In-Line Mach Zehnder Interferometer Based on Ytterbium Doped Fiber with Up-Taper Structure in Fiber Ring Laser and Its Application in Sensing
Abstract
:1. Introduction
2. Sensor Setup and Principle
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, B.; Roh, S.; Park, J. Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol. 2009, 15, 209–221. [Google Scholar] [CrossRef]
- Wang, K.; Dong, X.; Kohler, M.H.; Kienle, P.; Bian, Q.; Jakobi, M.; Koch, A.W. Advances in Optical Fiber Sensors Based on Multimode Interference (MMI): A Review. IEEE Sens. J. 2021, 21, 132–142. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, L.; Wang, G.; Xiang, F.; Qin, Y.; Wang, M.; Yang, M. Optical Fiber Grating Hydrogen Sensors: A Review. Sensors 2017, 17, 577. [Google Scholar] [CrossRef] [PubMed]
- Leal-Junior, A.G.; Marques, C. Diaphragm-Embedded Optical Fiber Sensors: A Review and Tutorial. IEEE Sens. J. 2021, 21, 12719–12733. [Google Scholar] [CrossRef]
- De, M.; Gangopadhyay, T.K.; Singh, V.K. Prospects of Photonic Crystal Fiber as Physical Sensor: An Overview. Sensors 2019, 19, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandani, S.M.; Jaeger, N.A.F. Fiber-optic temperature sensor using evanescent fields in D fibers. IEEE Photonics Technol. Lett. 2005, 17, 2706–2708. [Google Scholar] [CrossRef]
- Rajan, G.; Ramakrishnan, M.; Semenova, Y.; Domanski, A.; Boczkowska, A.; Wolinski, T.; Farrell, G. Analysis of Vibration Measurements in a Composite Material Using an Embedded PM-PCF Polarimetric Sensor and an FBG Sensor. IEEE Sens. J. 2012, 12, 1365–1371. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, B.; Chen, Z.; Jiang, H.; Xing, X. Magnetic-Field Sensor Utilizing the Ferrofluid and Thin-Core Fiber Modal Interferometer. IEEE Sens. J. 2015, 15, 333–336. [Google Scholar] [CrossRef]
- Xu, J.; Huang, K.; Zheng, J.; Li, J.; Pei, L.; You, H.; Ning, T. Sensitivity Enhanced Magnetic Field Sensor Based on Hollow Core Fiber Fabry-Perot Interferometer and Vernier Effect. IEEE Photonics J. 2022, 14, 6841205. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, R.; Ying, Y.; Wang, Q. Hollow-core photonic crystal fiber Fabry–Perot sensor for magnetic field measurement based on magnetic fluid. Opt. Laser Technol. 2012, 44, 899–902. [Google Scholar] [CrossRef]
- Tien, C.L.; Hwang, C.C.; Chen, H.W.; Liu, W.F.; Lin, S.W. Magnetic Sensor Based on Side-Polished Fiber Bragg Grating Coated with Iron Film. IEEE Trans. Magn. 2006, 42, 3285–3287. [Google Scholar] [CrossRef]
- Sun, D.D.; Ran, Y.; Wang, G.J. Label-Free Detection of Cancer Biomarkers Using an In-Line Taper Fiber-Optic Interferometer and a Fiber Bragg Grating. Sensors 2017, 17, 2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, L.; Jin, L.; Ran, Y.; Sun, L.P.; Guan, B.O. Fiber Light-Coupled Optofluidic Waveguide (FLOW) Immunosensor for Highly Sensitive Detection of p53 Protein. Anal. Chem. 2018, 90, 10851–10857. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Nelson, M.T.; Teixeira, S.A.; Viapiano, M.S.; Lannutti, J.J. Cancer cell aggregate hypoxia visualized in vitro via biocompatible fiber sensors. Biomaterials 2016, 76, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wu, Z.; Zhang, B. Strain dependence of fiber Bragg grating sensors at low temperature. Opt. Eng. 2006, 45, 054401. [Google Scholar] [CrossRef]
- Wang, C. Fiber ringdown temperature sensors. Opt. Eng. 2005, 44, 030503. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shen, C.; Lu, Y.; Chen, D.; Zhong, C.; Chu, J.; Dong, X.; Chan, C.C. Liquid Refractive Index Sensor Based on a Polarization-Maintaining Fiber Loop Mirror. IEEE Sens. J. 2013, 13, 1721–1724. [Google Scholar] [CrossRef]
- Yang, X.; Luo, S.; Chen, Z.; Ng, J.H. Refractive index sensor based on fiber laser. Microw. Opt. Technol. Lett. 2007, 49, 916–918. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Liao, C.; Liu, S.; Zhou, J.; Zhong, X.; Liu, Y.; Yang, K.; Wang, Q.; Yin, G. Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer. Sens. Actuators B Chem. 2014, 199, 31–35. [Google Scholar] [CrossRef]
- Nath, P.; Singh, H.K.; Datta, P.; Sarma, K.C. All-fiber optic sensor for measurement of liquid refractive index. Sens. Actuators A Phys. 2008, 148, 16–18. [Google Scholar] [CrossRef]
- Huang, T.; Shao, X.; Wu, Z.; Sun, Y.; Zhang, J.; Lam, H.Q.; Hu, J.; Shum, P.P. A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber. Opt. Commun. 2014, 324, 53–57. [Google Scholar] [CrossRef]
- Patrick, H.J.; Williams, G.M.; Kersey, A.D.; Pedrazzani, J.R.; Vengsarkar, A.M. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technol. Lett. 1996, 8, 1223–1225. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, Z.; Ji, X.; Shui, T.; Wang, R.; Yin, C.; Zhen, S.; Lu, L.; Yu, B. Strain-insensitive and high temperature fiber sensor based on a Mach–Zehnder modal interferometer. Opt. Fiber Technol. 2014, 20, 24–27. [Google Scholar] [CrossRef]
- Ayupova, T.; Sypabekova, M.; Molardi, C.; Bekmurzayeva, A.; Shaimerdenova, M.; Dukenbayev, K.; Tosi, D. Wavelet-Based Demodulation of Multimode Etched Fiber Bragg Grating Refractive Index Sensor. Sensors 2018, 19, 39. [Google Scholar] [CrossRef] [Green Version]
- Milenko, K.; Wolinski, T.R.; Shum, P.P.; Hu, D.J.J. Temperature-Sensitive Photonic Liquid Crystal Fiber Modal Interferometer. IEEE Photonics J. 2012, 4, 1855–1860. [Google Scholar] [CrossRef]
- Wolinski, T.R.; Domanski, A.W.; Konopka, W.; Bock, W.J. Prototype fiber optic liquid crystalline sensor for pressure monitoring. IEEE Trans. Instrum. Meas. 1999, 48, 684–687. [Google Scholar] [CrossRef]
- Mathews, S.; Farrell, G.; Semenova, Y. Directional Electric Field Sensitivity of a Liquid Crystal Infiltrated Photonic Crystal Fiber. IEEE Photonics Technol. Lett. 2011, 23, 408–410. [Google Scholar] [CrossRef]
- Hu, X.-G.; Zhao, Y.; Peng, Y.; Tong, R.-J.; Zheng, H.-K.; Zhao, J.; Hu, S. In-fiber optofluidic michelson interferometer for detecting small volume and low concentration chemicals with a fiber ring cavity laser. Sens. Actuators B Chem. 2022, 370, 132467. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, X.; Wang, D.; Miao, C.; Shi, J.; Li, X.; Bai, H.; Chen, H.; Guo, C.; Yao, J. Gas Pressure Sensor with Low Detection Limit Based on Fabry-Perot Interferometer and Intracavity Sensing of Fiber Ring Laser. IEEE Sens. J. 2022, 22, 6606–6611. [Google Scholar] [CrossRef]
- Yibin, L.; Lin, W.; Vai, M.I.; Shum, P.P.; Shao, L.-Y.; He, W.; Liu, S.; Zhao, F.; Wang, W.; Yuhui, L. Fiber Optic Electric Field Intensity Sensor Based on Liquid Crystal-Filled Photonic Crystal Fiber Incorporated Ring Laser. IEEE Photonics J. 2022, 14, 6808305. [Google Scholar] [CrossRef]
- Yan, W.; Han, Q.; Chen, Y.; Song, H.; Tang, X.; Liu, T. Fiber-loop ring-down interrogated refractive index sensor based on an SNS fiber structure. Sens. Actuators B Chem. 2018, 255, 2018–2022. [Google Scholar] [CrossRef]
- Madry, M.; Alwis, L.; Binetti, L.; Pajewski, L.; Beres-Pawlik, E. Simultaneous Measurement of Temperature and Relative Humidity Using a Dual-Wavelength Erbium-Doped Fiber Ring Laser Sensor. IEEE Sens. J. 2019, 19, 9215–9220. [Google Scholar] [CrossRef]
- Zhao, Y.; Cai, L.; Li, X.-G. In-Fiber Mach–Zehnder Interferometer Based on Up-Taper Fiber Structure with Er3+ Doped Fiber Ring Laser. J. Light. Technol. 2016, 34, 3475–3481. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Liu, Y.; Shum, P.P.; Shao, L. In-Line Mach Zehnder Interferometer Based on Ytterbium Doped Fiber with Up-Taper Structure in Fiber Ring Laser and Its Application in Sensing. Sensors 2022, 22, 9196. https://doi.org/10.3390/s22239196
Lin W, Liu Y, Shum PP, Shao L. In-Line Mach Zehnder Interferometer Based on Ytterbium Doped Fiber with Up-Taper Structure in Fiber Ring Laser and Its Application in Sensing. Sensors. 2022; 22(23):9196. https://doi.org/10.3390/s22239196
Chicago/Turabian StyleLin, Weihao, Yuhui Liu, Perry Ping Shum, and Liyang Shao. 2022. "In-Line Mach Zehnder Interferometer Based on Ytterbium Doped Fiber with Up-Taper Structure in Fiber Ring Laser and Its Application in Sensing" Sensors 22, no. 23: 9196. https://doi.org/10.3390/s22239196
APA StyleLin, W., Liu, Y., Shum, P. P., & Shao, L. (2022). In-Line Mach Zehnder Interferometer Based on Ytterbium Doped Fiber with Up-Taper Structure in Fiber Ring Laser and Its Application in Sensing. Sensors, 22(23), 9196. https://doi.org/10.3390/s22239196