain six dots
of 0.2 µmol per dot of CuSO4·5H2O, as shown in Supplementary Note, Figure S1b. After
that, one dot of 0.2 µmol of CuSO4·5H2O was removed with a cotton swab step by step;
meanwhile, the spectrum of the THz-WGMR was recorded. Next, the transmission spectra
of the THz-WGMR covered with 1.2, 1, 0.8, 0.6, 0.4, 0.2, and 0 µmol of CuSO4·5H2O were
measured, respectively, and the ERs and frequency shifts of the resonance dip were extracted,
as shown in Figure 3. According to the above recommendation in Section 3.1, the heated
dehydration process should fulfill the transformation from CuSO4·5H2O to CuSO4·3H2O
and from CuSO4·3H2O to CuSO4·H2O, then follow the same removal operation to obtain the
ERs and frequency shifts caused by the different amounts of CuSO4·3H2O and CuSO4·H2O.
We speculated that the variety of the volume of the drops and the overlapping areas between
the substances and the evanescent fields of the waves in the THz-WGMR were the main
sources of the deviations. We estimated the deviation of the overlapping areas, and the
statistical result was ±6.5%, as demonstrated in Supplementary Note S4.
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Figure 3. The experimental results (dots) and fitting results (lines) for different amounts of CuSO4·xH2O
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respectively.

The experimental results (dots) were fitted using the formula (2). As shown in Figure 3,
the ERs decrease with the increase in the amount of CuSO4·xH2O (x = 5, 3, 1) due to the
increase in the extinction coefficients which push the THz-WGMR away from the critical
coupling state. However, the frequency shifts increase linearly owing to the linear increase
in the effective roundtrip length. We observed that the fitting values and the ERs mismatch
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at the amount of 0 µmol, mainly due to the residues of CuSO4·xH2O (x = 5, 3, 1) affecting
the THz-WGMR when the amount is 0. Furthermore, the ER is sensitive to the surrounding
environment when the THz-WGMR works near the critical coupling state, leading to an
obvious deviation. The residues of CuSO4·xH2O (x = 5, 3, 1) arise from the operation
procedures. As demonstrated in Supplementary Note S1, six dots of 0.2 µmol per dot of
CuSO4·xH2O were transferred onto the surface of the ring resonator discretely, and then
they were removed one by one with cotton swabs. Therefore, there inevitably were residues
on the surface.

According to the results in Figure 3, the relationship between the amount of CuSO4·xH2O
(x = 5, 3, 1) and frequency shifts maintain high linearity in a relatively large range, which
makes it an appropriate index to define the sensing sensitivity of the sensor. The ERs demon-
strate a nonlinear relationship with the amount of CuSO4·xH2O (x = 5, 3, 1) in the experi-
mental range, resulting from the nonlinear relationship between the transmissivity Tt and
the single-pass amplitude transmission coefficient a. However, they can be approximated
as a linear relationship in a small range. By calculating the slopes of the blue fitting lines,
the sensitivities of the sensor for CuSO4·xH2O (x = 5, 3, 1) were obtained as 1.32, 0.77, and
0.56 GHz/µmol, respectively.

In fact, in this experiment, to ensure a high-crystallization rate, a high concentration
of 2 mol/L of supersaturated CuSO4 solution was used, which led to the minimum trans-
ferable amount of 0.2 µmol of the substance in this experiment. However, it was found
that 0.2 µmol of substances does not completely interact with the evanescent field of the
THz wave around the THz-WGMR, implying that the practical detection sensitivity of the
sensor is higher than the results in the experiment.

To verify the experimental results, the effects of different amounts of CuSO4·xH2O
(x = 5, 3, 1) on the transmission spectra of the THz-WGMR were simulated and analyzed.
To establish the simulated model, the complex refractive indices of CuSO4·xH2O (x = 5, 3, 1)
were required to measure first. The processes were as follows. Firstly, the CuSO4·xH2O
(x = 5, 3, 1) tablets were prepared using a tablet machine, then their transmission spectra
were measured using the THz-TDS. The thicknesses and transmission spectra of the tablets
were acquired and used to calculate the refractive indexes and extinction coefficients. The
details are shown in Supplementary Note S5. The results are shown in Figure 4a, and we
noticed that the crystal water content of the CuSO4 crystal possesses a positive correlation
with its refractive index and extinction coefficient, which is consistent with the experimental
results. In detail, the refractive indexes of CuSO4·xH2O (x = 5, 3, 1) at 410.5 GHz are 2.4, 2.3,
and 2.1, respectively, and the extinction coefficients are 0.053, 0.041, and 0.037, respectively.

After measuring the size of the devices and samples, a two-dimensional axisymmetric
model was established in COMSOL, as detailed in Supplementary Note, Figure S5, and then
the mode refractive indexes and mode extinction coefficients of the THz wave interacting
with the CuSO4·xH2O (x = 5, 3, 1) were simulated. According to the data from Figure 3,
the mode refractive indexes and mode extinction coefficients of the THz waves in the
experiments can be calculated too. Comparing the calculated results with the simulated one,
the relative errors of the mode refractive indexes caused by CuSO4·xH2O (x = 5, 3, 1) are
0.021, 0.003, and 0.011, respectively and the relative errors of the mode extinction coefficients
caused by CuSO4·xH2O (x = 5, 3, 1) are 0.19, 0.31, and 0.28, respectively. The detailed values
are listed in Supplementary Note, Table S2. Interestingly, the mode refractive indexes from
the two methods correctly match each other. However, the mode extinction coefficients
possess large relative errors, which result from the reflective loss from the samples which is
not considered in the simulations, and unfortunately, the surface morphology and porosity
of the substances are hard to obtain; hence, the detected substances are not perfectly
reproduced in the simulation. Nevertheless, we simulated the effects of the different
amounts of CuSO4·xH2O (x = 5, 3, 1) on the ERs and frequency shifts of the resonance dip,
and the results are shown in Figure 4b. It is noteworthy that the ERs demonstrate a nonlinear
relationship with the amount of the CuSO4·xH2O (x = 5, 3, 1), and the frequency shifts
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increase linearly with the amount of the CuSO4·xH2O (x = 5, 3, 1), which is qualitatively
consistent with the experimental results in Figure 3.
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3.3. Monitoring of Dynamic Dehydration from CuSO4·5H2O to CuSO4·3H2O at
Different Temperatures

Finally, the processes of CuSO4·5H2O dehydration and transformation into CuSO4·3H2O
at different temperatures are exhibited in Figure 5. First, the heating temperatures were
set as 60, 65, and 70 ◦C, respectively, and then the CuSO4·5H2O particles were directly
transferred above the THz-WGMR. As demonstrated in Figure 5, the ER and frequency shift
of the resonance dip increase over time until a steady state is reached. This phenomenon
arises as the extinction coefficient and refractive index decrease when the CuSO4·5H2O
dehydrates into the CuSO4·3H2O. The decrease in the extinction coefficient makes the
THz-WGMR get closer to the critical coupling state which explains the increase in the ER.
In addition, the decrease in the refractive index accumulates the frequency shift. Finally,
the dynamic process reaches a steady state when the CuSO4·5H2O completely transforms
into CuSO4·3H2O.

The results in Figure 5 demonstrate that the higher the temperature is, the less time
there is to reach the steady state, indicating a higher dehydration rate with the augments in
temperature. We speculate that the dehydration rate mainly depends on the temperature
in this experiment. The ERs and frequency shifts increase synchronously and then reach
steady states almost at the same time. During the experiment, we noticed that there was a
clearer temperature fluctuation with a higher heating temperature, and the temperature
fluctuation mainly affected the frequency shifts. Hence, taking the time when ER reaches
the steady state as the observation index, the transformation time can be expressed more
accurately, as marked in Figure 5.

Generally, this experiment demonstrates that these sensors possess the ability to
dynamically monitor the dehydration process of substances, providing a method for
analysis and the investigation of the dynamic change in substances.
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4. Conclusions

In conclusion, an on-chip THz-WGMR was proposed and fabricated, enabling sensitive
and rapid sensing of crystal water. The device was applied to measure different amounts of
CuSO4·xH2O (x = 5, 3, 1). The detection sensitivities of the THz-WGMR for CuSO4·xH2O
(x = 5, 3, 1) were 1.32, 0.77, and 0.56 GHz/µmol, respectively. The experimental results are
in good agreement with the simulation results qualitatively, indicating that the extinction
coefficient and refractive index increase with the increase in crystal water content. This
difference in the determination parameters can be used to identify specific substances
with different crystal water content. The experiment also demonstrates the dehydrated
process from CuSO4·5H2O to CuSO4·3H2O with increased time at different temperatures,
suggestive of the dynamic monitoring capability of the proposed device. The results show
that a higher temperature implies a higher dehydration rate. It is noteworthy that the ability
of tiny substance detection from the THz-WGMR was verified by the experiment, and
its feasibility in the dynamic sensing of crystal water was proved. We believe that these
sensors will provide a powerful tool for material analysis and the dynamic monitoring of
biochemical reactions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22239116/s1, Figure S1: The operation diagram; Figure S2: The
diagram of the equipment; Figure S3: The weight curve of the CuSO4·H2O during hydration; Figure S4:
The optical microscopic images of the liquid drop; Figure S5: The simulated electric field distribution for
the ridge waveguide of the ring resonator; Figure S6: The setup of the THz-TDS; Table S1: The contact
angles and lengths of six drops of CuSO4 solution; Table S2: The mode refractive indexes and the mode
extinction coefficients acquired by THz-TDS and THz-WGMR respectively; References [21,30,48–50].
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