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Abstract: Balance disorders are caused by several factors related to functionality deficits in one or
multiple sensory systems such as vision, vestibular, and somatosensory systems. Patients usually
have difficulty explaining their dizziness, often using ambiguous words to describe their symptoms.
A common practice by clinicians is to objectively evaluate the patient’s dizziness by applying the
Sensory Organization Test (SOT), which measures the contribution of each sensory system (vestibular,
visual, somatosensory). The SOT protocol can record up to 2000 measurements in 20 s to generate
the Equilibrium Score (EQS) with its five load sensors. EQS is an indicator that reflects how well
a patient can maintain balance. However, its calculation only considers two instances from these
2000 measurements that reflect the maximum anterior and posterior sway angle during the test
performance; therefore, there is an opportunity to perform further analysis. This article aims to
use the Centre of Pressure (COP) time series generated by the SOT and describes a methodology
to pre-process and reduce the dimensionality of this raw data and use it as an input for machine
learning algorithms to diagnose patients with balance disorder impairments. After applying this
methodology to data from 475 patients, the logistic regression model (LR) produced the highest
f1-score with 76.47%, and the support vector machine (SVM) performed almost as well, with an
f1-score of 76.19%.

Keywords: balance disorder; approximate entropy; empirical mode decomposition; machine
learning model

1. Introduction

Balance is crucial for an individual’s mobility and physical independence and is
commonly impacted with ageing [1]. The human balance system is a complex system of
sensory organs and mechanisms, including vestibular, visual, and somatosensory inputs.
The constant flow of information from those inputs, as well as a complex array of motor
outputs [2] is processed in the brain to generate the sensory inputs controlling the eye,
head, neck, trunk, and leg position to maintain body equilibrium.

Diagnosing the root cause of dizziness can be difficult for clinicians due to subjective
symptom explanations that cannot be measured and the wide range of health conditions
that these symptoms can be related to [3]. Dizziness is commonly used to describe a range
of sensations, such as vertigo, light-headedness, faintness, and imbalance. Patients often
find it hard to explain their dizziness symptoms and use ambiguous terms that could
involve several possible causes. Therefore, a wide range of root causes and imprecise
dizziness symptom descriptions make it difficult for clinicians to assess dizziness and select
optimum treatments.

Sensors 2022, 22, 9200. https://doi.org/10.3390/s22239200 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239200
https://doi.org/10.3390/s22239200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9649-5391
https://orcid.org/0000-0001-8752-7224
https://orcid.org/0000-0002-5211-9818
https://orcid.org/0000-0002-0955-5702
https://doi.org/10.3390/s22239200
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239200?type=check_update&version=2


Sensors 2022, 22, 9200 2 of 15

Computerised Dynamic Posturography (CDP) evaluates the contribution of each
sensory system (vestibular, visual, somatosensory) to maintaining body equilibrium under
static or dynamic conditions. CDP protocols aim to detect abnormalities in the use of the
sensory systems and the most commonly used protocol is the Sensory Organization Test
(SOT) [4]. The principle of the SOT is to create a selective disruption in the support surface,
the visual surroundings, or both, to measure a person’s ability to use the remaining sensory
inputs to keep body balanced [5]. As is shown in Figure 1, the SOT has six test conditions.
The difficulty of each condition gradually increases from condition one up to condition
six. In the first condition, everything is steady, and in the sixth condition, everything is
non-fixed (visual surroundings and support plate).
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Figure 1. The 6 conditions of the Sensory Organization Test (SOT) constitute the following: (1) eyes
open, stable support; (2) eyes closed, stable support; (3) sway-referenced vision, stable support;
(4) eyes open, sway-referenced support; (5) eyes closed, sway-referenced support; and (6) eyes open,
sway-referenced vision, and sway-referenced support [6].

The Smart Equitest (Neurocom/Natus) Computerised Dynamic Posturography can
perform SOT evaluation. This machine can control the movement of the visual surround-
ings and force plate, and has a harness to ensure patient safety throughout the testing
protocol. As part of the diagnostic assessment, the Smart Equitest generates a standard
comprehensive report that includes the Equilibrium Scores (EQS) of the six test conditions,
four ratios of sensory analysis, results of strategy analysis, and information about the
Center of Gravity (COG) alignment. The four ratios of sensory analysis are Somatosensory
(SOM), Visual (VIS), Vestibular (VEST), and Visual Preference (PREF). In conjunction with
EQS, these results help to identify abnormal contributions in the use of an individual’s
sensory systems [7].

The EQS is an indicator that reflects overall balance with a single value between 0 and
100 for each SOT condition. According to Zammit (2008) [8], an EQS of 100 represents
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perfect balance (no sway), and an EQS of 0 represents when sway exceeds the theoretical
stability limits. EQS is calculated according to a simple formula:

EQS =
12.5− [θmax(ant)− θmax(post)]

12.5
(1)

where θmax(ant) is the maximum anterior sway angle in degrees during the test conditions,
θmax(post) represents the posterior sway angle in degrees for the same test conditions,
12.5 is the limit of sway in degrees in the sagittal plane in a normal stance, and 12.5◦ is
assumed to be the limit of stability for a normal individual (approximately 7◦ anteriorly
and 5◦ posteriorly [9]). However, according to Chaudhry et al. (2011) [10] there are some
ambiguities/disadvantages that should be considered while using EQS:

• The stability limits may vary significantly by age and height.
• There is an asymmetry in the average value representing the limit of stability for

normal balance participants (approximately 7◦ anterior and 5◦ posterior sway) that is
disregarded in the EQS equation.

• More than one combination of anterior and posterior sway degrees can result in the
same EQS value.

• The EQS only considers the two extreme values of the sway angle in a given test
condition, not the complete measurement history (2000 data points) in a trial of 20 s.

The CDP machine is able to measure the centre of pressure (COP) at a rate of 100 Hz
from the load cells located in the support plate during the performance of the SOT condi-
tions. The COP is the sum of all the pressure forces over the CPD platform generated by the
patient during the SOT conditions. These COP measurements are part of the SOT raw data,
and the CDP machine uses them to generate the EQS. The COP has demonstrated clinical
utility as an indicator of postural control performance [11,12]. According to Cavanaugh
and Guskiewic (2005) [12], the COP’s erratic appearance contains a hidden structure, or
orderliness, that emerges over time due to the interactions among underlying postural con-
trol system components. Therefore, considering the ambiguities mentioned by Chaudhry
et al. (2011) [10], it was decided to use the raw COP data (2000 points) from SOT conditions
in this study.

It is essential to consider that coordinated human movement comprises the integration
of multiple degrees of freedom (e.g., motor unit, muscle, joint) into coherent functional
units. In research on human movement, it is widely accepted that there is a redundancy in
the degrees of freedom that allows our control system to generate different solutions for the
same task [13]. Additionally, a growing body of literature expresses that postural stability
is achieved through the interaction of various systems. Therefore, resulting postural control
measurement techniques may be naturally nonlinear and thus might be best studied via
analyses based on nonlinear dynamical approaches [14].

According to Ivanenko and Gurfinkel (2018) [15], the postural control system in hu-
mans is characterised by non-linear behavior. In this situation, one of the most popular tools
used in human signal analysis is entropy. Entropy quantifies the regularity of nonlinear
dynamics systems. Thus, the more regular a series, the more predictable and less complex it
will be, indicating a less adaptive system. Over time, the mathematical methods to calculate
entropy have evolved from Approximate Entropy (ApEn) up to the Multi-scale Entropy
(MSE) [16].

The SOT protocol measures the contribution of each sensory system to the maintenance
of balance, but it does not classify or diagnose patients. Previous studies have used COP,
Empirical Mode Decomposition (EMD), or ApEn to create new indices to enhance the
performance of the SOT protocol in measuring the sensory system contributions or to find
significant effects of illnesses over the SOT conditions using these new indices [4,6,7,9,10].
Keeping in mind that the EQS is calculated from 2 points out of the 2000 points recorded by
the CDP machine, we considered that there is an opportunity to obtain more information
from this data. Therefore, this study aims to investigate whether a machine learning
approach can expand the usability of the SOT raw data to classify patients into particular
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balance impairment groups. For that, we proposed a feature-based method using the ApEn
algorithm, representing each COP sway trajectory with a single value, thus reducing the
input data dimensionality and improving machine learning performances. The rest of
this paper is structured as follows. Section 2 introduces the participants’ description and
definition of the main methods used in this article. Section 3 describes the characteristics
of the reduced dataset after applying ApEn and the resulting predictive power of the
machine learning model. Section 4 describes observations from Sections 3 and 5 formulates
conclusions from the previous analysis.

2. Materials and Methods
2.1. Subjects

The four most frequent balance disorder diagnoses were selected from anonymised
patient records collected from 2012 to 2021. These diagnoses are Normal Balance, Imbalance,
Traumatic Brain Injury (TBI), and Unilateral Vestibular Weakness Right (UVW Right).
Figure 2 shows the number of patients and proportion of the selected balance disorder
impairments. The Imbalance diagnosis group is the largest, with 39% of the total number
of patients, while, with 12%, the UVW Right is the smallest group. In more detail, Figure 2
shows that the Normal Balance group has 130 individuals (mean age 46.30 ± 14.27, range
age: 8–84), the Imbalance group has 185 patients (mean age 56.84 ± 19.48, range age:
6–89), the TBI group has 103 patients (mean age 48.51 ± 15.71, range age: 7–81), and the
UVW Right group has 57 patients (mean age 61.19 ± 13.17, range age: 26–85) making a
total of 475 patients. Globally the patients’ ages ranged between 6 and 89 years old (age
52.7 ± 17.5 years; height 169.3 ± 10.4 cm.). The data used in this study come from the SOT
performance, which is part of the patients’ balance disorder diagnosis process.
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2.2. Approximate Entropy (ApEn)

ApEn evaluates the amount of randomness in each test condition of collected COP
data. The ApEn algorithm calculates the probability that a short sequence of consecutive
data points repeats throughout a more extended temporal series of points, expressing the
average probability in logarithmic form. ApEn generates a single value that represents
how random (or predictable) a time series is. An ApEn with value zero corresponds to
a time series in which the sequences of data points are perfectly repeatable (e.g., a sine
wave) [17,18]. A consideration mentioned by Pincus and Goldberger (1994) [19] is that
trending on time series will spuriously lower the ApEn estimates. Therefore, from a
statistical perspective, it is necessary to eliminate any trend before making meaningful
interpretations from the ApEn algorithm results.
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In more detail, Pincus and Goldberger (1994) [19] proposed the algorithm to calculate
ApEn as follows, given N data points u(1), u(2), ... u(N), two parameters must be fixed
m (embedding dimension) and r (comparison tolerance). After that, we define the blocks
by x(i) = [u(i), ..., u(i + m − 1)] and x(j) = [u(j), ..., u(j + m − 1)] and calculate the distance
between them as d[x(i), x(j)]. Then we calculate the value Cm

i (r) given by

Cm
i (r) =

(no. of j ≤ N − m + 1 such that d[x(i), x(j)] ≤ r)
(N − m + 1)

(2)

The Cm
i (r) measure, within a tolerance, r the regularity, or frequency, of patterns

similar to a given pattern of length m. With Equation (2), the ApEn is given by

ApEn(m, r, N) =
1

(N−m + 1)

N−m+1

∑
i−1

log Cm
i (r)− 1

(N−m)

N−m

∑
i−1

log Cm+1
i (r) (3)

The ApEn calculations are performed with the Python Library Antropy.

2.3. Empirical Mode Decomposition (EMD)

According to Gow et al. (2015) [20], the Empirical Mode Decomposition (EMD) as a fil-
ter bank is the technique most commonly used to overcome the effect of nonstationary data.
The EMD method was specially developed for decomposing non-linear, non-stationary
signals into their intrinsic mode functions (IMFs). Unlike Fourier and wavelet methods,
there are no a priori assumptions about the nature of the signal, and it does not rely on a
specific basis (e.g., sinusoidal or Haar wavelet function) to decompose the signal. After
decomposition by EMD, the resulting IMFs can be recombined in different ways, represent-
ing a range of characteristics of the original signal [21]. It is expected that the trend of the
original signal is captured by the IMFs with lower frequencies. Therefore, by subtracting
them, the process of detrending can be achieved. As a rule of thumb, Costa et al. (2007) [22]
combine the five highest IMF frequencies to be analysed by techniques such as ApEn.

The algorithm to apply EMD can be summarised as follow:

1. Identify all extrema of the signal x(t).
2. Fit the maxima and minima to an individual envelope eup(t) and elow(t).
3. Compute the average:

m(t) =
eup(t) + elow(t)

2
(4)

4. Extract the detail:
d(t) = x(t)− m(t) (5)

5. Check the stopping criterion:

∑t
(d(t)− x(t))2

d2(t)
< ε (6)

6. If d(t) does not satisfy the stopping criterion, another iteration from steps 1 to 5 using
d(t) in step 1 is undertaken until the stopping criterion is fulfilled.

7. When the stopping criterion is fulfilled, only then is the d(t) considered as an IFM.
After that, the original x(t) is updated by subtracting the IFM, and the loop starts
again at step 1.

8. The decomposition stops when d(t) approaches a monotonic function where is it not
possible to extract any extrema.

This study performed the EMD calculation using the Python Library PyEMD.
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2.4. Machine Learning Methods

According to Molnar (2020) [23], machine learning is a set of methods that allows
computers to learn from data to make and improve predictions. Machine learning is a
shift from “normal programming” where a programmer gives all the instructions to the
computer to “indirect programming,” where the algorithm itself creates its own rules
(instructions) directly from the data. Some of the supervised machine learning techniques
will be used in this project and are briefly described in the following lines:

• Random Forest (RF) is a general purpose regression and classification machine learning
algorithm. Its approach generates several randomised decision trees and aggregates
their votes for a final prediction. RF has shown good performance in datasets where
the dimensional feature space is greater than the number of observations [24].

• Linear Discriminant Analysis (LDA) is a technique for data classification and dimen-
sionality reduction. It works by maximising the distances between the means of the
categories and minimising the variability within them. After fitting the training data, the
method generates a linear decision boundary to classify unlabelled observations [25].

• Support Vector Machine (SVM) is an algorithm that looks for a particular line or
decision boundary, termed hyperplane, which efficiently separates classes and avoids
extra overfitting. This decision boundary is created using a soft margin which is a
method that allows misclassification. After fitting the data, the algorithm arranges
the hyperplane in such a way that results in better predictions. SVM is capable of
performing linear and non-linear classification. For non-linear classification, SVM uses
a Kernel function that helps to map the data to high dimensional space. This allows
SVM to create non-linear boundaries for classifications [26].

• Logistic Regression (LR), regardless of its name, is a linear model for classification
rather than regression. It has its basis in taking the natural logarithm of the odds as
a regression function of the predictors. LR can handle both binary and multiclass
classification. Unlike statistics approaches, in the machine learning, this approach
commonly applies regularisation methods to avoid overfitting [27,28].

2.5. COP Time Series Pre-Processing

The COP data consist of 2000 observations over time for each patient. It is not unusual
that the data sets have a trend; as an example, Figure 3 shows the COP time series of
one patient. According to Pincus and Goldberger (1994) [19], trending on the time series
underestimates the ApEn values; therefore, Empirical Mode Decomposition (EMD) was
applied as a filter bank to remove the trend from the COP data for each test condition of
each patient.
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EMD decomposes the COP time series into IMFs. Detrending the COP time series
is possible by extracting and adding the first five IMFs with the highest frequencies [22].
Figure 4 shows the detrending process using EMD. The plots on the top side represent the
decomposition of the COPy presented in Figure 3 into eight IMFs. As we can see, the first
IMFs captured the higher frequencies of the COP time series, and this gradually decreases
up to the eighth IMF, which means that the trend is captured by the last IMFs. This order
allows application of the next step, detrending the COP by only adding the first five IMFs.
This result can be seen at the bottom of the plot. Given that there are six test conditions of
SOT with two COP components, one time series for the axis x and the other for the axis y,
each patient ends up with 12 detrended COP time series.
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COP is characterised by an erratic appearance. To ensure that the time series still
preserved its dependency structure, the complexity (ApEn) of the original detrended COP
time series was compared with a shuffled version of itself. Figure 5 shows the results of
this comparison, and there is a clear difference between the detrended COP time series
complexity and the randomised COP time series on SOT condition 1. This behaviour is
true for all of the SOT conditions.
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After applying EMD as a detrending method, ApEn was applied to the detrended
COP time series. As a result, we obtained 12 unique values of ApEn per patient, which will
be used in the next section.

2.6. Testing Normality of ApEn Values

ApEn values are the only feature that will be used as the input for machine learning
algorithms to assess if it is possible to expand the usage of the SOT raw data. As there are
four classes, we will take two approaches. First, we will train the model with the two classes
with higher differences. Secondly, we will train the model to classify patients into four
classes. To achieve the first approach, it is necessary to determine if parametric tests can be
applied to test differences between classes. Therefore, the Shapiro–Wilk test was applied.
The Shapiro–Wilk test is a frequentist statistical method that calculates the W statistic to
assess whether the sample data comes from a normally distributed population. The W test
is given by

W =

(
∑n

i=1 aix(i)
)2

∑n
i=1(xi − x)2 (7)

where xi are the ordered random values and ai are constants generated from the means,
covariances, and variances sampled from the standard normal distribution [29]. This
study used the scipy.stat.shapiro Python Library to perform all the calculations of the
Shapiro–Wilk test for normality.
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2.7. Finding the Two Classes with Significant Differences

The Two-Sample Kolmogorov–Smirnov test allows us to compare two samples and
tells us whether both samples were drawn from the same (but unknown) distribution. This
test evaluates the greatest distance between the cumulative distribution function (CDFs) of
each sample using the statistic D that is given by

Dm, n = max
x
|F(x)− G(x)| (8)

where F(x) and G(x) represent the observed cumulative function of the samples m and n,
respectively. Then, the D statistic is compared with the respective Kolmogorov–Smirnov
distribution to obtain the p-value of the test. This study uses the scipy.stats.ks_2samp
Python Library to perform all the Two-Sample Kolmogorov–Smirnov calculations.

The data analytics process involves an exploratory searching phase for significant
differences between groups to select two classes with a higher chance of reaching higher
predictive power in machine learning approaches. The Two-Sample Kolmogorov–Smirnov
test allows us to explore various combinations between classes. Additionally, results from
a study by Cohen et al. (1996) [1] suggest that age-associate changes in the ability to
maintain balance begin mid-life (45 years old). After our exploratory searching phase,
and considering our data structure, we recommend splitting our classes at 47 years old.
With this split, we found classes over 47 years old with significant differences across SOT
conditions that can be used as an input for machine learning algorithms. Therefore, we
will apply two approaches to assess this study’s aim. Firstly, to train machine learning
models with the selected classes with individuals over 47 years old with a higher chance of
higher predictive performance. Secondly, to train machine learning models using all the
individuals of our dataset.

3. Results

After applying the exploratory searching phase of two classes with a higher chance
of reaching higher predictive power by using the Shapiro–Wilk test (normality test) and
Two-Sample Kolmogorov–Smirnov test (to compare two samples), the results showed that
by splitting the data for younger patients (≤47 years old) and older patients (>47 years old),
the classes with significant differences across all the SOT conditions are Normal individuals
and TBI patients older than 47 years old; please see Table A2 for more details of the
Two-Sample Kolmogorov–Smirnov Test results. The Shapiro–Wilk test showed that these
two groups were drawn from a non-normal distribution; please see Table A1 for more
information. Additionally, the ANOVA test was applied to the individuals’ weight in these
two groups, showing no significant difference. Therefore, Normal individuals and TBI
patients over 47 years old were selected to train and test machine learning models in the
first approach.

The second approach consists of training and testing machine learning models using
the ApEn values from all the patients in the data. It was found that one of the classes
has a different weight mean population. Further analysis shows that the Imbalance class
(class 1) is the only group significantly different from the others. Based on the fact that the
exploratory analysis of the ApEn values for each SOT condition per each class presented
similar locations, shapes, and dispersion in their distributions, this study proceeded to train
machine learning models to classify four classes of balance impairments (Normal Balance,
Imbalance, TBI, and UVW Right).

Our first approach predicts two diagnoses (Normal Balance or TBI) among patients
over 47 years old. The second approach predicts four diagnoses for all patients (Normal
Balance, Imbalance, TBI, and UVW Right). Table 1 shows the results of the prediction
metrics for accuracy, precision, recall, and f1-score. In general, the best f1-score results were
found with the model LR, with an f1-score of 76.47%, and SVM, with an f1-score of 76.19%,
for the first approach. These are good results considering that only the SOT raw data were
used to reach this power of prediction. On the other hand, in the second approach, the best
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f1-score results were obtained for LR with an f1-score of 32.28%, followed by LDA with an
f1-score of 32%. This lower performance was expected since the location and shape of the
ApEn for each COP condition distribution were similar.

Table 1. Machine learning models—prediction metrics performance.

Models Accuracy Precision Recall F1 Score

Patients > 47||Normal Balance vs. TBI

LR 72.74% 72.22% 81.25% 76.47%

RF 72.41% 78.57% 68.75% 73.33%

LDA 62.06% 60.87% 87.50% 71.79%

SVM 65.51% 61.54% 100.00% 76.19%

All Patients || Normal Balance, Imbalance, TBI, UVW Right

LR 43.69% 36.04% 34.73% 32.28%

RF 40.34% 32.50% 31.28% 30.31%

LDA 42.86% 34.44% 33.85% 32.07%

SVM 39.49% 32.06% 31.29% 29.91%

4. Discussion

Detrending COP trajectories is a critical step in pre-processing SOT raw data. An
important consideration is that the physiological bases of the COP are not completely
well-understood. In that sense, EMD is well-suited to detrend time series such as COP,
since it does not rely on a priori signal nature assumptions or on specific bases, such as
sinusoidal or Haar wavelet function, to decompose the COP time series into IMFs [20]. The
resulting IMFs of the EMD decomposition can be recombined so that the IMF that captures
the higher frequencies can be excluded, thus, obtaining a detrended time series.

This study combined the first five IMFs and the resulting detrended COP could then be
processed with ApEn. However, the different patient behaviour during each SOT condition
generated dissimilar numbers of IMFs. Therefore, recombining a fixed number of IMFs
to detrend the COP of all patients could result in information loss in the detrended COP
time series. This possibility was verified by testing if the resulting detrended COP came
from a random process by shuffling the detrended COP and comparing the ApEn with the
non-shuffled detrended COP. Figure 5 shows that the non-shuffled COP ApEn values are
lower than the shuffled ones, which means that this methodology still captures dynamics
patterns of the postural control of the patient.

The postural control system in humans can be described as a non-linear behaviour [15].
In non-linear dynamics systems, entropy quantifies the regularity of the system. This
study used ApEn to indicate how regular or predictable a time series is by measuring its
degree of randomness, regardless of the process that generated it. Thus, the more regular or
predictable a time series is, the less complex it will be, which is indicative of a less adaptive
system [16]. Less adaptive systems are associated with balance disorder impairments;
therefore, there are usually represented with lower ApEn values. In our cases, balance
disorders that present higher differences among their ApEn across the COP of its SOT
conditions are more likely to be correctly classified by machine learning models.

Balance disorder impairments remain a diagnostic challenge and frustrating task for
clinicians [3,30–33]. An appropriate balance disorder diagnosis involves the evaluation of a
constellation of symptoms and underlying causes. This study has reached an f1-score up
to 76.47% for LR and 76.19% for SVM using only ApEn to characterise each patient. Even
though these results are not a definitive final solution to performing diagnosis, we can
classify them as good models, considering the current complexity involved in diagnosing
balance impairments and the fact that only ApEn was involved in the result.
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Previous studies have been using COP, EMP, and ApEn to enhance the current function
of the SOT protocol, which evaluates each sensory system’s contribution to maintaining
balance. This article aims to take a further step and use the ApEn of the COP trajectories to
extend the usability of SOT raw data to diagnose patients. Our result shows that machine
learning approaches can extract valuable information from SOT raw data to classify patients
with balance impairments. Therefore, there is a potential to expand the usability of SOT
raw data to help clinicians further.

There are several ways to improve the performance of machine learning models, by
applying methods such as feature engineering, adjusting hyperparameters, and trying
multiple algorithms. Future works can focus on two main approaches. On the one hand,
since we are using only ApEn in this study, increasing the dimensionality by adding
features from clinical historical patient records could be a methodology to improve our
current f1-score performance. Expanding the dimensionality and keeping the same number
of instances (patients) could lead to overfitting; therefore, performance evaluation should
consider a process to evaluate overfitting. On the other hand, the methodology explained
in this paper with a large cohort can be used to improve performance. Ideally, future works
will have a mix of the two approaches to improve the f1-score of our model, a large cohort,
and enrichment of patient information with their historical patient records.

Machine learning methods can create their own rules directly from the data to perform
classification tasks. This set of rules is so complex that, most of the time, it is not inter-
pretable by humans. For that reason, they are called the black box of the machine learning
model. This study has shown that machine learning can extract useful information from
SOT raw data to classify balance impairments. Having said that, future work can focus on
developing explainability methods to make the black box (set of internal rules and mechanism
of machine learning models) interpretable to humans. This information can help clinicians in
their diagnosing process and could help create new lines of research for new findings.

Limitations

One limitation of this study was related to the access to patients’ clinical records. Clin-
ical record information contains features that could help improve machine learning models’
performance. Patient data privacy policies only allow this study the use of anonymised
SOT raw data. Future works can consider expanding access to anonymised clinical records,
which could lead to better performance.

Our study shows that Normal individuals and TBI patients have the best chance of
reaching better machine-learning performance. However, future studies could consider
the evaluation of a larger cohort to generalise this behaviour over Imbalance and UVW
Right patients.

Additionally, machine learning models primarily focus on classification rather than
showing the underlying personalised features that the model took into account to classify a
patient with a particular balance disorder. In healthcare, this type of analysis is essential for
the clinician diagnosis process. Extension of this study can consider the development of
explainability methods to provide these insights to clinicians.

5. Conclusions

The human body is described as a dynamic system with redundancy in the degree of
freedom, allowing it to generate numerous strategies to adapt to its environmental condi-
tions. The SOT protocol helps measure the sensory system’s contributions under various
conditions; however, it does not provide a final balance disorder diagnosis. This study has
described methodological considerations associated with processing COP trajectories with
EMD and entropy measures, such as ApEn, that can contribute to inserting information in
machine learning models related to the level of adaptability of the patient’s balance system.
Only using ApEn values, our models reached f1-scores up to 76.47% for logistic regression
(LR) and 76.19% for support vector machine (SVM). The results show that there is a po-
tential to expand the current usage of SOT raw data to help balance disorder diagnosis,



Sensors 2022, 22, 9200 12 of 15

and future research could use ApEn conjointly with other clinical patient records data to
evaluate machine learning performance improvements.
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Appendix A

Table A1. Shapiro-Wilk test—Test of normality.

COFx—Patients ≤ 47 years old COFx—Patients > 47 years old

Class 0: N Class 1: I Class 2: T Class 3: U Class 0: N Class 1: I Class 2: T Class 3: U

n 71 64 46 7 n 59 121 57 50

Cond1 0.442 0.0424 0.5162 0.0602 Cond1 0.2637 0.0001 0.0086 0.2465

Cond2 0.0085 0.0172 0.0221 0.5669 Cond2 0.0358 0.0000 0.0000 0.0015

Cond3 0.0288 0.0226 0.0137 0.3386 Cond3 0.0643 0.0000 0.0318 0.0007

Cond4 0.5113 0.0067 0.0001 0.7692 Cond4 0.0002 0.0182 0.0037 0.0002

Cond5 0.9594 0.161 0.0001 0.9073 Cond5 0.7898 0.2995 0.128 0.0333

Cond6 0.1344 0.5797 0.0024 0.2274 Cond6 0.1682 0.0501 0.0252 0.0348

COFy—Patients ≤ 47 years old COFy—Patients > 47 years old

Class 0: N Class 1: I Class 2: T Class 3: U Class 0: N Class 1: I Class 2: T Class 3: U

n 71 64 46 7 n 59 121 57 50

Cond1 0.0004 0.0002 0.0048 0.0039 Cond1 0.0016 0.0047 0.0000 0.0001

Cond2 0.0000 0.0000 0.0000 0.1991 Cond2 0.0127 0.0003 0.0000 0.0018

Cond3 0.0000 0.0000 0.0000 0.2693 Cond3 0.0000 0.0001 0.0000 0.0000

Cond4 0.016 0.0051 0.0727 0.9099 Cond4 0.0633 0.242 0.0015 0.7876

Cond5 0.3549 0.098 0.0206 0.6259 Cond5 0.3491 0.0343 0.0197 0.0905

Cond6 0.0726 0.2741 0.1112 0.7791 Cond6 0.1924 0.0192 0.0276 0.0067

Null Hypothesis: Samples come from a normally distributed population. Red colours represent p-values < 0.05.
Yellow colours represent p-values < 0.10.

Table A1 provides information about the normality of the SOT conditions using the
Shapiro–Wilk test. According to this table, all the conditions with red numbers (p-values < 0.05)
represent distributions that are not normal. Additionally, the conditions with yellow numbers
(0.05 ≤ p-values ≤ 0.10) were close to being rejected as normal distribution.
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Table A2. Two-Sample Kolmogorov–Smirnov Test.

COFx—Patients ≤ 47 years old COFx—Patients > 47 years old

Class 0: N Class 1: I Class 2: T Class 3: U Class 0: N Class 1: I Class 2: T Class 3: U

n 71 64 46 7 n 59 121 57 50

Cond1 0.60 ± 0.23 I 0.71 ± 0.26 N,TT 0.52 ± 0.21 II 0.66 ± 0.27 Cond1 0.60 ± 0.23 I,T 0.55 ± 0.26 N 0.47 ± 0.27 N 0.53 ± 0.23

Cond2 0.52 ± 0.24 T 0.53 ± 0.26 T 0.40 ± 0.19 N,I 0.49 ± 0.21 Cond2 0.47 ± 0.20 TT 0.44 ± 0.24 TT 0.28 ± 0.16 NN,II,UU 0.41 ± 0.18 TT

Cond3 0.58 ± 0.25 TT 0.56±0.28 TT 0.43 ± 0.24 NN,II 0.50 ± 0.25 Cond3 0.51 ± 0.23 TT 0.48 ± 0.25 TT 0.33 ± 0.17 NN,II,UU 0.47 ± 0.20 TT

Cond4 0.42 ± 0.14 TT 0.44 ± 0.23 TT 0.33 ± 0.16 NN,II 0.46 ± 0.23 Cond4 0.42 ± 0.19 TT 0.34 ± 0.15 0.28 ± 0.14 NN,U 0.39 ± 0.17 T

Cond5 0.30 ± 0.10 TT 0.29 ± 0.12 0.25 ± 0.13 NN 0.28 ± 0.09 Cond5 0.30 ± 0.11 TT 0.26 ± 0.12 TT 0.20 ± 0.11 NN,II,UU 0.27 ± 0.14 TT

Cond6 0.40 ± 0.13 I,TT 0.33 ± 0.15 N,T 0.30 ± 0.14 NN,I 0.40 ± 0.14 Cond6 0.32 ± 0.16 TT 0.28 ± 0.14 T 0.24 ± 0.13 NN,I,U 0.29 ± 0.14 T

COFy—Patients ≤ 47 years old COFy—Patients > 47 years old

Class 0: N Class 1: I Class 2: T Class 3: U Class 0: N Class 1: I Class 2: T Class 3: U

n 71 64 46 7 n 59 121 57 50

Cond1 0.43 ± 0.23 0.44 ± 0.23 0.37 ± 0.21 0.39 ± 0.29 Cond1 0.42 ± 0.20 TT 0.39 ± 0.19 TT 0.31 ± 0.20 NN,II,U 0.38 ± 0.17 T

Cond2 0.25 ± 0.12 0.23 ± 0.15 0.2 ± 0.12 0.21 ± 0.11 Cond2 0.27 ± 0.12 TT 0.28 ± 0.13 TT 0.17 ± 0.08 NN,II,UU 0.24 ± 0.12 TT

Cond3 0.34 ± 0.16 II,TT 0.28 ± 0.19 NN 0.24 ± 0.13 NN 0.32 ± 0.18 Cond3 0.33 ± 0.15 TT 0.34 ± 0.17 TT 0.24 ± 0.12 NN,II,UU 0.32 ± 0.14 TT

Cond4 0.25 ± 0.11 I 0.21 ± 0.1 N 0.21 ± 0.1 0.22 ± 0.13 Cond4 0.28 ± 0.10 TT 0.28 ± 0.12 TT 0.20 ± 0.12 NN,II,UU 0.27 ± 0.09 TT

Cond5 0.20 ± 0.07 0.19 ± 0.07 0.17 ± 0.09 0.20 ± 0.08 Cond5 0.23 ± 0.09 TT 0.21 ± 0.11 0.18 ± 0.11 NN,II 0.22 ± 0.12

Cond6 0.27 ± 0.10 II,TT 0.22 ± 0.11 NN 0.20 ± 0.1 NN 0.23 ± 0.13 Cond6 0.26 ± 0.12 0.26 ± 0.13 0.23 ± 0.12 0.27 ± 0.12

Mark of “N” means significant difference in comparison with Class 0: Normal Balance. Mark of “I” means significant difference in comparison with Class 1: Imbalance. Mark of
“T” means significant difference in comparison with Class 2: TBI. Mark of “U” means significant difference in comparison with Class 3: UVW Right. Single character represents
p-values < 0.05. Twin characters represents p-values < 0.01.
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Table A2 provides information about comparing each diagnosis with the other(s) using
the Two-Sample Kolmogorov–Smirnov Test. Those diagnoses with a significant difference
are represented with an initial letter diagnosis superscript to indicate that they are different.
According to Table A2, Normal Balance (N) and Traumatic Brain Injury (T) patients 47 years
old or older show a consistent difference across all the SOT conditions.
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