How Do Joint Kinematics and Kinetics Change When Walking Overground with Added Mass on the Lower Body?
Abstract
:1. Introduction
2. Methods
2.1. Experimental Conditions and Data Collection
2.2. Data Processing
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Hip Joint Response
3.1.1. Peak Analysis
3.1.2. SPM Analysis
3.2. Knee Joint Response
3.2.1. Peak Analysis
3.2.2. SPM Analysis
3.3. Ankle Joint Response
3.3.1. Peak Analysis
3.3.2. SPM Analysis
4. Discussion
4.1. Comparison of SPM and Peak Analysis
4.1.1. Kinematic Outcomes
4.1.2. Kinetic Outcomes
4.2. Hip Joint Response
4.3. Knee Joint Response
4.4. Ankle Joint Response
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffin, T.M.; Roberts, T.J.; Kram, R. Metabolic Cost of Generating Muscular Force in Human Walking: Insights from Load-Carrying and Speed Experiments. J. Appl. Physiol. 2003, 95, 172–183. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, A.; Farley, C.T.; Kram, R. Independent Metabolic Costs of Supporting Body Weight and Accelerating Body Mass during Walking. J. Appl. Physiol. 2005, 98, 579–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, R.C.; Modica, J.R.; Kram, R.; Goswami, A. The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking. Med. Sci. Sports Exerc. 2007, 39, 515–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teunissen, L.P.J.; Grabowski, A.; Kram, R. Effects of Independently Altering Body Weight and Body Mass on the Metabolic Cost of Running. J. Exp. Biol. 2007, 210, 4418–4427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGowan, C.P.; Neptune, R.R.; Kram, R. Independent Effects of Weight and Mass on Plantar Flexor Activity during Walking: Implications for Their Contributions to Body Support and Forward Propulsion. J. Appl. Physiol. 2008, 105, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Meuleman, J.H.; Van Asseldonk, E.H.F.; Van Der Kooij, H. The Effect of Directional Inertias Added to Pelvis and Ankle on Gait. J. NeuroEng. Rehabil. 2013, 10, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawicki, G.S.; Beck, O.N.; Kang, I.; Young, A.J. The Exoskeleton Expansion: Improving Walking and Running Economy. J. NeuroEng. Rehabil. 2020, 17, 25. [Google Scholar] [CrossRef]
- Van Den Bogert, A.J.; Hupperets, M.; Schlarb, H.; Krabbe, B. Predictive Musculoskeletal Simulation Using Optimal Control: Effects of Added Limb Mass on Energy Cost and Kinematics of Walking and Running. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2012, 226, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Falisse, A.; Serrancolí, G.; Dembia, C.L.; Gillis, J.; Jonkers, I.; De Groote, F. Rapid Predictive Simulations with Complex Musculoskeletal Models Suggest That Diverse Healthy and Pathological Human Gaits Can Emerge from Similar Control Strategies. J. R. Soc. Interface 2019, 16, 20190402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dembia, C.L.; Bianco, N.A.; Falisse, A.; Hicks, J.L.; Delp, S.L. OpenSim Moco: Musculoskeletal Optimal Control. PLoS Comput. Biol. 2020, 16, e1008493. [Google Scholar] [CrossRef] [PubMed]
- Knaepen, K.; Beyl, P.; Duerinck, S.; Hagman, F.; Lefeber, D.; Meeusen, R. Human-Robot Interaction: Kinematics and Muscle Activity inside a Powered Compliant Knee Exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Mooney, L.M.; Herr, H.M. Biomechanical Walking Mechanisms Underlying the Metabolic Reduction Caused by an Autonomous Exoskeleton. J. NeuroEng. Rehabil. 2016, 13, 4. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Jamwal, P.K.; Ghayesh, M.H.; Xie, S.Q. Assist-as-Needed Control of an Intrinsically Compliant Robotic Gait Training Orthosis. IEEE Trans. Ind. Electron. 2017, 64, 1675–1685. [Google Scholar] [CrossRef] [Green Version]
- Poggensee, K.L.; Collins, S.H. How Adaptation, Training, and Customization Contribute to Benefits from Exoskeleton Assistance. bioRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Riener, R.; Lünenburger, L.; Jezernik, S.; Anderschitz, M.; Colombo, G.; Dietz, V. Patient-Cooperative Strategies for Robot-Aided Treadmill Training: First Experimental Results. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 380–394. [Google Scholar] [CrossRef] [PubMed]
- Van Asseldonk, E.H.F.; Veneman, J.F.; Ekkelenkamp, R.; Buurke, J.H.; Van Der Helm, F.C.T.; Van Der Kooij, H. The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer during Zero-Force Control. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 360–370. [Google Scholar] [CrossRef]
- Chen, B.; Ma, H.; Qin, L.Y.; Gao, F.; Chan, K.M.; Law, S.W.; Qin, L.; Liao, W.H. Recent Developments and Challenges of Lower Extremity Exoskeletons. J. Orthop. Transl. 2016, 5, 26–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallery, H.; Duschau-Wicke, A.; Riener, R. Hiding Robot Inertia Using Resonance. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 1271–1274. [Google Scholar] [CrossRef] [Green Version]
- Aoyagi, D.; Ichinose, W.E.; Harkema, S.J.; Reinkensmeyer, D.J.; Bobrow, J.E. A Robot and Control Algorithm That Can Synchronously Assist in Naturalistic Motion during Body-Weight-Supported Gait Training Following Neurologic Injury. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.L.; Fong, A.J.; Otoshi, C.K.; Liang, Y.; Burdick, J.W.; Roy, R.R.; Edgerton, V.R. Implications of Assist-As-Needed Robotic Step Training after a Complete Spinal Cord Injury on Intrinsic Strategies of Motor Learning. J. Neurosci. 2006, 26, 10564–10568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Asseldonk, E.H.F.; Ekkelenkamp, R.; Veneman, J.F.; Van Der Helm, F.C.T.; Van Der Kooij, H. Selective Control of a Subtask of Walking in a Robotic Gait Trainer (LOPES). In Proceedings of the IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07, Noordwijk, The Netherlands, 12–15 June 2007; pp. 841–848. [Google Scholar] [CrossRef]
- Schertzer, E.; Riemer, R. Metabolic Rate of Carrying Added Mass: A Function of Walking Speed, Carried Mass and Mass Location. Appl. Ergon. 2014, 45, 1422–1432. [Google Scholar] [CrossRef]
- Huang, T.W.P.; Kuo, A.D. Mechanics and Energetics of Load Carriage during Human Walking. J. Exp. Biol. 2014, 217, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Mannatt, K.M. The Effects of Mass Loading Distribution on Walking Energetics. Master’s Thesis, Humboldt State University, Arcata, CA, USA, 2015. Available online: http://hdl.handle.net/10211.3/150429 (accessed on 31 August 2022).
- Westlake, C.G.; Milner, C.E.; Zhang, S.; Fitzhugh, E.C. Do Thigh Circumference and Mass Changes Alter Knee Biomechanics during Walking? Gait Posture 2013, 37, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, V.; Fang, S.; Reissman, T.; Reissman, M.E.; Kinney, A.L. How Does Added Mass Affect the Gait of Middle-Aged Adults? An Assessment Using Statistical Parametric Mapping. Sensors 2022, 22, 6154. [Google Scholar] [CrossRef] [PubMed]
- Dames, K.D.; Smith, J.D. Effects of Load Carriage and Footwear on Lower Extremity Kinetics and Kinematics during Overground Walking. Gait Posture 2016, 50, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Cai, Y.; Prado, A.; Agrawal, S.K. Effects of Exoskeleton Weight and Inertia on Human Walking. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1772–1777. [Google Scholar] [CrossRef]
- Pataky, T.C. One-Dimensional Statistical Parametric Mapping in Python. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Honert, E.C.; Pataky, T.C. Timing of Gait Events Affects Whole Trajectory Analyses: A Statistical Parametric Mapping Sensitivity Analysis of Lower Limb Biomechanics. J. Biomech. 2021, 119, 110329. [Google Scholar] [CrossRef] [PubMed]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.; Hicks, J.L.; Uchida, T.K.; Habib, A.; Dembia, C.L.; Dunne, J.J.; Ong, C.F.; DeMers, M.S.; Rajagopal, A.; Millard, M.; et al. OpenSim: Simulating Musculoskeletal Dynamics and Neuromuscular Control to Study Human and Animal Movement. PLoS Comput. Biol. 2018, 14, e1006223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilken, J.M.; Rodriguez, K.M.; Brawner, M.; Darter, B.J. Reliability and Minimal Detectible Change Values for Gait Kinematics and Kinetics in Healthy Adults. Gait Posture 2012, 35, 301–307. [Google Scholar] [CrossRef]
- Kearney, K. boxplot2. GitHub. Available online: https://github.com/kakearney/boxplot2-pkg (accessed on 28 March 2022).
- Pataky, T.C. spm1dmatlab. GitHub. Available online: https://github.com/0todd0000/spm1dmatlab (accessed on 31 August 2022).
- Pataky, T.C.; Robinson, M.A.; Vanrenterghem, J. Region-of-Interest Analyses of One-Dimensional Biomechanical Trajectories: Bridging 0D and 1D Theory, Augmenting Statistical Power. PeerJ 2016, 4, e2652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helwig, N.E.; Hong, S.; Hsiao-Wecksler, E.T.; Polk, J.D. Methods to Temporally Align Gait Cycle Data. J. Biomech. 2011, 44, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, J.O.; Li, X. Curve Registration. J. R. Stat. Soc. Ser. B Stat. Methodol. 1998, 60, 351–363. [Google Scholar] [CrossRef]
- Sadeghi, H.; Allard, P.; Shafie, K.; Mathieu, P.A.; Sadeghi, S.; Prince, F.; Ramsay, J. Reduction of Gait Data Variability Using Curve Registration. Gait Posture 2000, 12, 257–264. [Google Scholar] [CrossRef]
- Kuo, A.D.; Donelan, J.M. Dynamic Principles of Gait and Their Clinical Implications. Phys. Ther. 2010, 90, 157. [Google Scholar] [CrossRef] [Green Version]
- Sloot, L.H.; Van der Krogt, M.M. Interpreting Joint Moments and Powers in Gait. In Handbook of Human Motion; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 1–3, pp. 625–643. [Google Scholar] [CrossRef]
- Peterson, C.L.; Cheng, J.; Kautz, S.A.; Neptune, R.R. Leg Extension Is an Important Predictor of Paretic Leg Propulsion in Hemiparetic Walking. Gait Posture 2010, 32, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, V.; Fang, S.; Reissman, T.; Kinney, A.L.; Reissman, M.E. Spatiotemporal and Muscle Activation Adaptations during Overground Walking in Response to Lower Body Added Mass. Gait Posture 2022, 92, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. A Public Dataset of Overground and Treadmill Walking Kinematics and Kinetics in Healthy Individuals. PeerJ 2018, 6, e4640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, H.Y.; Knarr, B.A.; Higginson, J.S.; Binder-Macleod, S.A. The Relative Contribution of Ankle Moment and Trailing Limb Angle to Propulsive Force during Gait. Hum. Mov. Sci. 2015, 39, 212–221. [Google Scholar] [CrossRef] [PubMed]
Ref. | Subjects | Age (Years) | Body Mass (kg) | Motion | Mass | Changes Observed | |||
---|---|---|---|---|---|---|---|---|---|
Amount | Location | Spatiotemporal | Metabolic Rate | Kinematic/Kinetics | |||||
[1] | 8 | 26 ± 5 | 68.7 ± 12.5 | TW OW 1 | 0–0.3 BM | Hip | ✓ | ✓ | |
[2] | 10 | NA | 68.65 ± 8.1 | TW | 0–0.5 BM | Hip | ✓ | ||
[3] | 5 | NA | 74.16 ± 5.18 | TW | 0–16 kg | Various | ✓ | ✓ | ✓ |
[4] | 10 | 32 ± 7 | 63.3 ± 9.8 | TR | 0.1–0.3 BM | Hip | ✓ | ||
[5] | 10 | 21–45 | 67.1 ± 8.5 | TW | 0.25–0.5 BM | Trunk | ✓ | ||
[6] | 9 | 25.1 ± 5.2 2 30.9 ± 10.3 3 | 72.4 ± 12.5 2 74.9 ± 9.0 3 | TW | 0.7–10.2/0.6–5.2 kg 2 0.3–3.5 kg 3 | Various | ✓ 3 | ||
[22] | 8 | 26.8 ± 2.7 | 74.9 ± 9.2 | TW | 0.5–2 & 2–22.1 kg | Various | ✓ | ||
[23] | 8 | 19–26 | 71.1 ± 12.0 | TW | 15–45 lb | Trunk | ✓ | ✓ | |
[24] | 12 | 22.9 ± 2.2 | 70.6 ± 13.7 | TW | 0.05 BM | Various | ✓ | ||
[25] | 20 | 22.7 ± 1.8 | 66.2 ± 5.7 | OW | Subject-specific | Thigh | |||
[26] | 28 4 | 22 ± 4 48 ± 9 | 71.0 ± 10.5 76.5 ± 13.0 | TW | 3.27–9.8 kg | Various | ✓ | ||
[27] | 12 | 23 ± 3 | 70.9 ± 12.7 | OW | 0.15 BM | Trunk | ✓ | ✓ | |
[28] | 12 | 22–31 | 71.1 ± 8.0 | TW | 2.7 & 0–3.6 kg | Various | ✓ | ✓ |
Mass Amount | Mass Location | Total Added Mass (lb) |
---|---|---|
Baseline | +0 | |
Low | Pelvis | +8 |
Low | Thigh 1 | +4 |
Low | Shank 1 | +4 |
High | Pelvis | +16 |
High | Thigh 1 | +8 |
High | Shank 1 | +8 |
Added Mass | Kinematics (Degrees) | Kinetics (N·m/kg) | ||||||
Amount | Location | HF1 | HE | HF2 | HF Moment | HE Moment | ||
Flexion (+) | Extension (−) | Flexion (+) | Flexion (+) | Extension (−) | ||||
Hip | Baseline | 32.366 (6.761) | −13.976 (6.023) | 32.911 (6.400) | 0.690 (0.226) | −0.713 (0.218) | ||
Low | Pelvis | 33.351 (7.637) | −13.866 (7.585) | 33.778 (7.015) | 0.722 (0.263) | −0.731 (0.229) | ||
Low | Thigh | 32.425 (7.342) | −13.903 (7.832) | 32.816 (7.314) | 0.705 (0.233) | −0.746 (0.226) | ||
Low | Shank | 32.856 (7.675) | −14.641 (7.708) | 32.763 (8.111) | 0.735 (0.241) 1 | −0.682 (0.232) | ||
High | Pelvis | 35.743 (8.869) 2 | −10.893 (10.083) 4 | 36.227 (8.948) 2 | 0.730 (0.235) 1 | −0.743 (0.218) | ||
High | Thigh | 32.226 (7.467) | −13.580 (8.463) | 31.812 (7.574) | 0.673 (0.227) | −0.717 (0.216) | ||
High | Shank | 33.159 (7.286) | −14.630 (7.284) | 32.955 (6.984) | 0.773 (0.224) 2 | −0.636 (0.213) 2 | ||
Added Mass | Kinematics (Degrees) | Kinetics (N·m/kg) | ||||||
Amount | Location | KF1 | KF2 | KE | KF3 | KE Moment | KF Moment | |
Flexion (−) | Flexion (−) | Extension (+) | Flexion (−) | Extension (+) | Flexion (−) | |||
Knee | Baseline | −11.197 (5.825) | −24.001 (8.071) | −8.071 (5.564) | −72.122 (4.296) | 0.503 (0.244) | −0.297 (0.150) | |
Low | Pelvis | −11.647 (5.431) | −24.980 (6.839) | −8.002 (5.563) | −72.929 (4.739) | 0.558 (0.223) 2 | −0.319 (0.230) | |
Low | Thigh | −10.474 (5.654) 1 | −23.828 (7.439) | −7.883 (5.962) | −72.034 (5.083) | 0.531 (0.231) | −0.300 (0.146) | |
Low | Shank | −12.108 (5.744) 1 | −24.828 (7.685) | −7.383 (5.370) | −71.328 (4.381) | 0.570 (0.220) 2 | −0.311 (0.149) | |
High | Pelvis | −11.879 (5.258) 1 | −25.334 (6.562) 1 | −8.608 (5.233) | −73.038 (4.094) | 0.567 (0.246) 2 | −0.314 (0.159) | |
High | Thigh | −10.074 (5.833) 2 | −22.593 (8.032) 1 | −8.323 (6.498) | −70.954 (4.434) | 0.482 (0.225) | −0.306 (0.171) | |
High | Shank | −12.611 (4.726) 2 | −26.095 (6.234) 1 | −8.090 (5.244) | −70.596 (3.843) | 0.608 (0.229) 4 | −0.313 (0.162) | |
Added Mass | Kinematics (Degrees) | Kinetics (N·m/kg) | ||||||
Amount | Location | AP1 | AD | AP2 | AP Moment | |||
Plantarflexion (−) | Dorsiflexion (+) | Plantarflexion (−) | Plantarflexion (−) | |||||
Ankle | Baseline | 3.923 (4.691) | 22.048 (5.585) | −11.509 (7.025) | −1.594 (0.173) | |||
Low | Pelvis | 4.716 (3.955) 4 | 22.654 (5.047) | −10.969 (6.950) | −1.696 (0.222) 1 | |||
Low | Thigh | 4.414 (3.905) | 22.584 (5.471) | −10.597 (7.379) | −1.627 (0.163) | |||
Low | Shank | 4.412 (4.149) | 22.644 (5.373) | −9.864 (8.075) 2 | −1.638 (0.163) | |||
High | Pelvis | 4.398 (4.572) | 23.232 (5.132) 1 | −9.574 (7.376) 3 | −1.740 (0.173) 1 | |||
High | Thigh | 4.169 (4.568) | 22.305 (5.372) | −10.700 (7.275) | −1.664 (0.182) | |||
High | Shank | 4.749 (4.053) 4 | 23.360 (5.159) 1 | −8.859 (6.982) 4 | −1.694 (0.172) 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.; Vijayan, V.; Reissman, M.E.; Kinney, A.L.; Reissman, T. How Do Joint Kinematics and Kinetics Change When Walking Overground with Added Mass on the Lower Body? Sensors 2022, 22, 9177. https://doi.org/10.3390/s22239177
Fang S, Vijayan V, Reissman ME, Kinney AL, Reissman T. How Do Joint Kinematics and Kinetics Change When Walking Overground with Added Mass on the Lower Body? Sensors. 2022; 22(23):9177. https://doi.org/10.3390/s22239177
Chicago/Turabian StyleFang, Shanpu, Vinayak Vijayan, Megan E. Reissman, Allison L. Kinney, and Timothy Reissman. 2022. "How Do Joint Kinematics and Kinetics Change When Walking Overground with Added Mass on the Lower Body?" Sensors 22, no. 23: 9177. https://doi.org/10.3390/s22239177
APA StyleFang, S., Vijayan, V., Reissman, M. E., Kinney, A. L., & Reissman, T. (2022). How Do Joint Kinematics and Kinetics Change When Walking Overground with Added Mass on the Lower Body? Sensors, 22(23), 9177. https://doi.org/10.3390/s22239177