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Abstract: In this study, principal component analysis and k-means clustering (PCAKM) methods
for synthetic aperture radar (SAR) data are analyzed to reduce the sensitivity caused by changes in
the parameters and input images of the algorithm, increase the accuracy, and make an improvement
in the computation time, which are advantageous for scoring in the follow-up plan. Although
there are many supervised methods described in the literature, unsupervised methods may be
more appropriate in terms of computing time, data scarcity, and explainability in order to supply
a trustworthy system. We consider the PCAKM algorithm, which is used as a benchmark method
in many studies when making comparisons. Error metrics, computing times, and utility functions
are calculated for 22 modified PCAKM regarding difference images and filtering methods. Various
images with different characteristics affect the results of the configurations. However, it is evident that
the PCAKM becomes less sensitive and more accurate for both the overall results and image results.
Scoring by utilizing these results and other map information is a gap and innovation. Obtaining a
change map in a fast, explainable, more robust and less sensitive way is one of the aims of our studies
on scoring points in the follow-up plan.

Keywords: change detection; unsupervised learning; remote sensing; synthetic aperture radar; SAR
image change detection; SAR images; follow-up plan; principal component analysis; k-means clustering

1. Introduction

Change detection for temporal differential images is the implementation of an the
algorithm/method to detect the changes that have occurred between two images obtained
at different times from the same sensor, platform, and location. In other words, it is a
process to divide the map into regions that are changed and unchanged.

Change detection algorithms are used in several areas such as video surveillance,
remote sensing, medical diagnosis and treatment, civil infrastructure, underwater sensing,
and driver assistance systems [1]. Different types of systems in remote sensing and aerial
photography are used to detect changes between the scenes of the same location acquired
at different times, which is also called remote sensing change detection [2]. Depending on
the sensors, systems used, and the time–frequency of the images obtained, different tasks
are assigned and executed. Such changes can trigger follow-up activities to determine the
cause or type of change, such as triggering additional image requests [3,4], direct actions
such as search and rescue missions [5], or influencing decisions made in the area, e.g., threat
avoidance [6]. In all of these cases, quick, precise, and interpretable change detection is
critical to deriving timely information and properly reacting in the subsequent follow-up.
A synthetic aperture radar (SAR) sensor is extensively used in numerous areas [7] to obtain
change maps since it is not affected by the weather, light, or flight altitude [8,9]. These
images typically form the function for actions such as those listed above. Speckle noise [10–12],
fuzzy edge of changed regions [12], and limited datasets [12] are the main challenges for
the change detection of SAR images.

Future changes that are likely to occur can be predicted using spatial and temporal
dynamics. Therefore, the follow-up information acquisition can be streamlined, by creating
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the foundation for the follow-up plan by scoring the predicted change detection map [13].
Follow-up activities require the consideration of the estimated change map’s accuracy and
computation time. Most follow-up planning may not allow for the large amounts of data
that are necessary for supervised learning. Due to this, the follow-up planning benefits
the adoption of unsupervised techniques that do not need training data and have quick
computation times. In addition, classical methods generally provide more transparency,
explainability, and interpretability than more complex ones do [14]. These properties
support the system’s trustworthiness [15–17], which is significant for any response to the
detected change.

In this study, the change maps of different satellite images are calculated using the un-
supervised change detection algorithm proposed by Celik [18] and called principal compo-
nent analysis and k-means clustering (PCAKM). In situations where the follow-up plan
needs to be made in short periods (such as disaster response, etc.) and training data are
lacking, it is more appropriate to use unsupervised methods instead of supervised methods.
In addition, it is not necessary for unsupervised change detection methods to specifically
identify the kinds of changes in land use or cover that have occurred in the area of inter-
est [19]. Depending on the change in the parameters used in PCAKM, the calculation times
and performance results of the obtained change detection alter. Moreover, altering the
inputs for Celik’s algorithm affects results notably.

We produce several configurations as modified PCAKMs using different filters and
DIs. The performance results obtained based on modified versions of Celik’s algorithm
are compared and examined to understand whether they are suitable for generating scores
to form the foundation for planning follow-up detailed investigations or responses. As a
result of these investigations, we seek to answer the following questions:

• Is it possible to decrease sensitivity or increase consistency?
• Is it possible to decrease computing time without decreasing accuracy?

These questions are critical to obtaining a modified method that is less affected by
different PCAKM algorithm parameters and input image characteristics. The way to
achieve this is to increase the average performance and reduce the variance of the results
obtained. On the other hand, providing a decrease in computing time is important in
real-time tasks. Change maps with a less sensitive method will then be input into the
scoring stage for a follow-up plan. Change maps with lower error rates and variance will
help the selection of the areas of interest (AOIs) generating the points of these AOIs and
scoring. A gap and innovation in the follow-up plan is scoring using change map results
and other map information. We aim to contribute to scoring points in the follow-up plan
by focusing on obtaining the change map in a quick, explainable, more accurate, and less
sensitive manner.

The paper is organized as follows. Section 2 provides a related literature review and the
methods used in this paper. Section 3 explains the data, configurations, and performance
metrics used in experiments, and shows the results. Comments and discussions on the
results are included in Section 4. Finally, the paper is concluded in Section 4.2.

2. Methods

To find answers to the questions in Section 1, we make comparative analyses by
performing unsupervised change detection and performance evaluation. Performance
measurements were carried out using the unsupervised learning method for the change
detection part. The method includes principal component analysis (PCA) and k-means
clustering methods as described in [18].

The PCAKM method proposed by Celik [18] has been used as a benchmark comparison
in many unsupervised and supervised SAR image change detection studies and contin-
ues to be used in the state-of-the-art research. Li et al. [20] compared PCAKM, Markov
random field fuzzy c-means (MRFFCM), Gabor fuzzy c-means (GaborFCM), and Gabor
two-layer classifier (GaborTLC). They determined that the Kappa coefficient (KC) dif-
ference between PCAKM and other methods for the benchmark data is at most 2.67%.
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Gao et al. [13] proposed deep semi-non-negative matrix factorization (NMF) and a singular
value decomposition network to compare with PCAKM, MRFFCM, GaborTLC, and deep
neural networks with MRFFCM (D_MRFFCM). KC differences between PCAKM and meth-
ods that give better results for the three benchmark data are less than or equal to 6.77%,
7.57%, and 3.3%, respectively. In addition, PCAKM has a higher KC than MRFFCM and
GaborTLC for two out of three data. Gamma deep belief network (gΓ-DBN) is proposed
by Jia and Zhao [12] for comparison with PCAKM, convolutional-wavelet neural network
(CWNN), deep belief network (DBN), and joint deep belief network (JDBN). According
to their experimental results, PCAKM shows better performance than CWNN and DBN
for one of the benchmark datasets in terms of KC. When all images are examined, im-
provements in KC for PCAKM are less than or equal to 7.98%. Wang et al. [21] presented
a graph-based knowledge supplement network (GKSNet) to match against PCAKM, a
neighborhood-based ratio and extreme learning machine (NR-ELM), Gabor PCA network
(GaborPCANet), local restricted convolutional neural network (LR-CNN), transferred mul-
tilevel fusion network (MLFN), DBN, and deep cascade network (DCNet). In their study,
the KC/F1-measure enhancements for PCAKM are less than or equal to 10.71%/9.42%,
2.75%/2.2%, 19.21%/22.57%, and 11.43%/9.75% for four different benchmark data, re-
spectively. Even though the supervised methods provide these improvements in terms of
accuracy, their run-time results show that there are reasonably high differences between
PCAKM and other methods. The average run-times in seconds for PCAKM, NR-ELM,
GaborPCANet, LR-CNN, MLFN, DBN, DCNet, and GKSNet are 2.3, 22.5, 442.8, 282.6,
187.6, 474.1, 509.6, and 144.92, respectively [21].

Considering its features such as being fast, not requiring learning data, and having a
simple algorithm, we selected PCAKM as a benchmark method. It shows promising results
for both unsupervised [13,18,20] and supervised methods [12,21].

Speckle is a type of grainy noise that occurs naturally in active radar, SAR, medical
ultrasound, and optical coherence tomography images, and decreases their quality. Images
of the same region taken at different times have different levels of speckle. Speckling
creates difficulty in distinguishing opposite classes [22] since it increases the overlap of
opposite-class pixels in the histogram of difference images. On the other hand, there is
competitive interaction between altered regions and background regions due to a lack of
past information, resulting in a fuzzy edge in the changed region that is difficult to discern.
Another challenge is the lack of data, which is an issue for supervised learning.

Noise may develop as a result of the system’s construction, illumination conditions,
and image acquisition process. Numerous methods were proposed for speckle reduction or
despeckling. Speckle reduction filters are classified as non-adaptive and adaptive filters [23].
Mean and median filtering methods are examples of non-adaptive techniques. On the other
hand, Lee, Frost, Kuan, and G-MAP are adaptive filter examples. Qiu et al. [24] claimed that
none of these filters consistently outperform others, in principle. Each filter has particular
advantages and disadvantages according to the data. For this reason, choosing a more
stable and consistent filter is important.

Moreover, speckling reduction techniques are categorized as the spatial domain, trans-
form domain (or wavelet domain), non-local filtering, and total variational [23]. Specifically,
anisotropic diffusion, bilateral filter (BF), fast non-local means filter (FNLMF), and guided
filter (GF) are some other filters to reduce speckle noise [25]. Choi and Jeong [25] state that
BF and the non-local mean filter (NLMF) have a low speckle noise reduction performance.
In addition, non-linear methods such as BF and NLMF have poor computational time
performance [25]. Partial differential Equation (PDE)-based algorithms including AD and
adaptive window anisotropic diffusion also have a weak performance on speckle noise
removal [25]. Some other conventional filtering methods such as discrete wavelet transform
(DWT), Bayesian multiscale method in a non-homomorphic framework, and expectation
maximization DWT perform poorly in terms of speckle noise removal, edge information
preservation, and computing complexity [25]. We test the edge-protecting GF method,
which has low computational complexity among the speckle noise elimination techniques
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considering the performance results for the SAR images in [25]. We also used the NLMF
and BF methods to acquire the performance characteristics mentioned above.

In this study, we compared the PCAKM with its modified versions (different combi-
nations of difference images and filters) in terms of accuracy and time performance. We
consider whether there is a modified method with less sensitivity and higher accuracy for
the change map to be used in any follow-up plan.

2.1. Original PCA K-Means Algorithm

The flow of the proposed original method is given in Figure 1 [18]. PCA and k-means
methods [18] are utilized for the change detection part.

Convert
grayscale

Convert
grayscale

Absolute
difference

Non-overlaping
square blocks

PCA

Projecting
overlapping square
data blocks around

each pixel

Eigenvector
space

Feature vector
space

K-means
clustering

Assign each feature
vector to the nearest
cluster (Euclidean)

Change map

Figure 1. Unsupervised Change Detection Algorithm Proposed by Celik [18].

Firstly, the input image pairs I1 and I2 are converted into grayscale images. Then,
the absolute difference image for the given image pair is calculated as

D1 = |I1 − I2|. (1)

Afterward, D1 is divided into bs× bs non-overlapping blocks where bs is the length of
one side of square blocks. After converting these blocks into row vectors, PCA is applied
to these vector sets to obtain the orthonormal eigenvectors. In the next step, the feature
vector space is created by projecting bs× bs overlapping blocks around each pixel onto
the eigenvector space. Feature vector space is input for the k-means algorithm to get the
change map. Using the k-means algorithm, the feature vector space is grouped into clusters.
Then, each pixel is assigned to a cluster in a way that minimizes the distance between its
feature vector and the cluster’s mean vector. Briefly, we used two parameters bs and k as
block width and cluster number, respectively. In Section 3, bs is between 2 and 8, whereas k
is 2 and 3 for each image pair.

2.2. Other Difference Image Methods

The log-ratio difference image method, which is given in Equation (2), is utilized in
many studies to reduce the multiplicative distortion effects of noise caused by speckle [10].
Moreover, Zhao et al. [26] produced the difference image via image regression as given
in Equation (3) to avoid problems such as atmospheric condition changes, illumination
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variations, and sensor calibration [27]. The image regression method enhances the perfor-
mance of the difference image, which is observed from direct subtracting. However, both
the log-ratio and absolute log-ratio methods still do not perform well enough to eliminate
speckle noise if the input becomes low-quality [10,27].

Definition 1 (Log-ratio difference image). Log-ratio image is the logarithmic transform of the
image pair’s division as

D2 = f (
I1

I2
), (2)

where f = c ∗ log((1 + p), 10), c ≈ 105 for all pixels p ∈ I1
I2

.

Definition 2 (Absolute log-ratio difference image). It is the absolute value of the log-ratio
calculation as

D3 = | f ( I1

I2
)|. (3)

Zhang et al. [10] stated that the SAR images are contaminated by speckle noise, which
has the multiplicative Goodman’s model. The Nakagami distribution in Equation (4) is
then used to represent the independently and identically distributed pixel amplitudes.
The Nakagami distribution is

p(Is|Rs) =
2LL

Γ(L)(Rs)L I2L−1
s exp (− LI2

s
Rs

), (4)

where Rs and Is are the reflectivity and pixel amplitudes in site s, respectively. Moreover,
L is the equivalent number of looks, which is a parameter of multi-look SAR images,
and represents the amount of averaging done to the SAR measurements both during the
creation of the data and, on occasion, even after [28]. After several calculations to which
Bayesian decision theory was applied, the difference image is given as in Equation (5),
where it considers the knowledge that the speckles follow the Nakagami distributions.

Definition 3 (Nakagami log-ratio (NLR) difference image). It is a modified version of the
log-ratio difference image given as

D4 = f (
I1

I2
+

I2

I1
). (5)

Its absolute version can be written as

D5 = | f ( I1

I2
+

I2

I1
)|. (6)

Definition 4 (Modified NLR difference image 1). In this version of the NLR difference image,
we use the squared values of each image given as

D6 = f (
I2
1

I2
2
+

I2
2

I2
1
). (7)

Its absolute value is

D7 = | f (
I2
1

I2
2
+

I2
2

I2
1
)|. (8)

Definition 5 (Modified NLR difference image 2). For this modified version of the NLR difference
image, squares of each division are added to the NLR difference image itself as

D8 = f (
I1

I2
+

I2

I1
+

I2
1

I2
2
+

I2
2

I2
1
). (9)
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The absolute value of it is

D9 = | f ( I1

I2
+

I2

I1
+

I2
1

I2
2
+

I2
2

I2
1
)|. (10)

Definition 6 (Improved ratio and log improved ratio difference image [29,30]). The improved
ratio and its log transform version are given in Equations (11) and (12), respectively.

D10 = 1− min{I1, I2}
max{I1, I2}

, (11)

D11 = f (1− min{I1, I2}
max{I1, I2}

). (12)

2.3. Non-Local Means Denoising

Basically, the color of a pixel is changed to an average of the colors of nearby pixels
by non-local means denoising (NLMD) [31]. Since there is no justification for the closest
pixels to a given pixel to be even close, it searches across a sizable chunk of the image
for every pixel that resembles the pixel to be denoised. There are three parameters such
as h, templateWindowsSize (tws), and searchWindowsSize (sws). The first one regulates the
filter strength. If it is increased, then it removes the noise more precisely but removes the
image details as well and vice versa. The tws parameter is the template patch’s size in
pixels, which is utilized to calculate weights. Lastly, sws is the window’s size in pixels
that is applied to estimate the weighted average for a specific pixel. We used OpenCV’s
recommended values for the last two parameters as 7 and 21, respectively. On the other
hand, for h, we used 20 since SAR images contain a high degree of noise.

2.4. Bilateral Filter

In addition to using a (multiplicative) Gaussian filter component that is based on pixel
intensity differences, the bilateral filter (BF) also employs a Gaussian filter in the space
domain. Only pixels that are “spatial neighbors” are taken into account for filtering, owing
to the Gaussian function of space. On the other hand, the Gaussian component used in
the intensity domain makes sure that only the pixels with intensities close to the core pixel
are taken into account when computing the blurred intensity value. BF is a method that
preserves the edge information. We used 10 for the parameter denoisingWindowsize (dws),
which is larger than the default value 3, which is similar to NLMD, and we consider that
the SAR image has substantial noise.

2.5. Guided Filter

A guided filter is a smoothing light filter that preserves the edges. It filters out noise
or texture while keeping sharp edges, just like a bilateral filter [32,33]. The GF is defined by
the following Equations (13)–(15) as

ak =

1
|w| ∑i∈wk

Ii pi − µk pk

σ2
k + ε

, (13)

bk = pk − akµk, (14)

qi = ai Ii + bi, (15)

where (ak, bk) are linear coefficients for a linear transform of the guidance image I at a pixel
i with the input image p and supposed to be constant in a window wk (square window
of a radius r) centered at the pixel k. Furthermore, µk and σ2

k are the mean and variance
of I in wk, |w| is the numbers of pixels in wk, pk = 1

|w| ∑i∈wk
pi is the mean of p in wk,

and ε is a regularization parameter penalizing large ak. Moreover, ai =
1
|w| ∑k∈wi

ak and
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bi =
1
|w| ∑k∈wi

bk are the overall average coefficients for windows that overlap with i where
qi is the filtering output at a pixel i.

2.6. Truncated Singular Value Decomposition

Truncated singular value decomposition (TSVD) is a reduced rank approximation
to any matrix A by selecting the first major singular values. We determine the subset of
full components via the percentage of the total variance. Therefore, we utilize the var
parameter that is a threshold for total variance. The reason for applying this method is to
assess whether we can reduce the time performance without much loss of accuracy.

3. Experiments
3.1. Data

Details of data used in experimental results are given in Table 1. For each image pair,
there is a ground truth image for the change between the two images. The ground truth
images are used to generate the confusion matrices and calculate the performance metrics
mentioned above.

In Table 2, noise variance values based on the method in [34] are given.

Table 1. Data Information.

Image 1
Date

Image 2
Date

Satellite Resolution

Ottawa (Canada) [13] May 1997 August 1997 RADARSAT 290 × 350 pixels

Yellow River Estuary 1
(China) [35] June 2008 June 2009 RADARSAT-2 257 × 289 pixels

Yellow River Estuary 2
(China) [35] June 2008 June 2009 RADARSAT-2 450 × 280 pixels

Yellow River Estuary 3
(China) [35] June 2008 June 2009 RADARSAT-2 291 × 444 pixels

Yellow River Estuary 4
(China) [35] June 2008 June 2009 RADARSAT-2 306 × 291 pixels

San Francisco (USA) [13] August 2003 May 2004 ERS-2 256 × 256 pixels

Bern (Switzerland) [36] April 1999 May 1999 ERS-2 301 × 301 pixels

Table 2. Noise Variance Values.

Noise Variance Value

Image 1 Image 2

Ottawa 11.5067 9.0350

Yellow River Estuary 1 18.6691 37.6355

Yellow River Estuary 2 6.0765 12.5834

Yellow River Estuary 3 9.9969 26.2616

Yellow River Estuary 4 15.5373 32.9121

San Francisco 2.6013 2.8143

Bern 8.2991 7.0199

In Figure 2, all images with histograms are demonstrated.
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Figure 2. Image pairs and their histograms.
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In Figure 3, Radon transforms between 0 and 180 degrees are illustrated. Radon
transforms, which are also called sinograms, calculate image matrix projections over
predetermined directions where lighter tones are more intense.

Figure 3. Image pairs and their Radon transforms.
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It is apparent that there are different characteristics not just among each image pair
but also between some image pairs across the set, as shown in Table 2, Figures 2 and 3.

3.2. Configurations

There are seven SAR image pairs and seven ground truths for change maps as data.
We utilized 22 different configurations among which one is the original paper [18] as a
benchmark and the others are modified versions of the original method. For each configu-
ration, there are 98 (7 × 14) change detection results for each performance metric since we
have two main parameters block size and number of clusters, which take values in the ranges
of 2–8 and 2–3, respectively. We calculate each change detection result 1000 times and then
obtain the minimum, maximum, and average calculation times. The accuracy results do not
change for these 1000 experiments since all 22 configurations have deterministic skeletons.

All configurations are given in Table 3 with configuration numbers. Configurations
containing more than one method are written according to the order of their implementation.
The PCAKM algorithm is used after applying the written methods for any configuration.
We select the radius of the square window (r) for GF as the block size (bs) parameter of the
PCAKM algorithm. Explanations for other parameters in Table 3 are given in Section 2.

Table 3. Configurations.

No Configuration before
PCAKM

No Configuration before
PCAKM

1 D1 12 D4 + TSVD(var = 0.9)

2 D2 13 GF(r = bs, ε = 0.0001) + D4 + TSVD(var = 0.9)

3 D2 + TSVD(var = 0.9) 14 D5

4 GF(r = bs, ε = 0) + D2 15 D6

5 NLMD(h = 20, tws = 7, sws = 21) +D2 16 GF(r = bs, ε = 0.0001) + D6

6 NLMD(h = 20, tws = 7, sws = 21) + GF(r = bs, ε = 0) + D2 17 D7

7 BF(dws = 10) + D2 18 D8

8 D3 19 GF(r = bs, ε = 0.0001) + D8

9 D4 20 D9

10 GF(r = bs, ε = 0.0001) + D4 21 D10

11 D4 + TSVD(var = 0.8) 22 D11

3.3. Performance Metrics

After calculating the change maps, performance metrics are estimated using the
confusion matrix that is given in Table 4.

Table 4. Confusion Matrix.

Calculated Change Map

Pixel Positive
(changed)

Negative
(unchanged)

Ground Truth Image
Positive (changed) True Positive False negative

(Type II Error)

Negative (unchanged) False positive
(Type I Error)

True negative

Below are formulations for performance metrics using the true positive (tp), false
positive (fp), false negative (fn), and true negative (tn) in the confusion matrix as
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• Percentage correct classifications: pcc = (tp + tn)/n

• Kappa coefficient: kc = (pcc− p)/(1− p), where p = (tp+ f p)×(tp+ f n)+( f n+tn)×(tn+ f p)
n2

• Precision: prec = tp/(tp + f p)
• Recall: recall = tp/(tp + f n)
• F-measure: f meas = 2× prec× recall/(prec + recall)

where n = tp + tn + f p + f n.
We use Kappa coefficient and f-measure as accuracy calculations. The range of the

former is [−1, 1] and the latter has a range of [0, 1]. For both metrics, a higher value means
better accuracy.

On the other hand, we estimate the utility functions by employing Kappa coefficient,
f-measure, and average computing times. For each image pair, we have two utility values as

U1ij = µij1 + µij2 − σ2
ij1 − σ2

ij2, (16)

U2ij = (µij1 + µij2 − σ2
ij1 − σ2

ij2)/t̄ij, (17)

where µij1 is the average of Kappa coefficient values, µij1 is the average of f-measure values,
σ2

ij1 is the variance of Kappa coefficient values, σ2
ij2 is the variance of f-measure values, t̄ij is the

mean of average computing times, i is the image pair number, and j is the configuration
number for i = 1, . . . , 7 and j = 1, . . . , 22. For each configuration, we have 14 results since
we utilize the parameters block size and number of clusters, which take values in the ranges
2–8 and 2–3, respectively. Then, we use these 14 values for mean and variance calculations.
On the other hand, we have 14 different average time calculations and each parameter pair
result is calculated 1000 times. Then, we take the average of these 1000 calculation times
and estimate the mean of 14 average calculation times.

In addition to the U1 and U2 utility values, we calculate the following utility values
for overall images in a single configuration as

U3k = µk1 + µk2 − σ2
k1 − σ2

k2, (18)

U4k = (µk1 + µk2 − σ2
k1 − σ2

k2)/t̄k, (19)

where µk1 and µk2 are the average Kappa coefficient value and the average f-measure value
of all 98 results (14 parameters combination for seven images), σ2

k1 and σ2
k2 are the average

variances of seven different image variance results for each configuration, t̄k is the mean
of seven images’ average time computations (each image has 14 different averaged time
results for 1000 experiments), and k is the configuration number for k = 1, . . . , 22. Since,
as we mentioned in Section 3.1, each image pair has different characteristics according to
noise variances, histograms, and Radon transforms, we take the average of seven different
image variance results for each configuration.

3.4. Results

The best and the worst results and the mean and variance for error metrics (kc and
fmeas) of 22 configurations, are given in Tables A1–A7 for each image pair, respectively.
The bs and c demonstrate the block size and the number of clusters parameters. Furthermore,
the “No” columns in the tables state configuration numbers. We calculate the U1 and U2
utility values in these tables by utilizing each configuration’s average computing time.
Image pairs, ground truth images, and the best change map result for all images are given
in Figure A1 in Appendix B. The first two columns contain the image pairs. The third and
fourth columns are the ground truths and best change map results, respectively.

Based on the image results given in Appendix A, Table 5 shows the order of configura-
tions from largest to smallest utility values.
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Table 5. Ranking of Utility Values for Image Pairs.

U1 U2

Ottawa 22,21,1,12,11,3,7,13,10,16,19,
8,2,18,20,15,17,14,4,9,5,6

21,22,1,18,19,11,12,20,14,3,15,
7,2,10,8,13,17,4,16,9,5,6

Yellow River
Estuary 1

7,8,3,2,22,6,5,21,19,18,17,
20,12,4,14,9,16,15,13,10,11,1

3,2,7,8,22,18,21,19,20,14,4,
11,9,10,15,12,13,17,16,6,5,1

Yellow River
Estuary 2

13,11,10,19,16,12,14,9,4,20,18,
17,15,6,5,1,21,7,22,2,8,3

11,13,19,10,12,16,14,18,20,9,4,
17,15,1,6,5,21,7,22,2,8,3

Yellow River
Estuary 3

16,15,17,19,20,18,10,9,4,14,
12,13,11,21,22,1,5,6,7,3,2,8

19,18,20,17,15,16,9,14,11,10,12,
4,13,21,22,1,7,8,3,2,6,5

Yellow River
Estuary 4

7,5,6,3,2,8,16,15,17,19,18,
20,13,11,10,12,4,9,14,21,22,1

11,12,18,10,9,14,19,20,15,7,13,
17,8,3,21,2,16,4,22,6,5,1

San Francisco 7,5,6,3,2,8,17,15,16,18,20,
1,19,9,14,11,13,12,10,4,21,22

7,8,3,15,2,17,16,18,20,1,6,
5,19,11,14,9,12,10,13,4,21,22

Bern 7,5,6,3,8,2,16,17,15,19,18,
20,11,13,10,9,4,14,12,21,1,22

7,11,15,14,12,16,17,18,19,20,3,
8,13,9,2,10,4,21,6,5,1,22

On the other hand, Table 6 presents the overall mean and variance of error metrics for
each configuration with average computing times regarding the configuration numbers.
We calculated U3 and U4, where the mean and variance values are the average values of
seven different image results. Bold values show the highest mean and lowest variance
estimations for error metrics.

Table 6. Utility Values Based on Overall Accuracy Results and Average Computing Times for
Each Configuration.

kc fmeas
Avg. Time U3 U4

No Mean Variance Mean Variance

1 0.3599 0.0251 0.4197 0.0191 1.8071 0.7354 0.4070

2 0.5478 0.0133 0.5727 0.0106 2.1058 1.0966 0.5207

3 0.5536 0.0122 0.5779 0.0097 2.0302 1.1096 0.5465

4 0.5875 0.0461 0.6105 0.0429 2.1570 1.1091 0.5142

5 0.5981 0.0317 0.6128 0.0277 2.9567 1.1515 0.3895

6 0.5767 0.0364 0.6022 0.0310 2.9255 1.1115 0.3800

7 0.5839 0.0245 0.6071 0.0212 1.9838 1.1453 0.5773

8 0.5479 0.0132 0.5728 0.0095 2.0407 1.0980 0.5380

9 0.6155 0.0404 0.6377 0.0373 1.9563 1.1755 0.6009

10 0.6207 0.0378 0.6428 0.0348 1.9834 1.1909 0.6004

11 0.6283 0.0337 0.6491 0.0314 1.8073 1.2123 0.6708

12 0.6193 0.0369 0.6404 0.0345 1.9096 1.1884 0.6223

13 0.6294 0.0346 0.6505 0.0321 2.0829 1.2132 0.5825

14 0.6168 0.0400 0.6389 0.0369 1.8512 1.1788 0.6368

15 0.6529 0.0338 0.6737 0.0313 1.9178 1.2616 0.6578

16 0.6630 0.0353 0.6837 0.0326 2.0361 1.2788 0.6281

17 0.6541 0.0320 0.6748 0.0297 1.9922 1.2672 0.6361

18 0.6373 0.0396 0.6588 0.0365 1.8300 1.2200 0.6666

19 0.6410 0.0390 0.6624 0.0358 1.8609 1.2286 0.6602

20 0.6363 0.0398 0.6579 0.0367 1.8909 1.2176 0.6439

21 0.5240 0.0571 0.5587 0.0459 1.9765 0.9797 0.4957

22 0.4777 0.0547 0.5152 0.0435 2.0672 0.8947 0.4328
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Table 7 demonstrates the ranking of U3 and U4 values in terms of configuration numbers.

Table 7. Ranking of Utility Values for Overall Results.

U3 U4

Overall
Results

16,17,15,19,18,20,13,11,10,12,
14,9,5,7,6,3,4,8,2,21,22,1

11,18,19,15,20,14,17,16,12,9,
10,13,7,3,8,2,4,21,22,1,5,6

4. Discussion
4.1. Image-Based Results

D3 (config. 8), D5 (config. 14), D7 (config. 17), and D9 (config. 20) are the absolute
values of D2 (config. 2), D4 (config. 9), D6 (config. 15), and D8 (config. 18), respectively.
If we look at Tables A1–A7, it is evident that the absolute versions of difference images
do not increase the mean accuracy values for any configurations and images. There is no
systematic decrease or increase for variance and average time performances as well.

We check the configuration pairs 2&3, 9&11, and 9&12 to observe the effects of TSVD.
Applying TSVD decreases the average computing times for the Ottawa, Yellow River 2,
Yellow River 4, San Francisco, and Bern datasets. It increases the mean values for Ottawa
and the Yellow River 4, decreases the variance for Ottawa and Yellow River 2, and increases
variance for Yellow River 3. Otherwise, increases and decreases show variability.

Furthermore, if we consider configuration pairs 2&4, 9&10, 15&16, and 18&19, utilizing
GF increases the average computing times for all images. However, there is no regular
increase and decrease path for mean and variance since difference images and images
affect the procedure. In addition, utilizing TSVD and GF with D4 does not expose ordered
changes for mean, variance, and time if we regard each image pair. Furthermore, using both
NLMD and NLMD with GF increases the average computing times for D2 in a noticeable
way due to NLMD. Nevertheless, changes in mean and variance across all images are not
in harmony, which is the case also for BF for D2.

Applying different methods generally illustrates different mean, variance, and time
change effects as difference images and images are altered. Similarly, the ranking of U1 and
U2 values changes depending on the image since each image has different characteristics,
as mentioned in Section 3.1. Therefore, at this point, it would be more accurate to focus on
the utility values obtained by considering the overall results. Because even if we use the
same sensor, the dataset to be obtained may have different characteristics depending on
the environment and other factors.

4.2. Overall Results

Table 6 presents the overall accuracy results and utility values. It shows the overall
mean and variance of error metrics for each configuration considering all the images’
results. Note that employing TSVD increases the average means and decreases the average
variances and computing times for D2 and D4 where averages are calculated from seven
different image pair outcomes. On the other hand, GF-added configurations produce higher
mean values and computing times except configuration 5, but they generate variances
changing in different directions. Additionally, although NLMD shows an improvement in
mean values, it gives worse results in variance and time performances for D2. On the other
hand, BF increases variance values even if it displays an improvement in time and mean
outcomes for D2.

Considering that we work with inputs with different characteristics, the U3 and U4 val-
ues of the overall results are considered. If there is no concern about time performance, U3
is calculated considering the high accuracy and low variance that is desired for consistency
on different images and parameters. U4 is obtained when the time performance is also
taken into account. Table 7 clarifies the ranking of U3 and U4 in terms of configuration num-
ber. It is apparent that using one of TSVD, NLMD, GF, or some combination thereof raises
the U3 value. Additionally, a higher U3 value is obtained when the absolute value is taken,
but D8 (D9 is its absolute version) is an exception. Furthermore, D6 produces a higher U3
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value than D8, D4, D2, and D1 do. Difference images with more information seem to work
better. As an exception, D8 (a combination of D4 and D6) give a lower U3 value than D6
but still has a close value to D6. Nevertheless, D8 generates a better U3 value than D4, D2,
and D1. When we using average time calculations, of course, the rankings change.

Since there are configurations with close utility values, more than one method can be
selected and applied to scoring points for the follow-up plan. For example, utility values
can be normalized between 0 and 1, and those above the value obtained by subtracting a
certain percentage from the highest value can be selected. As such, configurations with high
accuracy and low variance are selected for a set containing data with different properties.
If time performance is also important, it is also counted. After determining the U3 and U4
values that fall within a certain percentage or above the threshold value, the configurations
that are common to both sets can be selected.

According to all outcomes, we can answer the questions in Section 1. We find that it is
possible to decrease the sensitivity (i.e., increase consistency). On the other hand, accuracy
improves while the computation time is reduced for some, but not all configurations.
However, no configuration works faster than the original method (config. 1) in terms
of average calculation time. Despite this, in Table 6, there are configurations with high
accuracy and average time calculation values that are close to the original method’s result.

5. Conclusions

In this study, we compared the original PCAKM and its modified versions. All the
configurations we use are deterministic, so the results are robust. In addition, none of them
need the large training datasets required in supervised methods. Unsupervised methods,
which work much faster than supervised methods, also stand out in terms of explain-
ability. Today, issues such as explainability, interpretability, and transparency contribute
to a trustworthy system [14], which is important for all stakeholders. Trustworthiness
is an important concept to ensure that no undesirable consequences of AI systems occur
during deployment.

Since PCAKM has more than one parameter combination and the analyses have different
image types, it seems reasonable to look at the error metrics from an overall examination.
As such, we have more consistent (i.e., less sensitive) information about the mean, variance,
and time calculation performances of the error metrics. Since the difference between the error
values to be obtained for all parameter combinations will be less, it will be more beneficial to
use the combination of all of them. It is apparent that difference image and noise reduction
makes a significant difference in the obtained results in terms of accuracy.

In the future, we plan to use the obtained results for point scoring in the follow-up
activity, which may affect the road map of different agents [37,38]. A more consistent
unsupervised method will help assign specific scores of interest to points on the map in
a fast and efficient manner. For example, using different layer information such as the
vegetation index, scoring can be done on change map information depending on the follow-
up activity. In Figure A2, the figure on the left is an image taken from Google Maps and the
figure on the right is the vegetation index [39] map (VIM) we calculate for this image. When
a change map is produced for the image taken from Google Maps, the information to be
obtained by overlapping the change map and VIM can play an important role in the scoring
method according to the follow-up plan. As per the follow-up plan, VIM can belong to the
first of the selected times for the change map, or it can belong to the second. In other words,
it is determined by the follow-up action taken. Examples could be to investigate specific
parts of the road infrastructure after an earthquake or flood.

Other maps similar to VIM can be used as labels to be illustrated on GIS. Maps that
can be used for various situations (weather-related maps, information maps from the user
or the planner, etc.) are merged with the change map as different layers to determine
scores for the follow-up plan. Our next step will be to develop follow-up plan types and
important layer maps that will contribute to the planning and scoring methods for each
follow-up plan. At this point, it is worth noting the fact that SAR images are not affected by
factors such as time zone and weather. Therefore, they offer an advantage in matters such
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as disaster response in terms of seeing the big picture. In addition, employing the proposed
unsupervised method provides a robust, fast, explainable, less sensitive, and more accurate
solution. These features will bridge the gap between scoring in AOIs for the follow-up plan
that needs to produce a quick and estimated change map. We aim to develop an innovative
scoring method for the follow-up action by merging change map results and other relevant
map information as significant layers.

In addition, future work will aim to enhance the proposed change detection method
with other unsupervised and supervised methods for different sensor types such as optical
and thermal. In this way, the purpose of this is to obtain different layer maps by classifying
the image [40]. These different layers will be used in scoring for the follow-up planning.
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Abbreviations
The following abbreviations are used in this manuscript:

AOI Area of interest
BF Bilateral filter
bs Block size
c Number of clusters
config. Configuration
CWNN Convolutional-wavelet neural network
DBN Deep belief network
DCNet Deep cascade network
dws Denoising window size
DWT Discrete wavelet transform
fmeas F-measure
FNLMF Fast non-local mean filter
FN False negative
FP False positive
gΓ-DBN Gamma deep belief network
GaborFCM Gabor fuzzy c-means
GaborPCANet Gabor PCA network
GaborTLC Gabor two-layer classifier
GF Guided filter
GKSNet Graph-based knowledge supplement network
G-MAP Gaussian model adaptive processing
JDBN Joint deep belief network
KC Kappa coefficient
LR-CNN Local restricted convolutional neural network
MLFN Multilevel fusion network
MRFFCM Markov random field fuzzy c-means
NFM Non-negative matrix factorization
NLMD Non-local means denoising
NLMF Non-local mean filter
NLR Nakagami log-ratio
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NR-ELM Neighborhood-based ratio and extreme learning machine
PCAKM Principal component analysis and k-means clustering
PCC Percentage correct classifications
PDE Partial differential equation
PREC Precision
SAR Synthetic aperture radar
sws Search windows size
TN True negative
TP True positive
TSVD Truncated singular value decomposition
tws Template windows size
VIM Vegetation index map

Appendix A

In this section, individual results for each image pair are given. Tables include best and
worst results, mean, variance, average computing time for 1000 experiments, and utility
values for each configuration. The highest best results and means, and lowest variance
estimations for error metrics are shown by bold numbers.

Table A1. Results of Ottawa Data.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

1
3 2 0.7684 8 2 0.6412 0.6935 0.0011

1.6953 1.4308 0.84403 2 0.8042 8 3 0.6989 0.7392 0.0008

2
3 2 0.8933 2 3 0.3077 0.6739 0.0316

1.8004 1.3319 0.73983 2 0.9097 2 3 0.3832 0.7155 0.0259

3
3 2 0.8961 2 3 0.3240 0.6912 0.0250

1.7985 1.3768 0.76553 2 0.9121 2 3 0.3986 0.7310 0.0204

4
3 2 0.8320 7 3 0.4353 0.6553 0.0171

1.8234 1.3205 0.72423 2 0.8554 7 3 0.4940 0.6968 0.0145

5
3 2 0.8997 2 3 0.2945 0.6526 0.0415

2.9328 1.2734 0.43423 2 0.9154 2 3 0.3663 0.6963 0.0340

6
3 2 0.8997 7 2 0.0880 0.5656 0.0731

2.8794 1.0570 0.36713 2 0.9154 7 2 0.2279 0.6213 0.0568

7
3 2 0.8984 2 3 0.3062 0.6914 0.0270

1.8112 1.3731 0.75813 2 0.9141 2 3 0.3800 0.7309 0.0222

8
3 2 0.8933 2 3 0.3176 0.6745 0.0311

1.8143 1.3338 0.73523 2 0.9096 2 3 0.3919 0.7159 0.0255

9
3 2 0.8321 7 3 0.4368 0.6454 0.0198

1.8124 1.2965 0.71533 2 0.8555 7 3 0.4955 0.6878 0.0169

10
3 2 0.8341 8 3 0.4422 0.6692 0.0137

1.8295 1.3534 0.73983 2 0.8573 8 3 0.5024 0.7095 0.0116

11
3 2 0.8379 8 3 0.5598 0.6896 0.0088

1.7403 1.4006 0.80483 2 0.8612 8 3 0.6073 0.7274 0.0076

12
3 2 0.8351 8 3 0.5603 0.6896 0.0080

1.7555 1.4022 0.79873 2 0.8583 8 3 0.6077 0.7275 0.0069

13
3 2 0.8355 2 3 0.4273 0.6782 0.0122

1.8816 1.3729 0.72963 2 0.8587 2 3 0.4878 0.7174 0.0105
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Table A1. Cont.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

14
3 2 0.8321 7 3 0.4367 0.6556 0.0170

1.6853 1.3212 0.78403 2 0.8555 7 3 0.4953 0.6971 0.0145

15
3 2 0.8558 2 3 0.3735 0.6624 0.0223

1.7328 1.3254 0.76493 2 0.8766 2 3 0.4397 0.7039 0.0186

16
3 2 0.8567 2 3 0.3647 0.6739 0.0192

1.8836 1.3528 0.71823 2 0.8773 2 3 0.4310 0.7143 0.0162

17
3 2 0.8558 2 3 0.3681 0.6621 0.0225

1.8266 1.3244 0.72513 2 0.8766 2 3 0.4350 0.7036 0.0188

18
3 2 0.8479 2 3 0.4013 0.6609 0.0199

1.6252 1.3265 0.81623 2 0.8695 2 3 0.4642 0.7023 0.0168

19
3 2 0.8481 2 3 0.3910 0.6714 0.0173

1.6587 1.3513 0.81473 2 0.8698 2 3 0.4545 0.7118 0.0146

20
3 2 0.8479 2 3 0.4006 0.6608 0.0199

1.6872 1.3263 0.78613 2 0.8696 2 3 0.4636 0.7022 0.0168

21
3 2 0.8850 8 3 0.7041 0.7970 0.0025

1.7493 1.6208 0.92653 2 0.9037 8 3 0.7458 0.8282 0.0019

22
3 3 0.8899 8 3 0.7220 0.7985 0.0021

1.8765 1.6253 0.86613 3 0.9067 8 3 0.7627 0.8304 0.0015

Table A2. Results of Yellow River Estuary 1.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

1
3 3 0.4159 7 2 −0.3118 0.0061 0.0856

1.5046 0.0808 0.05373 3 0.5293 8 3 0 0.2174 0.0571

2
5 2 0.8183 8 3 0.3074 0.7049 0.0250

1.5639 1.4120 0.90295 2 0.8516 8 3 0.3989 0.7519 0.0198

3
5 2 0.8183 8 3 0.3126 0.7080 0.0248

1.5519 1.4179 0.91375 2 0.8516 8 3 0.4031 0.7544 0.0197

4
5 2 0.7638 2 3 0.4219 0.5940 0.0147

1.5725 1.2127 0.77127 2 0.8035 2 3 0.4759 0.6466 0.0132

5
3 2 0.8261 6 3 0.2404 0.6821 0.0443

2.3293 1.3326 0.57213 2 0.8572 6 3 0.3318 0.7304 0.0356

6
3 2 0.8259 6 3 0.2404 0.6824 0.0443

2.3099 1.3333 0.57723 2 0.8571 6 3 0.3318 0.7308 0.0356

7
3 2 0.8390 8 3 0.2845 0.7280 0.0327

1.5973 1.4408 0.90203 2 0.8679 8 3 0.3776 0.7714 0.0259

8
5 2 0.8183 8 3 0.3070 0.7051 0.0250

1.6022 1.4202 0.88645 2 0.8516 8 3 0.3986 0.7521 0.0120

9
5 2 0.7638 2 3 0.4222 0.5927 0.0150

1.5987 1.2096 0.75667 2 0.8035 2 3 0.4762 0.6453 0.0134

10
5 2 0.7656 8 3 0.4092 0.5892 0.0166

1.6074 1.2004 0.74687 2 0.8041 2 3 0.4832 0.6424 0.0146
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Table A2. Cont.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

11
5 2 0.7629 6 3 0.4088 0.5831 0.0183

1.5654 1.1849 0.75697 2 0.8016 6 3 0.4776 0.6360 0.0159

12
5 2 0.7633 2 3 0.4369 0.5957 0.0147

1.6521 1.2154 0.73577 2 0.8037 2 3 0.4904 0.6476 0.0132

13
5 2 0.7639 8 3 0.4013 0.5898 0.0170

1.7313 1.2004 0.69347 2 0.8049 8 3 0.4776 0.6425 0.0149

14
5 2 0.7638 2 3 0.4219 0.5931 0.0149

1.5611 1.2106 0.77557 2 0.8037 2 3 0.4759 0.6457 0.0133

15
5 2 0.7755 6 3 0.3777 0.5926 0.0204

1.6121 1.2028 0.74615 2 0.8132 6 3 0.4527 0.6478 0.0172

16
5 2 0.7775 6 3 0.3804 0.5944 0.0204

1.8577 1.2061 0.64925 2 0.8149 5 3 0.4542 0.6493 0.0172

17
5 2 0.7755 6 3 0.3777 0.6014 0.0181

1.8254 1.2234 0.67025 2 0.8132 6 3 0.4527 0.6555 0.0154

18
5 2 0.7698 5 3 0.4320 0.6067 0.0140

1.5299 1.2396 0.81027 2 0.8085 5 3 0.4973 0.6592 0.0123

19
5 2 0.7721 5 3 0.4357 0.6089 0.0139

1.5428 1.2440 0.80635 2 0.8101 5 3 0.5001 0.6612 0.0122

20
5 2 0.7698 6 3 0.3876 0.5979 0.0167

1.5619 1.2181 0.77997 2 0.8084 6 3 0.4610 0.6514 0.0145

21
5 2 0.7599 8 3 0.3010 0.6401 0.0213

1.6163 1.3040 0.80687 2 0.8063 8 3 0.3995 0.7013 0.0161

22
7 2 0.7470 2 2 0.4690 0.6762 0.0067

1.7252 1.4023 0.81287 2 0.7980 2 2 0.5907 0.7365 0.0037

Table A3. Results of Yellow River Estuary 2.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

1
4 3 0.1755 8 2 0.0753 0.1136 0.0014

2.0835 0.2417 0.1160
4 3 0.1906 8 2 0.0940 0.1308 0.0013

2
2 3 −0.0170 7 2 −0.0211 −0.0200 1.22× 10−6

3.4239 −0.0188 −0.0055
2 3 0.00358 7 2 0.0003 0.0012 8.32× 10−7

3
2 2 −0.0186 7 2 −0.0211 −0.0201 7.09 × 10−7

3.0496 −0.0191 −0.0063
2 2 0.00257 7 2 0.0003 0.0010 4.79 × 10−7

4
8 3 0.8027 5 3 0.0308 0.4356 0.1224

3.4543 0.6418 0.1858
8 3 0.8047 5 3 0.0500 0.4456 0.1170

5
7 3 0.7073 8 2 −0.0206 0.2478 0.1006

3.9585 0.3123 0.0789
7 3 0.7111 8 2 0 0.2614 0.0963

6
7 3 0.7100 8 2 −0.0206 0.2488 0.1013

3.9399 0.3130 0.0794
7 3 0.7137 8 2 0 0.2624 0.0969

7
7 3 0.6588 3 2 −0.0212 0.1221 0.0746

3.2626 0.1158 0.0355
7 3 0.6635 2 3 0 0.1394 0.0711

8
2 3 −0.0169 7 2 −0.0211 −0.0200 1.22× 10−6

3.2725 −0.0189 −0.0058
2 3 0.0036 7 2 0.0003 0.0011 8.30× 10−7
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Table A3. Cont.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

9
8 3 0.8031 5 3 0.0362 0.4366 0.1216

3.1164 0.6454 0.2071
8 3 0.8050 5 3 0.0553 0.4466 0.1162

10
6 2 0.8063 5 2 0.0770 0.4897 0.1047

3.1475 0.7834 0.2489
6 2 0.8083 5 2 0.0958 0.4985 0.1001

11
6 2 0.8145 5 2 0.0786 0.5271 0.0942

2.6834 0.8778 0.3271
6 2 0.8164 5 2 0.0973 0.5349 0.0900

12
6 2 0.8058 5 2 0.0742 0.4472 0.1144

2.8518 0.6803 0.2386
6 2 0.8078 5 2 0.0931 0.4569 0.1094

13
6 2 0.8146 5 2 0.0843 0.5300 0.0922

3.0858 0.8875 0.2876
6 2 0.8165 5 2 0.1028 0.5378 0.0881

14
8 3 0.8027 5 3 0.0328 0.4367 0.1216

2.7668 0.6456 0.2333
8 3 0.8047 5 3 0.0520 0.4467 0.1162

15
6 2 0.8097 3 3 0.0340 0.3826 0.1418

2.9570 0.4994 0.1689
6 2 0.8117 3 3 0.0529 0.3941 0.1355

16
6 2 0.8109 5 2 0.0604 0.4822 0.1284

3.0952 0.7225 0.2334
6 2 0.8129 5 2 0.0797 0.4913 0.1226

17
6 2 0.8097 3 3 0.0326 0.3826 0.1318

3.378 0.5190 0.1708
6 2 0.8117 3 3 0.0516 0.3941 0.1259

18
6 2 0.8099 3 3 0.0368 0.4311 0.1293

2.7983 0.6196 0.2214
6 2 0.8119 3 3 0.0555 0.4414 0.1236

19
6 2 0.8113 5 2 0.0652 0.4832 0.1147

2.8843 0.7513 0.2605
6 2 0.8133 5 2 0.0843 0.4923 0.1095

20
6 2 0.8099 3 3 0.0368 0.4328 0.1284

2.9458 0.6249 0.2121
6 2 0.8119 3 3 0.0555 0.4431 0.1226

21
8 3 0.7953 2 2 0.0265 0.0929 0.0380

3.1092 0.1301 0.0418
8 3 0.7976 2 2 0.0468 0.1115 0.0363

22
8 3 0.0563 2 3 −0.0116 0.0337 0.0003

3.2598 0.0868 0.0266
8 3 0.0757 2 3 0.0091 0.0537 0.0003

Table A4. Results of Yellow River Estuary 3.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

1
7 3 0.3469 3 2 0.0926 0.2145 0.0085

2.6281 0.4567 0.1738
7 3 0.3790 3 2 0.1473 0.2577 0.0070

2
5 3 0.3124 6 2 −0.0100 0.1443 0.0236

2.7941 0.2837 0.1015
5 3 0.3224 6 2 0.0501 0.1796 0.0166

3
5 3 0.3114 3 2 −0.0105 0.1446 0.0237

2.7767 0.2840 0.1023
5 3 0.3213 3 2 0.0497 0.1798 0.0167

4
5 2 0.7622 8 3 0.5946 0.6834 0.0023

2.8094 1.3713 0.4881
5 2 0.7697 8 3 0.6048 0.6925 0.0023

5
5 3 0.3163 8 2 0.0018 0.1548 0.0230

4.0698 0.3041 0.0747
5 3 0.3256 8 2 0.0599 0.1886 0.0163

6
3 3 0.3190 6 2 0.0014 0.1547 0.0231

4.0529 0.3038 0.0750
3 3 0.3292 6 2 0.0596 0.1886 0.0164

7
3 3 0.3245 3 2 −0.0066 0.1524 0.0250

2.5647 0.2966 0.1156
3 3 0.3345 3 2 0.0529 0.1870 0.0178
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Table A4. Cont.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

8
5 3 0.3124 6 2 −0.0104 0.1442 0.0236

2.6530 0.2835 0.1069
5 3 0.3224 5 2 0.0498 0.1795 0.0166

9
5 2 0.7618 8 3 0.5946 0.6840 0.0023

2.6035 1.3724 0.5271
5 2 0.7693 8 3 0.6048 0.6930 0.0023

10
5 2 0.7658 8 3 0.5831 0.6845 0.0027

2.6736 1.3726 0.5134
5 2 0.7731 8 3 0.5933 0.6934 0.0026

11
5 2 0.7635 8 3 0.5294 0.6596 0.0057

2.5456 1.3169 0.5173
5 2 0.7708 8 3 0.5398 0.6686 0.0056

12
5 2 0.7638 8 3 0.5879 0.6800 0.0028

2.7567 1.3634 0.4946
5 2 0.7712 8 3 0.5981 0.6890 0.0028

13
5 2 0.7681 8 3 0.5601 0.6770 0.0037

3.0288 1.3556 0.4476
5 2 0.7754 8 3 0.5704 0.6860 0.0037

14
5 2 0.7618 8 3 0.5946 0.6835 0.0024

2.6143 1.3713 0.5245
5 2 0.7693 8 3 0.6048 0.6925 0.0023

15
5 2 0.7686 8 3 0.6731 0.7118 0.0008

2.6357 1.4310 0.5429
5 2 0.7763 8 3 0.6829 0.7208 0.0008

16
5 2 0.7729 8 3 0.6743 0.7151 0.0008

2.6496 1.4375 0.5425
5 2 0.7804 8 3 0.6840 0.7240 0.0008

17
5 2 0.7686 8 3 0.6728 0.7117 0.0008

2.6353 1.4308 0.5429
5 2 0.7763 8 3 0.6826 0.7207 0.0008

18
5 2 0.7658 8 3 0.6538 0.7040 0.0010

2.4470 1.4150 0.5783
5 2 0.7733 8 3 0.6638 0.7130 0.0010

19
5 2 0.7689 8 3 0.6459 0.7062 0.0011

2.4506 1.4191 0.5791
5 2 0.7763 8 3 0.6557 0.7151 0.0011

20
5 2 0.7658 8 3 0.6538 0.7041 0.0010

2.5109 1.4152 0.5636
5 2 0.7733 8 3 0.6638 0.7131 0.0010

21
7 3 0.7148 2 2 0.1612 0.4862 0.0342

2.6083 0.9339 0.3580
7 3 0.7255 2 2 0.2103 0.5115 0.0296

22
7 3 0.6692 2 2 0.1264 0.4094 0.0386

2.6198 0.7777 0.2969
7 3 0.6825 2 2 0.1786 0.4402 0.0333

Table A5. Results of Yellow River Estuary 4.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

1 6 3 0.6450 2 2 0.2341 0.4396 0.0228 1.7555 0.8878 0.5057
6 3 0.6691 2 2 0.3094 0.4884 0.0174

2 6 3 0.8563 8 2 0.6501 0.7611 0.0049 2.0176 1.5295 0.7581
6 3 0.8646 8 2 0.6771 0.7774 0.0041

3 6 3 0.8558 8 2 0.6536 0.7660 0.0042 1.9845 1.5402 0.7761
6 3 0.8642 8 2 0.6803 0.7819 0.0035

4 6 2 0.8431 7 3 0.5453 0.7442 0.0084 2.1660 1.4851 0.6856
6 2 0.8523 7 3 0.5649 0.7571 0.0078

5 6 3 0.8677 8 2 0.6288 0.7745 0.0063 2.8495 1.5530 0.5450
6 3 0.8755 8 2 0.6580 0.7900 0.0052

6 6 3 0.8676 8 2 0.6288 0.7744 0.0063 2.8352 1.5528 0.5477
6 3 0.8754 8 2 0.6580 0.7899 0.0052
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Table A5. Cont.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

7 3 3 0.8681 8 2 0.6494 0.7741 0.0055 1.9147 1.5537 0.8115
3 3 0.8758 8 2 0.6766 0.7897 0.0046

8 6 3 0.8564 8 2 0.6501 0.7610 0.0049 1.9416 1.5293 0.7876
6 3 0.8647 8 2 0.6771 0.7773 0.0041

9 6 2 0.8433 7 3 0.5453 0.7442 0.0084 1.7349 1.4851 0.8560
6 2 0.8525 7 3 0.5649 0.7571 0.0078

10 6 2 0.8445 7 3 0.5461 0.7453 0.0084 1.7355 1.4872 0.8569
6 2 0.8536 7 3 0.5656 0.7581 0.0078

11 6 2 0.8415 7 3 0.5500 0.7455 0.0083 1.6289 1.4874 0.9131
6 2 0.8508 7 3 0.5691 0.7580 0.0078

12 6 2 0.8431 8 3 0.5473 0.7444 0.0084 1.7001 1.4853 0.8737
6 2 0.8523 7 3 0.5674 0.7572 0.0079

13 6 2 0.8441 7 3 0.5478 0.7493 0.0084 1.8793 1.4916 0.7937
6 2 0.8532 7 3 0.5673 0.7586 0.0079

14 6 2 0.8433 7 3 0.5453 0.7438 0.0084 1.7351 1.4842 0.8554
6 2 0.8525 7 3 0.5649 0.7567 0.0079

15 6 2 0.8456 7 3 0.5290 0.7528 0.0094 1.8070 1.5005 0.8304
6 2 0.8549 7 3 0.5513 0.7658 0.0087

16 6 2 0.8461 8 3 0.5309 0.7539 0.0094 1.9894 1.5026 0.7553
6 2 0.8553 7 3 0.5522 0.7668 0.0087

17 6 2 0.8456 7 3 0.5278 0.7527 0.0095 1.8993 1.5000 0.7898
6 2 0.8549 7 3 0.5491 0.7656 0.0088

18 6 2 0.8440 8 3 0.5373 0.7504 0.0089 1.7354 1.4965 0.8623
6 2 0.8533 7 3 0.5582 0.7633 0.0083

19 6 2 0.8448 7 3 0.5371 0.7510 0.0090 1.7527 1.4976 0.8545
6 2 0.8540 7 3 0.5575 0.7639 0.0083

20 6 2 0.8438 8 3 0.5373 0.7503 0.0089 1.7641 1.4963 0.8482
6 2 0.8531 7 3 0.5582 0.7632 0.0083

21 6 3 0.8431 2 2 0.3453 0.6858 0.0198 1.7682 1.3595 0.7689
6 3 0.8521 2 2 0.4061 0.7094 0.0159

22 6 3 0.8335 2 2 0.2476 0.5938 0.0376 1.7717 1.1538 0.6512
6 3 0.8434 2 2 0.3216 0.6276 0.0300

Table A6. Results of San Francisco.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

1 8 3 0.7321 2 2 0.4188 0.5555 0.0145 1.1227 1.1278 1.0045
8 3 0.7530 2 2 0.4797 0.5977 0.0109

2 5 3 0.9054 2 2 0.8226 0.8691 0.0005 1.2129 1.7472 1.4405
5 3 0.9122 2 2 0.8368 0.8790 0.0004

3 3 3 0.9067 8 2 0.8566 0.8830 0.0002 1.1985 1.7502 1.4603
3 3 0.9133 8 2 0.8676 0.8676 0.0002

4 5 2 0.8738 3 2 −0.0680 0.3697 0.1452 1.3166 0.4931 0.3745
5 2 0.8825 3 2 0.0000 0.4017 0.1331

5 2 3 0.9157 8 2 0.8580 0.8860 0.0003 1.8290 1.7800 0.9732
2 3 0.9219 8 2 0.8688 0.8946 0.0003
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Table A6. Cont.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

6 3 3 0.9151 8 2 0.8592 0.8858 0.0003 1.8041 1.7797 0.9865
3 3 0.9213 8 2 0.8700 0.8944 0.0002

7 3 3 0.9122 8 2 0.8594 0.8862 0.0002 1.1413 1.7804 1.5600
3 3 0.9185 8 2 0.8701 0.8946 0.0002

8 5 3 0.9054 2 2 0.8226 0.8690 0.0005 1.1414 1.7471 1.5307
5 3 0.9122 2 2 0.8368 0.8790 0.0004

9 5 2 0.8738 7 3 0.1974 0.5755 0.1032 1.1382 0.9809 0.8618
5 2 0.8825 7 3 0.2421 0.6008 0.0922

10 5 2 0.8762 7 3 0.1983 0.5351 0.1064 1.1416 0.8962 0.7850
5 2 0.8848 7 3 0.2428 0.5626 0.0951

11 3 2 0.8654 8 3 0.2306 0.5547 0.0934 1.0069 0.9522 0.9457
3 2 0.8744 7 3 0.2662 0.5768 0.0859

12 5 2 0.8736 7 3 0.2128 0.5493 0.0974 1.1211 0.9360 0.8349
5 2 0.8822 7 3 0.2509 0.5729 0.0888

13 5 2 0.8751 7 3 0.2137 0.5516 0.0967 1.2936 0.9417 0.7280
5 2 0.8836 7 3 0.2522 0.5750 0.0882

14 5 2 0.8738 3 3 0.1973 0.5751 0.1030 1.0704 0.9804 0.9159
5 2 0.8825 7 3 0.2421 0.6004 0.0921

15 7 3 0.8763 8 3 0.1782 0.8120 0.0311 1.0874 1.5780 1.4512
7 3 0.8849 8 3 0.2274 0.8247 0.0276

16 5 2 0.8779 7 3 0.1630 0.7626 0.0585 1.1573 1.4302 1.2358
5 2 0.8865 7 3 0.2129 0.7781 0.0520

17 7 3 0.8763 8 3 0.1782 0.8121 0.0311 1.1042 1.5782 1.4293
7 3 0.8849 8 3 0.2274 0.8248 0.0276

18 5 2 0.8759 5 3 0.1700 0.6636 0.0930 1.0593 1.1724 1.1068
5 2 0.8846 5 3 0.2202 0.6846 0.0828

19 5 2 0.8773 4 3 0.1713 0.6185 0.1060 1.0963 1.0603 0.9672
5 2 0.8859 7 3 0.2219 0.6421 0.0943

20 5 2 0.8759 5 3 0.1700 0.6636 0.0930 1.1099 1.1724 1.0563
5 2 0.8846 5 3 0.2202 0.6846 0.0828

21 7 3 0.8855 8 2 −0.1361 0.3589 0.2442 1.1173 0.3651 0.3268
7 3 0.8937 2 2 0.0034 0.4348 0.1844

22 7 3 0.8840 8 2 −0.1355 0.3561 0.2409 1.1223 0.3651 0.3253
7 3 0.8923 2 2 0.0032 0.4320 0.1821

Table A7. Results of Bern.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

1 5 3 0.7359 2 2 0.1204 0.4966 0.0415 1.8599 0.9222 0.4958
5 3 0.7398 2 2 0.1412 0.5064 0.0393

2 3 2 0.8292 6 3 0.5664 0.7014 0.0076 1.9276 1.3906 0.7214
3 2 0.8312 6 3 0.5697 0.7044 0.0076

3 3 2 0.8287 4 3 0.5695 0.7026 0.0076 1.8519 1.3930 0.7522
3 2 0.8306 4 3 0.5728 0.7056 0.0076

4 5 2 0.7763 2 3 0.4559 0.6300 0.0123 1.9566 1.2385 0.6330
5 2 0.7788 2 3 0.4591 0.6331 0.0123
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Table A7. Cont.

Best Results Worst Results Mean Var.
Avg.
Time U1 U2

No bs c
kc

bs c
kc kc kc

fmeas fmeas fmeas fmeas

5 3 2 0.8398 8 3 0.5763 0.7256 0.0060 2.7281 1.4421 0.5286
3 2 0.8417 8 3 0.5797 0.7285 0.0060

6 3 2 0.8398 8 3 0.5771 0.7250 0.0061 2.6568 1.4409 0.5423
3 2 0.8417 8 3 0.5805 0.7280 0.0060

7 3 2 0.8509 8 3 0.5936 0.7333 0.0065 1.5951 1.4566 0.9132
3 2 0.8527 8 3 0.5970 0.7362 0.0064

8 3 2 0.8292 6 3 0.5656 0.7018 0.0076 1.8600 1.3914 0.7481
3 2 0.8312 6 3 0.5688 0.7048 0.0076

9 5 2 0.7763 2 3 0.4559 0.6301 0.0124 1.6901 1.2386 0.7329
5 2 0.7788 2 3 0.4591 0.6332 0.0123

10 5 2 0.7771 2 3 0.4650 0.6317 0.0120 1.7489 1.2425 0.7104
5 2 0.7796 2 3 0.4683 0.6348 0.0120

11 7 2 0.7669 2 3 0.5362 0.6386 0.0072 1.4803 1.2659 0.8552
7 2 0.7701 2 3 0.5394 0.6417 0.0072

12 3 2 0.7732 2 3 0.4487 0.6286 0.0124 1.5298 1.2357 0.8078
3 2 0.7755 2 3 0.4519 0.6318 0.0123

13 5 2 0.7765 2 3 0.4657 0.6330 0.0117 1.6798 1.2458 0.7416
5 2 0.7790 2 3 0.4690 0.6361 0.0116

14 5 2 0.7763 2 3 0.4559 0.6300 0.0124 1.5257 1.2384 0.8117
5 2 0.7788 2 3 0.4591 0.6331 0.0123

15 3 2 0.8140 2 3 0.5152 0.6557 0.0105 1.5926 1.2935 0.8122
3 2 0.8161 2 3 0.5185 0.6588 0.0105

16 3 2 0.8186 2 3 0.5274 0.6585 0.0104 1.6196 1.2993 0.8022
3 2 0.8206 2 3 0.5306 0.6616 0.0104

17 3 2 0.8140 2 3 0.5152 0.6559 0.0105 1.6165 1.2940 0.8005
3 2 0.8161 2 3 0.5185 0.6590 0.0104

18 5 2 0.7905 2 3 0.4890 0.6444 0.0110 1.6152 1.2699 0.7862
5 2 0.7929 2 3 0.4922 0.6475 0.0110

19 3 2 0.7940 2 3 0.5086 0.6476 0.0107 1.6412 1.2770 0.7781
3 2 0.7962 2 3 0.5118 0.6507 0.0106

20 5 2 0.7905 2 3 0.4890 0.6444 0.0110 1.6568 1.2699 0.7665
5 2 0.7929 2 3 0.4922 0.6475 0.0110

21 3 3 0.8034 2 2 0.1268 0.6069 0.0394 1.8668 1.1443 0.6130
3 3 0.8062 2 2 0.1473 0.6141 0.0373

22 5 3 0.7615 2 2 0.0864 0.4757 0.0566 2.0952 0.8518 0.4065
5 3 0.7650 2 2 0.1084 0.4863 0.0536

Appendix B

Image pairs with ground truth and best result images are illustrated in Figure A1.
Since we made the images equal in size, some of them seem to be scaled according to their
original versions.



Sensors 2022, 22, 9172 24 of 26

Figure A1. First two columns display SAR image pairs, third column shows ground truth change
map, and fourth column illustrates predicted best change map results.

Google Maps image and its vegetation index map is illustrated in Figure A2.

Figure A2. Example vegetation index result.
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