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Abstract: Smartphone-based pedometer sensor telemedicine applications could be useful for mea-
suring disease activity and predicting the risk of developing comorbidities, such as pulmonary or
cardiovascular disease, in patients with rheumatoid arthritis (RA), but the sensors have not been
validated in this patient population. The aim of this study was to validate step counting with an
activity-tracking application running the inbuilt Android smartphone pedometer virtual sensor in
patients with RA. Two Android-based smartphones were tested in a treadmill test-bed setup at six
walking speeds and compared to manual step counting as the gold standard. Guided by a facilitator,
the participants walked 100 steps at each test speed, from 2.5 km/h to 5 km/h, wearing both devices
simultaneously in a stomach pouch. A computer automatically recorded both the manually observed
and the sensor step count. The overall difference in device step counts versus the observed was
5.9% mean absolute percentage error. Highest mean error was at the 2.5 km/h speed tests, where
the mean error of the two devices was 18.5%. Both speed and cadence were negatively correlated to
the absolute percentage error, which indicates that the greater the speed and cadence, the lower the
resulting step counting error rate. There was no correlation between clinical parameters and absolute
percentage error. In conclusion, the activity-tracking application using the inbuilt Android smart-
phone pedometer virtual sensor is valid for step counting in patients with RA. However, walking at
very low speed and cadence may represent a challenge.

Keywords: rheumatoid arthritis; pedometer; activity tracker; smartphone; comorbidity

1. Introduction

Disease activity and impact of disease in rheumatoid arthritis (RA) are typically
measured with questionnaires such as the health assessment questionnaire disability index
(HAQ-DI) or composite scores such as the disease activity score (DAS28) [1,2]. These
methods are typically performed only at hospital visits and therefore risk missing signs of
increased disease activity that occurs between visits. Also, self-reported information about
physical activity can be biased due to the risk of reporting error [3].

Measuring physical activity continually may assist in the early discovery of relapses [4].
In addition, cardiovascular and pulmonary mortality are elevated in patients with RA
compared to the general population [5,6]. Measuring physical activity may be relevant for
predicting the risk of developing comorbidities such as cardiovascular disease [7].

Dedicated activity tracker devices developed for research can measure physical activity
in healthy individuals [8]. Recently this type of device was validated in RA patients to
investigate physical activity [9]. A range of potential issues related to long-term tracking
of patients exists with such advanced activity trackers. Firstly, they can only be carried
for a limited period of time before they need recharging or offloading of data. Next,
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they are expensive to obtain and maintain, which makes them unsuitable for large long-
term cohort studies. A low-cost alternative to this is to use the physical activity data
from the participants’ personal smartphones using a dedicated and secure activity tracker
application (app) utilizing the inbuilt smartphone pedometer virtual sensor. This incurs no
added costs for equipment, assuming participants already have a phone with an internet
connection, and can arguably be feasible to use for long-term clinical trials. This method
may be reliable in healthy individuals [10], but the validity has never been tested in patients
with RA and other diseases and conditions that impact mobility. This could be important
since the walking pattern in patients with RA could likely be different from that of healthy
individuals [11].

The aim of this study was, for the first time, to validate step counting with an activity
tracker app running the inbuilt Android smartphone pedometer in patients with RA.

2. Materials and Methods
2.1. Study Population and Recruitment

Patients with RA were recruited at a planned visit in the outpatient clinic at the De-
partment of Rheumatology, Aarhus University Hospital, Denmark. Inclusion criteria were:
(1) diagnosis of RA, (2) at least 18 years of age, (3) able to provide written informed consent.
Clinical data relevant for characterization of patients with RA, including sex, age, disease
duration, prosthetic joint, previous fractures, erosive disease, anti-citrullinated peptide
antibody (ACPA) status, IgM rheumatoid factor (RF) status, and clinical data relevant for
characterization of disease activity in patients with RA and thereby the ability to walk,
including swollen joints, tender joints, HAQ-DI, DAS28-CRP, and visual analogue score
(VAS) pain, were obtained by KKK from the Electronic Patient Journal of Central Denmark
Region and the nationwide quality registry for patients with rheumatic diseases [1,2,12].
All subjects gave written informed consent. The study was assessed by the Central Den-
mark Region Committees on Health Research Ethics and did not need ethical approval.
Data were collected anonymously.

2.2. Experimental Design

The study was conducted using a treadmill (Kilberry PMT-4550, Shanghai, China)
in a laboratory setting at the Department of Rheumatology, Aarhus University Hospital.
During the test, patients carried two Android smartphones in a waist pouch at the front
right hip to ensure equal placement. A Google Pixel 4 Android smartphone (Google Inc.,
Mountain View, CA, USA) and a Samsung Galaxy A02 Android smartphone (Samsung,
Seoul, Republic of Korea), both running Android 10, were used.

The two study smartphones had the custom-made pedometer application BeSafe
installed, which was developed by the authors (Department of Electrical and Computer
Engineering, Aarhus University, Denmark), receiving step information from the Android
Step counter virtual sensor application programming interface (API), which was introduced
as part of Android SDK 19, provided by Google (Google Inc., Mountain View, CA USA).

Data was sent in soft real time to a computer using a WiFi network data collection
platform. BeSafe was built to allow for full control of the data collection and distribution
process. BeSafe was made using the Xamarin C# Android framework and developed
using Visual Studio 2019, both provided by Microsoft (Microsoft Corporation, Redmond,
WA, USA), and was built using the Android 29 SDK targeting Android version 10 and
higher (Google Inc., Mountain View, CA, USA).

In theory, BeSafe can be replaced by any third-party app running the same Android
step counter virtual sensor, as long as the data can be collected during or after the experi-
ment. Thus, this should arguably support the generalizability of the results.

The BeSafe pedometer application collected step data automatically throughout the
entire test using a WiFi connection. Parallel with the automatic registration manual, step
counting was performed in real time by the observers and registered on a per-step basis
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on the testbed computer by clicking a keyboard button. Patients walked 100 steps at
6 different speeds from 2.5 km/h to 5 km/h.

The treadmill’s digital speed settings ascertained that constant speed was maintained
by the participants. For each speed, and when starting a new experiment, there would be
a short transition phase until a steady state was reached. Thus, the observers manually
registered the steps by clicking a button on the automated data collection unit, deferring
manually observed step registrations until steady state was reached for each speed. The
data collection unit would, in real time, receive the counted steps from the two smartphones
and automatically couple this with the manually observed step counts. Please find images
of the testbed setup in the supplementary materials section as Supplementary Figure S1.

A typical way of gaining access to activity data generated by a smartphone is to use
the cloud services of the vendor, such as: Google, US, Apple, US, Fitbit, US, Garmin, US,
Samsung, South Korea, and other vendors. In this type of scenario, the user is asked to
allow for activity data to automatically be uploaded to a cloud service, from where the
user themselves can later download the data. This data-handling method also allows third
parties to retrieve the data, typically using a secure Web API under the control of the vendor,
and usually works well for personal usage, given informed consent of the user to the cloud
vendor. However, this method is not always acceptable for clinical trials, as data that is
hosted by an unknown third party at an unknown hosting location is often considered
insecure and with the risk of being forwarded to other entities beyond the investigator’s
control. The problem being that trial data is then kept by a third party beyond the control of
the investigator’s organization. Although current data protection regulations, for example,
the General Data Protection Regulation (GDPR) in Europe, do allow for such scenarios,
they are often not considered relevant to use in clinical trials due to local safety regulations.
Instead, in our approach, we use the same on-phone sensors as used by Google and other
app vendors, but we omit using the Google cloud services, and instead use our own
secure data distribution and data-hosting infrastructure, where data is stored at a secure
university server. Thus, safety is achieved by using a combination of hashed identification
values for the participants and secure web tunneling using transport layer security (TLS)
protocol and Hypertext Transfer Protocol Secure (HTTPS), thus keeping a strict secure
encrypted communication tunnel for the data. In other words, data are neither stored on
the smartphone itself, nor on any intermediary server. Data are sent directly to a clinical
trial team-controlled server, which is again placed within a secure server facility at the
university server park.

2.3. Statistics

Data was analyzed using STATA (version 17.0, StataCorp., College Station, TX, USA)
and JASP Statistical Software (University of Amsterdam, Amsterdam, The Netherlands).
Normality was measured using histogram, QQ plot, and the Shapiro–Wilks test. If data
was not normally distributed, non-parametric tests were performed. A p-value less than
0.05 was considered statistically significant.

Absolute percentage error (APE) values were calculated as the number of manually
counted steps minus the number of steps counted by the Samsung or Pixel phone and
divided by the number of manually counted steps. APE and mean absolute percentage
error (MAPE) for all patients were calculated for all speed and cadence categories. An
overall APE and MAPE of qualified data from all speeds was also calculated. Cadence was
determined for every complete iteration as the number of observed steps divided by the
completion time.

The paired APE values of the Samsung phone and the Pixel phone were compared
with the non-parametric Wilcoxon signed-rank test. Spearman’s rank correlation of APE,
walking speed, cadence, and observed steps were calculated. Continuous clinical data were
correlated with overall APE and APE at each speed using Spearman’s rank correlation.
Comparisons between dichotomous clinical data and overall APE and APE at each speed
were made using the Mann–Whitney test.
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3. Results

A total of 30 patients with established RA were included, and parameters relevant to
the gait were evaluated, as indicated in Table 1. Patients had a long disease duration, with
a median of 13 years, and low disease activity, with a median DAS-28 of 2.2.

Table 1. Demographics and laboratory and clinical characteristics of patients with rheumatoid arthritis.

Parameter RA Patients (n = 30)

Female, n/total (%) 22/30 (73)
Years of age, median (IQR) 61 (50–74)

Years since diagnosis, median (IQR) 13 (4–21)
Prosthetic joint in LE, n/total (%) 4/30 (13)

Previous fractures in LE since diagnosis, n/total (%) 1/30 (3)
Erosive disease, n/total (%) 21/30 (70)

Anti-citrullinated peptide antibody positive, n/total
(%) 21/28 (75)

IgM Rheumatoid factor positive, n/total (%) 21/30 (76)
Swollen joints UE, n/total (%) 6/30 (20)
Tender joints UE, n/total (%) 8/30 (27)
Swollen joints LE, n/total (%) 1/30 (3)
Tender joints LE, n/total (%) 5/30 (17)
DAS28-CRP, median (IQR) 2.2 (1.6–2.9)

HAQ-DI, median (IQR) 0.2 (0–0.9)
VAS pain (0–100), median (IQR) 21 (7–59)

IQR = interquartile range; UE = upper extremities; LE = lower extremities; DAS = disease activity score;
HAQ-DI = Health Assessment Questionnaire-Disability Index; VAS = visual analogue scale.

Of the 30 patients recruited, one participant did not manage to complete the treadmill
walking test at 2.5 km/h, whereas 29 patients participated in up to 6 tests per patient
in the range of 2.5 to 5 km/h, depending on their ability to walk. A total of 162 tests
were performed, including 2 tests discarded due to failed recording, resulting in a total of
16,009 recorded observed steps. In total, the Samsung phone recorded 14,961 steps and
thus incurred an undercount of 6.5%, while the Pixel phone recorded 15,364 steps with an
undercount of 4.0%. The distribution of steps at various walking speeds is demonstrated in
Figure 1, showing that the lowest speed of 2.5 km/h is associated with a high undercount
for both phones.
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Figure 1. Box plot of the number of steps for both devices at the six different speeds. Median and
interquartile range are demonstrated.

MAPE of the number of steps for both phones was 5.9%, ranging from 7% for the
Samsung phone to 4.8% for the Pixel phone. MAPE for the different walking speeds for the
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Samsung phone ranged from 19.3% at 2.5 km/h to 1.5% at 5 km/h (Table 2). MAPE for the
Pixel phone ranged from 17.7% at 2.5 km/h to 1% at 4 km/h (Table 2). Overall, APE was
larger for the Samsung phone compared to the Pixel phone (p < 0.01).

Table 2. The average percentage error of the Samsung and Pixel devices split into the 6 test speeds.

APE Samsung (km/h) APE Pixel (km/h)

2.5 3 3.5 4 4.5 5 2.5 3 3.5 4 4.5 5
Valid 29 28 26 27 25 25 29 28 26 27 25 25
Mean 19.3 7.3 5.3 4.1 2.9 1.5 17.7 2.6 2.4 1.0 1.1 2.5

Median 10.0 5.0 2.0 2.0 2.0 1.0 7.0 1.0 1.0 1.0 0.0 1.0
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum 74.0 23.0 46.0 29.0 20.0 5.0 68.0 34.0 39.0 7.0 16.0 45.0

APE = average percentage error.

Correlations between observed steps, device steps, cadence, walking speed, and device
APE are demonstrated in Table 3. A positive correlation between Samsung APE and Pixel
APE across all walking speeds was found (r = 0.3, p < 0.001). Likewise, there was a positive
correlation between step and speed for both Samsung (r = 0.5, p < 0.01) and Pixel phones
(r = 0.5, p < 0.01). Furthermore, there was a positive correlation between step and cadence
for the Samsung (r = 0.4, p < 0.01) and Pixel phones (r = 0.3, p < 0.01). A negative correlation
was seen between speed and device APE for the Samsung phone (r = −0.4, p < 0.001) and
the Pixel phone (r = −0.4, p < 0.001). Finally, there was a negative correlation between
cadence and device APE for the Samsung phone (r = −0.4, p < 0.001) and the Pixel phone
(r = −0.3, p < 0.001).

Table 3. Spearman’s rank correlation analysis results showcasing correlations of the study variables.

Variable Observed
Steps

Steps
Samsung

Steps
Pixel Cadence Walking

Speed km/h
APE

Samsung
APE
Pixel

1. Observed
Steps Spearman’s rho —

p-value —
2. Steps

Samsung Spearman’s rho 0.033 —

p-value 0.680 —
3. Steps Pixel Spearman’s rho 0.141 0.313 —

p-value 0.075 <0.001 —
4. Cadence Spearman’s rho 0.113 0.392 0.326 —

p-value 0.156 <0.001 <0.001 —
5. Walking

speed km/h Spearman’s rho 0.162 0.450 0.459 0.511 —

p-value 0.040 <0.001 <0.001 <0.001 —
6. APE

Samsung Spearman’s rho −0.021 −0.889 −0.287 −0.385 −0.459 —

p-value 0.795 <0.001 <0.001 <0.001 <0.001 —
7. APE Pixel Spearman’s rho 0.004 −0.253 −0.318 −0.249 −0.343 0.349 —

p-value 0.962 0.001 <0.001 0.001 <0.001 <0.001 —

APE = absolute percentage error of steps.

There was no correlation between disease duration, HAQ-DI, VAS-pain, DAS28-CRP,
and the overall APE or APE at 2.5 km/h (Table 4). There was no correlation for the other
speeds (data not shown).

Likewise, there was no statistical difference between overall APE or APE at 2.5 km/h
concerning ACPA status, RF status, and erosive status (Table 5). There was no statistical
difference for the other speeds (data not shown).
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Table 4. Spearman’s rank correlation between APE and continuous clinical variables.

Overall APE

Samsung Device Pixel Device

R p R p

Years since
diagnosis −0.28 0.14 −0.09 0.64

HAQ-DI −0.22 0.33 0.03 0.90
VAS pain (0–100) −0.02 0.93 0.01 0.97

DAS-28 CRP −0.19 0.40 −0.07 0.76

APE 2.5 km/h

Samsung Device Pixel Device

R p R p

Years since
diagnosis −0.26 0.17 −0.13 0.47

HAQ-DI −0.29 0.19 −0.13 0.57
VAS pain (0–100) −0.08 0.71 −0.00 0.99

DAS-28 CRP −0.25 0.27 −0.05 0.83
DAS = disease activity score; HAQ-DI = Health Assessment Questionnaire-Disability Index; VAS = visual
analogue scale.

Table 5. Comparison between APE and dichotomous clinical variables.

ACPA Positive
(n = 20)

ACPA Negative
(n = 7) p

Overall APE for Samsung device 5.7 (2.6–11) 3.7 (2.3–10.2 0.65
Overall APE for Pixel device 5.0 (1.1–9.2) 0.7 (0.3–2.2) 0.05

APE 2.5 km/h for Samsung device 19 (2.5–38) 7.0 (3.0–26) 0.35
APE 2.5 km/h for Pixel device 11 (2.0–41) 1.0 (1.0–7.0) 0.05

RF Positive
(n = 20)

RF Negative
(n = 9) p

Overall APE for Samsung device 5.1 (2.4–9.7) 7.7 (3.0–11.7) 0.32
Overall APE for Pixel device 1.8 (0.9–7.4) 2.2 (0.7–11.8) 0.97

APE 2.5 km/h for Samsung device 9.5 (2.0–31.5) 13 (3.0–44) 0.40
APE 2.5 km/h for Pixel device 16.8 (0.5–33) 7.0 (1.0–24) 0.72

Erosive
(n = 21)

Non-Erosive
(n = 8) p

Overall APE for Samsung device 4.8 (2.3–10.2) 5.7 (4.1–10.6) 0.58
Overall APE for Pixel device 1.2 (0.8–6.5) 7.3 (2.0–10.9) 0.11

APE 2.5 km/h for Samsung device 9.0 (2.0–34) 11.5 (2.5–30.5) 0.76
APE 2.5 km/h for Pixel device 3.0 (1.0–26) 8.5 (5.0–35) 0.39

4. Discussion

The validity of wearable activity trackers has previously been validated in several stud-
ies, which all found a good agreement at most frequently used walking speeds, while very
low walking speeds remain a challenge for most devices, as also found in our study [13–19].
However, to the best of the authors’ knowledge, no studies have examined the use of
smartphone-based pedometers for telemedicine use in RA patients, although smartphone-
based applications have the potential to allow for valid, low-cost, long-term monitoring.
Several studies have found that smartphone-based systems are useful for telemedicine
applications for other chronic patient groups, including hypertension [20] and cancer [21].

Activity-tracking devices have recently been introduced to measure physical activity
in randomised trials in patients with RA [22]. A study has also demonstrated an association
between patient-reported outcome measures such as HAQ-DI and steps measured with
an activity tracker device, indicating that measured steps may reflect the wellbeing of the
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patient, but the device was not validated for use in patients with RA [23]. Likewise, a
study demonstrated that machine-learning models of steps counted with an activity tracker
device could predict self-reported disease activity in patients with RA [4,24]. Activity
trackers may therefore have large perspectives for monitoring disease activity in patients
with RA. However, only a few studies have actually investigated the validity of activity-
tracking devices in patients with RA. A recent study using the activPAL activity- tracking
device in patients with RA concluded that it was not valid for measuring steps due to a
significant step underestimation of 26% [25]. Another study that used three different activity
tracker devices found inferior validity in patients with RA compared to a population of
younger healthy controls [26]. A third study demonstrated good validity for evaluating
sedentary, standing, and walking time in patients with RA [9]. In this study, the smartphone
activity-tracking app proved to be valid for measuring steps in patients with established
RA, since only a very small variation compared to the gold standard of manual counting
was found [27]. An advantage of the smartphone-based activity-tracking app used in this
study compared to traditional activity tracker devices is that they can be used for a long
period of time compared to a decrease in adherence over time seen with traditional activity-
tracking devices [28]. This may be necessary for measuring disease activity continually, and
possibly also as a predictor of future cardiovascular morbidity [7]. Interestingly, an earlier
study demonstrated that RA patients underestimate their sedentary time, underscoring the
importance of objective measures of activity [3].

Most variation was seen at the lowest speed, where the devices may not provide valid
results. However, this represents an unnaturally slow speed for most, and it could be
argued that not many patients would be expected to walk at this speed. Still, the speed is
relevant, as slow speed could likely occur in a domestic setting, doing house chores, and
other activities of daily living (ADL) [29]. At higher speeds the small variation could likely
be attributed to experimental bias, e.g., when the first and last step are counted. However,
both walking speed and cadence correlated negatively to APE and were therefore important
for pedometer validity. This is in accordance with previous studies in healthy individuals
using smartphone-based as well as dedicated pedometers [10,13,30]. The overall MAPE
of both the Samsung and Pixel devices were small, and thus both devices are suitable for
use. The Pixel represents a high-level and high-cost device, while the Samsung represents a
low-cost device. Still, the difference between them does not seem clinically relevant.

Previous studies have demonstrated that positioning of the device may be of impor-
tance for accuracy. Waist-worn pedometers, as used in this study, may be more reliable
compared to arm and hand-worn pedometers for walking [14]. Song et al. found that dif-
ferent carrying positions require different algorithms in order to provide optimal accuracy,
which they found was not achieved with commercial pedometer applications at self-paced
walking speeds under different smart phone carrying positions [31].

There were limitations in this study. First, the majority of patients were in clinical
remission, and results could therefore be different in active disease. Secondly, a control
group with healthy individuals was not used. Thirdly, only two Android smartphones
from two different vendors were tested, and results may therefore not be applicable to
other smartphones. We will elaborate further on this in the following section. Fourthly, this
study did not investigate whether RA patients actually do carry their phones for a sufficient
timespan during the day to provide a valid sample for assessing the daily activity levels,
nor how they carry their phones, which could be an issue, according to Song et al. [31].

In addition, real-world activities in different settings and on different types of floors
and surfaces are potentially different from treadmill-based step patterns, including doing
office work, travelling by bus, riding a bicycle, driving a car, vacuum cleaning, cooking,
toileting, and washing. Ebara et al. assessed different models of smartphones with the
same Android operating system during office work, while travelling on a bus, and driving
a car [32]. The Ebara et al. study found that the false detection rates of step-counting
sensors were low when subjects were sitting during office work, but false detection would
increase depending on the smartphone model while riding the subway or driving a car.
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The authors conclude that it is possible that physical activity may be overestimated, and
physical inactivity may be underestimated when attempting to make assessments with
smartphone step-counting sensors only.

These findings lead us to consider that smartphone-based activity trackers should
contain automated calibration features, allowing for an initial 100-step walking test at the
patient’s own pace and with the preferred placement of the patient during physical con-
sultations for calibration and validation purposes, as well as a series of relevant everyday
activities for simulating real-world activities. Also, we propose to investigate automated
error detection features, as also suggested by Ebara et al. [32].

The choice of validation smartphone devices: the Samsung Galaxy Model A02, Sam-
sung Cororation, Seoul,.South Korea, and the Pixel model 4, Google Inc., Mountainview,
CA, USA, both running Android version 10, is a further limitation of the study. While
Samsung, holds approximately 22% of the market, according to 2022 market statistics from
Counterpoint research, US, it is not assumed that the exact same accelerometer (or with the
same characteristics) will be used in future models, or even models produced the same year.

In addition to this, other models from vendors such as Apple Inc., Cupertino, CA, USA
(market share of 11%) and Xiaomi Inc., Beijing, China (market share of 13%) would also be
highly relevant to validate as part of future work, but the same issue persists, that the sensor
itself may change even within the same series. As there are many different configurations
of makes and models, and even potential differences in operating system versions, it could
also be relevant to perform a personalized validation of all new participants’ devices as
they are onboarded in a large-scale clinical trial. Thus, it could be relevant to initially ask a
new user being onboarded, to walk 100 steps at the user’s own pace in order to perform a
personalized baseline validation. Again, a full treadmill test for each future user would
be relevant, but this is not feasible with the full trial protocol used in the current study,
as the level of preparation and length of the testing would not be feasible for real-world
clinical use.

The BeSafe app was designed for this study to allow for independent and secure
data collection and data storage, ensuring that activity data are only kept at the hosting
organizations dedicated servers and are only available for the involved clinicians and the
patients themselves. Thus, even though previous studies have found that a majority of
users would be willing to share activity data for research use [33], it could be argued that
user data should not be shared with any commercial or third-party company, including
Google, Apple, Fitbit, Garmin, and other commercial vendors unless full user consent
is provided.

5. Conclusions

In conclusion, this is the first study demonstrating that an activity tracking-app run-
ning the inbuilt Android smartphone pedometer virtual sensor was valid in patients with
RA, except for very low walking speed and cadence.

The next step will be field tests evaluating the setup, including active measured time in
patients with RA on their own smartphone models. We need to evaluate the performance of
the app under real-world conditions, at home, during commute, and at work, to understand
how the results of this study, which were under ideal laboratory conditions, compare with
real-world situations. We therefore expect a much lower validity in real-life situations but
would like to understand whether results would still be usable as a clinical parameter and
indicator of patient disease progression.

Finally, we recommend that automated error detection and calibration in step counting
is investigated further.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22239396/s1, Figure S1: Collage of the experimental setup.
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