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Abstract: In this study, a new approach is proposed for the restoration of reflectance information
on organ samples using a commercial camera. This novel approach is comprised of three stages.
In the first stage, a color clustering method is utilized to extract the representative colors of the
organ samples as well as their corresponding spectral reflectance. In the second stage, the spectral
reflectance is decomposed into two separate parts, i.e., the fundamental stimulus spectrum and the
metameric black following the matrix-R theory, and the latter is further utilized to form a look-up
table (LUT) via a lattice regression model. Finally, the reflectance information can be easily retrieved
by referring to the newly built LUT. The performance of the proposed method was investigated,
along with that of six other commonly adopted methods, through a physical experiment using real,
measured organ samples. The results demonstrate that the proposed method outperformed all the
other methods in terms of both colorimetric and spectral metrics, indicating that it is a promising
strategy for organ sample reflectance restoration.
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1. Introduction

Color is crucial to defining the appearance of an object, and is determined by the joint
effects of the light source, the object surface, and the human eye. This is to say, the surface
color changes when illuminated under different illuminants. So, color alone cannot be
thought of as a natural property of an object. Instead, its spectral reflectance, which can be
thought of as its “footprint,” should be used to describe the optical property of an object’s
surface.

With the development of multispectral and hyperspectral imaging technology, spectral
information has been widely used in a variety of industries, such as textile printing,
museum archiving, and biomedical imaging, especially for disease diagnosis and image-
guided surgery. The traditional way to obtain the spectral reflectance of an object is by using
a multispectral imaging system (MSIS). However, such a device usually has the drawback of
being expensive and time-consuming, making it hard to use in real time. Recently, research
has been focused on commercial digital cameras to recover the reflectance information from
the camera responses [1]. This is encouraging because digital cameras are becoming more
portable, rapid, and high-resolution. Therefore, it is of the utmost importance to develop
an algorithm that reliably recovers reflectance information from camera responses.

However, recovering high-dimensional spectral information from the low-dimensional
camera responses is an underdetermined problem to, indicating that no routine procedure
exists [2]. Over the past few decades, numerous approaches have been attempted to
address this difficulty, including Wiener estimation, pseudo-inverse estimation, the matrix
R method, Principal Component Analysis (PCA), Independent Component Analysis (ICA),
and other techniques [3]. These techniques, however, sometimes lack accuracy and fall
short of the strict requirements of practical applications. Agahian et al. [4] investigated the
weighting factors of the PCA basis vectors, adopting the Euclidean distance in CIELAB color
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space to determine the weights. The resultant spectra showed considerable improvements
in terms of both spectral and chromaticity accuracy in comparison to those obtained from
the standard PCA method. Similarly, Xiao et al. [5] developed a polynomial model to
determine the weighting factors of the PCA basis vectors, achieving a color difference
of less than 3 CIEDE2000 units when applied to skin colors. Amiri et al. [6] proposed a
method to perform Weighted Least Square (WLS) regression on the polynomial extension
of the sample response matrix in a global weighting form. Theoretically, these strategies
are designed to lower the dimension of the reflectance space by using fewer basis vectors.
As a result, it is appropriate if the samples contain similar components or if the dimension
of the reflectance space is relatively small.

In recent years, regression-based linear and nonlinear models have become more
popular. Heikkinen et al. [7] proposed a kernel ridge regression (KRR) method for spectral
reflectance, which nonlinearly transforms low-dimensional camera response into high-
dimensional feature space and conducts regularized least squares regression of reflectance
data in the feature space. Compared to the kernel model with the Gaussian kernel [8]
that had already been studied, the results suggest that a link function and a model with
a Matérn kernel reduce spectral errors. Shen et al. [9] proposed a spectral reconstruction
method based on partial least squares regression(PLS) that extends camera responses by
high-order polynomials to deal with nonlinearity and reduces overfitting by using partial
least squares regression. Experiment results showed that the method outperformed Wiener
estimation and ordinary polynomial regression and that it was comparable to polynomial
regression with regularization. A local linear model based on regularization was put forth
by Zhang et al. [10], which located the first k samples from the training dataset that were
closest to the test sample and used a regularized regression approach to determine their
weights. As stated, the model accuracy on the Munsell dataset was superior to other widely
used techniques. Similarly, Li et al. [11] proposed a method for spectral reconstruction
based on locally linear approximation, which used the optimal weight coefficients of k
neighbors in the tristimulus value space to linearly fit spectral reflectance in the spectral
space. Experimental results indicated that the method outperformed other competitors
in terms of both accuracy and stability for spectral reconstruction. A locally weighted
linear regression method was put forward by Liang et al. [12] that employed neighbor
colors to establish a local weight matrix to determine the optimal transformation matrix
for each test sample. This method was found to give the best performance on the Munsell
dataset among all the methods investigated. Later, Liang et al. [13] replaced the original
weighting method by adopting an adaptive local weighted linear regression method based
on the Gaussian weighting function, which gave the best accuracy on both a standard
color chart and a set of textile samples compared with other competitive methods. A
nonlinear approach based on kernel partial least squares was proposed by Xiao et al. [14].
It performed spectral reconstruction from nine-channel camera responses using a kernel
function and partial least squares. The experimental results showed that the model accuracy
on the Munsell and IT8.7/3 datasets was either superior to or equal to that of other methods.
Wang et al. [3] proposed a successively weighted nonlinear regression method to estimate
spectral reflectance. The distinctive aspect of this approach was the gradual weighting
of chromatic aberration, which lowered spectral inaccuracy. As more local samples are
taken into consideration, it is anticipated that such regression-based linear and nonlinear
models could provide superior performance. However, those methods typically require
more training samples and higher computing costs compared to the traditional, basis-based
methods.

Due to the proliferation of hyperspectral datasets, deep learning and shallow learn-
ing techniques using sparse coding have received a lot of attention. Arad et al. [15]
described a method that adopts sparse encoding and dictionary learning to recover the
spectral information from a commercial RGB camera. His method was further refined
by Aeschbacher et al. [16] by computing a sparse dictionary that contains the correspond-
ing low and high spectral resolution atoms and calculating the reflectance information
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using the nearest neighbor colors of the anchor. Then, Lin et al. [17] extended the work
of Aeschbacher et al. by adopting the nearest neighbors in the spectrum domain instead
of the RGB color space domain. The experimental results validated the superiority of
these learning-based methods. However, such methods require a considerable quantity of
training data and a high computing cost to achieve good accuracy. These conditions are
hard to satisfy in some specific fields, such as real-time biomedical imaging, especially for
disease diagnosis and image-guided surgery.

In view of the above problems, a novel approach is proposed in this study to recon-
struct the spectral reflectance of tissue samples based on the matrix-R theory and lattice
regression. The whole workflow consisted of three stages. In the first stage, the color cluster-
ing algorithm was applied to obtain the representative colors of the organ samples and their
corresponding reflectance information. In the second stage, the spectral reflectance was
decomposed into the fundamental stimulus spectrum and the metameric black, using the
matrix-R theory. A look-up table (LUT) was established using lattice regression to estimate
the metameric black, and the fundamental stimulus spectrum could be directly obtained
from the spectral sensitivity functions (SSFs) of the camera. In the final stage, the newly
established LUT was adopted to perform interpolation to reconstruct the metameric black
for each test sample. This was then combined with the fundamental stimulus spectrum to
form the final output spectral reflectance. The current experimental results confirmed the
superiority of the proposed method in terms of both colorimetric and spectral metrics on
organ samples.

2. Methods
2.1. Spectral Imaging Model

Similar to the imaging principle of human eyes, the responses of a three-channel
camera depend on the Spectral Power Distribution (SPD) of the light source s(λ), the
surface reflectance r(λ), the camera sensitivity functions ck(λ), and the system noise nk.
The camera responses dk can be written as the following imaging model, as shown in
Equation (1).

dk =
∫

ϕ
s(λ)r(λ)ck(λ)dλ + nk, k ∈ {R, G, B} (1)

where ϕ represents the visible spectrum. For simplicity, noise is often ignored, i.e., nk = 0,
and the above continuous integration process is often discretized using a matrix form. As a
result, the equation can be written as

d = ATr (2)

where d represents the response vector of the three channels, AT represents the spectral
response matrix, which is a multiplication of the SPD of the light source and the SSFs of the
camera, while r represents the spectral reflectance of the object.

2.2. Matrix R Theory

According to the metameric black hypothesis, the spectral reflectance of an object
can be described as having two components: the fundamental stimulus spectrum and the
metameric black [18]. The former contributes to camera responses, and the latter produces
zero responses, which is the cause of metamerism [19]. Based on this hypothesis, Cohen
and Kappauf [20] developed the matrix R theory, a mathematical technique for decomposing
the reflectance of a color stimulus into the fundamental spectrum and its corresponding
metameric black. A brief overview of this theory is provided below.

The projection matrix of the camera space is defined as:

R = A
(

AT A
)−1

AT (3)
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where A is the same as in Equation (2). The fundamental stimulus spectrum r′, is obtained
by projecting the spectral reflectance r onto R, namely r′ = Rr. The projection matrix
guarantees that the spectral reflectance r and the fundamental stimulus spectrum r′ produce
the same camera response. The difference between these two spectra can be considered as
the metameric black b,

b = r− r′ = (I − R)r (4)

where I represents the identity matrix. Equation (4) suggests that the metameric black b
yields zero camera responses.

The most important part of the matrix R theory is that the fundamental stimulus
spectrum r′ can be accurately obtained from the camera responses,

r′ = Rr = A
(

AT A
)−1

ATr = A
(

AT A
)−1

d (5)

As a result, the estimation of the spectral reflectance r now turns to the estimation of
the metameric black. This can be considered the highlight of this theory, suggesting that
the recovered reflectance will reproduce the same camera response as the correct input
RGB. This ensures that the reproduction image generated using the recovered reflectance
information is the same as the input ground truth image, and thus is often referred to as
the “physical plausibility property” in other studies [21].

2.3. Lattice-Based Regression

As previously stated, the main goal of spectral recovery is to estimate the spectral re-
flectance r, or more specifically, the metameric black, from the responses of the camera. This
key component in this paper was accomplished by referring to a LUT established by lattice
regression. The concept of lattice regression is illustrated in Figure 1. As demonstrated, the
RGB training data are represented as red points, each of which corresponds to a distinct
reflectance. The yellow dot denotes a test sample point that needs to be derived from the
surrounding training samples. These training samples are typically scattered unevenly, so
different weights should be provided to each neighbor color based on their proximity to the
test sample point. However, this strategy is empirical and sometimes fails when there are
not enough training data points. As a result, it is preferred if all the data points are evenly
distributed, as depicted in Figure 1 (right) using blue dots, so that the estimation can be
completed in the cell containing that test sample point. In other words, if the reflectance
zj corresponding to the lattice node xj can be accurately predicted, the spectral recovery
problem can be efficiently resolved via a regular interpolation algorithm. In this study, the
common cubic interpolation method was adopted as an example.
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Figure 1. An example of the lattice-based regression LUT. The red point represent the RGB training
data points, the yellow point represents an RGB testing data point, and the blue points represent the
LUT data points, that is, the lattice nodes.

This LUT can be constructed using lattice regression with the training dataset. Assume
there are n training sample pairs {di, ri}, i = 1, . . . , n, where di ∈ R3 represents ith the
camera responses (RGB), ri ∈ Rt represents its corresponding spectral reflectance and t is



Sensors 2022, 22, 9405 5 of 15

the dimension of the reflectance. For any sample pair {di, ri}, a cell can be easily located
within the LUT and its vertices can be utilized to represent the data point di.

di =
m

∑
j=1

wi,jxj,
m

∑
j=1

wi,j = 1 (6)

where xj ∈ R3 represents the camera responses of the jth lattice node and wi,j is the ith–jth
element of matrix w ∈ [0, 1]n∗m, representing the weighting factor of each lattice node. The
set of weights

{
wi,j
}

is determined by the spatial relationships between the training data
point di and the lattice nodes. It should be noted that wi,j is not zero only for the cell vertices.
For nodes outside the cell, wi,j is kept at zero.

Therefore, the corresponding reflectance ri can be estimated as

r̂i =
m

∑
j=1

wi,jzj (7)

where zj represents the reflectance of the jth lattice node. If we denote the kth dimension of
zj as yj, the corresponding regression error for all training samples in the kth dimension
can then be written as Equation (8):

n

∑
i=1

(ŝi − si)
2 =

n

∑
i=1

((
m

∑
j=1

wi,jyj

)
− si

)2

(8)

where the set of
{

yj
}

, j = 1, . . . , m, is the reflectance value of the kth dimension associated
with the jth lattice node. The set of {si}, i = 1, . . . , n, is the reflectance value of the kth
dimension associated with the ith training sample. Therefore, the goal of lattice regression
is to minimize the Equation (8), as shown in Equation (9):

ŷ = argmin
y

n

∑
i=1

((
m

∑
j=1

wi,jyj

)
− si

)2

(9)

Equation (9) is underdetermined when there is a cell that contains none of the training
data points. In this condition, the solution is not unique, and more constraints should be
imposed. In this study, a smoothness term is introduced by utilizing the second-order
difference of each dimension, also known as the Hessian regularizer. It can be written as
Equation (10),

∑
over the R, G,

and B dimensions

∑
adjacent in R, G,
or B dimension

((
yh − yj

)
−
(
yj − yl

))2
=

3

∑
d=1

∑
(
yh − 2yj + yl

)2 (10)

Equation (10) represents the penalization of the second-order difference, summed over
the three dimensions (R, G, and B). Therefore, the mathematical model of the lattice-based
regression is as follows:

ŷ = argmin
y

 n

∑
i=1

((
m

∑
j

wi,jyj

)
∑ si

)2

+ λ
3

∑
d=1

∑
(
yh ∑ 2yj + yl

)2

 (11)

ŷ = argmin
y
‖Wy− s‖2

2 + λyTKsy (12)

where y = [y1, . . . , ym]T ; s = [s1, . . . , sn]
T ; W ∈ [0, 1]n∗m denotes the set of weights to

interpolate the training data and Ks is an m by m matrix. The role of the regularization
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parameter λ(> 0) is to tradeoff between solving accuracy and smoothness. Equation (12)
has a closed-form solution,

ŷ =
(

WTW + λKS

)−1
WTs (13)

The LUT is obtained by calculating the reflectance values for each dimension of
the m cell vertices using Equation (13). For any input test point d′, its corresponding
reflectance r̂′ can be estimated using the newly established LUT following Equation (7).
Therefore, the whole process of the lattice-based regression LUT is defined as a mapping
relation Lattice(·), which represents the mapping of the input camera responses to the
corresponding reflectance (the metameric black). This is written as Equation (14),

r̂′ = Lattice
(
d′
)

(14)

2.4. Workflow

With the methods mentioned above, a new spectral recovery algorithm was proposed
in this study to recover the spectral reflectance of organ samples based on matrix-R theory
and lattice regression. The workflow is given in Figure 2. Initially, a series of hyperspectral
images of organ samples were captured using an MSIS [22]. They were then projected onto
the SSFs of a commercial camera to generate their corresponding RGB images. Note that
a pre-treatment was implemented to remove the highlights from the surface of the organ
samples. The organ image was first transformed into the CIELAB color space. After that,
pixels with a lightness value (L*) over a certain threshold were removed. Afterwards, the
representative colors of each tissue image were extracted via a color clustering algorithm to
form a large dataset, which included both the camera responses (RGB values) and their
corresponding reflectance. This dataset was further split into training and testing datasets
with the goal of a uniform color distribution.
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Following the matrix R theory, the spectral reflectance was decomposed into two
parts, i.e., the metameric black and the fundamental stimulus spectrum. An LUT was
established between the camera responses and their metameric blacks by lattice regression.
For any input test point d′, the corresponding metameric black b′ can be obtained by
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referring to the newly established LUT. A cubic interpolation method was adopted in
this study. Meanwhile, the fundamental stimulus spectrum r′ can be easily retrieved
using Equation (15). With these two components available, the final reconstructed spectral
reflectance r̂ was finally obtained,

r̂ = r′ + b′ = A
(

AT A
)−1

d′ + Lattice
(
d′
)

(15)

It should be emphasized that this new algorithm was specially developed for organ
samples, which means that metamerism—the phenomenon of lights that elicit the same
response from the sensory system but have different power distributions over the sensed
spectral segment [23,24]—is a significant problem in this condition. As a result, different
camera responses correspond to different recovered spectral reflectances. Moreover, this
study followed the same concept of manifold learning [25,26]. In other words, the local
linear relationship between samples in low-dimensional RGB space remains the same in
high-dimensional reflectance space. These two underlying assumptions form the basis of
the proposed approach.

3. Experiments

A series of hyperspectral images of organ samples were captured, and were adopted
to fully evaluate the performance of the proposed method and six widely used methods.

3.1. Acquisition of Samples

A total of 33 reflectance images of biological organs were collected via an MSIS,
including a pig’s heart, liver, and so on. Some of them are displayed in Figure 3. The
MSIS was composed of an achromatic 14-bit digital camera and 16 narrow band optical
filters [22]. The filters had a spectral range of 400 to 700 nm with a 10-nm interval. Its
imaging precision was less than a CIELAB unit when applied to fabrics. For the spatial
dimension, this MSIS offered a resolution of 1040 by 1392 pixels, which is typical in this
kind of application. These hyperspectral images were further projected onto the SSFs of a
commercial camera, i.e., the Canon 60D [27], to generate the corresponding RGB images.
The SSFs are given in Figure 4a. The illuminant was set at D65 in this conversion. As a
result, 33 RGB images were finally constructed.
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Figure 4. (a) The SSFs of the Canon 60D, and (b) the D65 illuminant.

3.2. Samples Screening

As shown in Figure 3, there is a gray background and a few highlights visible in the
captured image. These flaws were eliminated beforehand, leaving only the surface colors of
organ samples. After that, the k-means clustering algorithm was applied to those processed
images, resulting in k color clusters for each image. All the colors within a cluster were then
averaged, and they were regarded as the representative colors for each organ image. With
such a method, the quantity of color samples was significantly decreased, and the system
noise was reduced for each averaged color. In this study, the k value was set at 200 for each
image, yielding a total of 6600 color samples for all 33 organ images. After that, all those
representative colors were carefully inspected, and the defects were manually removed.
As a result, 6529 color samples were finally obtained, and were randomly divided into
two datasets, i.e., the training dataset and the testing dataset. The camera responses of
these colors are shown in Figure 5a, and their corresponding reflectance curves are shown
in Figure 5b. The training dataset consisted of 4900 colors, and the remaining 1629 colors
were adopted as the testing dataset, with a training-to-testing ratio of approximately 3:1.
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Figure 5. (a) Color distribution of the 6529 representative colors and (b) their corresponding re-
flectance curves.

3.3. Results

Three conventional metrics were adopted in this study to evaluate the model perfor-
mance, including CIEDE2000 [28] for colorimetric accuracy, root mean square error (RMSE)
and goodness-of-fit coefficient (GFC) for spectral accuracy. The calculations of RMSE and
GFC are defined in Equation (16).

RMSE =
√

1
t (r̂− r)T(r̂− r) GFC = r̂Tr

‖r̂T r̂‖·‖rTr‖
(16)
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where r is the ground truth spectral reflectance; r′ is the reconstructed spectral reflectance; t
represents the number of sampling points in the visible spectrum from 400 nm to 700 nm,
and equaled 31 in this study.

Several frequently used approaches, including Arad’s [15], Connah’s [29], Xiao’s [5],
Li’s [11], Agahian’s [4], and Zhao’s [30], were compared to the proposed method. Arad’s
method is based on dictionary learning and sparse coding; Connah’s method is based on
the least square method of polynomial extension; Xiao’s method is based on polynomial
mapping and PCA method; Li’s method is based on the linear approximation method
of local k nearest neighbor, and Agahian’s method is based on the global weighted PCA
method. Zhao’s method is the traditional R matrix method. The minimal errors (min), mean
errors (mean), and maximum errors (max) for all three metrics are summarized in Table 1.
The best result is underlined and marked bold. All currently employed approaches, with
the exception of Arad’s, were based on the recommendation parameters from the original
literature. However, the parameters for Arad’s method were re-optimized to ensure a best
performance. The best result was obtained when the sparsity was set to 9 and the dictionary
size was set to 40 in this study.

Table 1. Performances of the proposed method and six existing methods.

Methods
RMSE (%) CIEDE2000 GFC (%)

Min Mean Max Min Mean Max Min Mean Max

Arad 0.31 6.41 45.83 0.07 2.02 9.73 77.35 97.11 99.97
Connah 0.16 1.70 13.93 0.01 0.71 6.65 83.29 99.75 100.00

Xiao 0.27 1.83 16.08 0.03 0.77 7.94 79.79 99.72 100.00
Li 0.08 1.64 14.47 0.01 0.61 5.88 91.31 99.77 100.00

Agahian 0.23 1.82 17.91 0.01 0.73 9.26 80.04 99.70 100.00
Zhao 0.31 2.43 19.08 0.01 0.87 8.55 79.14 99.52 99.99
Ours 0.08 1.59 13.69 0.01 0.59 4.78 92.18 99.79 100.00

There are two hyper-parameters that should be pre-determined using the proposed
method, namely the smoothing coefficient λ and the size of the LUT. An appropriate pa-
rameter, λ, can reduce noise and improve the model’s accuracy to a certain extent. Through
a pilot test, it was found that a λ value of 0.0015 achieved the best model performance. The
size of the LUT, however, does not demonstrate a substantial impact on model performance.
Therefore, the size of the LUT was fixed at 25× 25× 25 in this study to provide a balance
between time consumption and reconstruction accuracy.

As shown in Table 1, all methods performed well on the spectral recovery of organ
samples, and the proposed approach outperformed all other methods studied. More
specifically, the proposed method had a mean RMSE of 0.0159 and a mean CIEDE2000
of 0.59, while the best outcomes of competing methods was 0.0164 (Li) and 0.61 (Li),
respectively. It should be noted that a color difference of less than one CIEDE2000 unit is
quite small, and observers can barely discern the ground truth color and its reproduction.
Additionally, the maximum CIEDE2000 value of the proposed method was greater than
4.5 units, indicating it was not negligible. However, the highest value was typically
brought on by random noise during capture and comprises only a small portion of the
image, suggesting that human perceptions are not be much affected. Noticeably, Arad’s
approach did not work well in this study. This might be due to the relatively small training
dataset compared with its original study. More training samples can considerably boost its
performance, as demonstrated by earlier studies [16].

A boxplot is a method for graphically demonstrating the locality, spread and skewness
groups of numerical data through their quartiles, and was used to demonstrate the perfor-
mance of different method investigated in this study. The top of the blue rectangular box
(box) in a boxplot represents the upper quartile, the bottom represents the lower quartile,
and the red line within the box represents the median. The data are more centralized the
shorter the box. The horizontal line at the top shows the largest error, while the horizontal
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line at the bottom represents the minimum error. In general, the maximum (minimum)
error is set at 1.5 (−1.5) box sizes (range of the middle quartile) from the third (first) quartile
value. The red “+” sign at the top of the graph denotes outliers, which correspond to the
higher errors in the data.

Boxplots were used to demonstrate the distribution of reconstruction errors for all the
methods investigated. As illustrated in Figure 6, the proposed method had a more compact
error distribution, demonstrating its superiority over all other methods. Li’s method also
offered good reconstruction accuracy. Arad’s method performed the worst.
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For an intuitive demonstration of model performance, four test samples were ran-
domly selected from the testing datasets. These samples are shown in Figure 7. The majority
of the differences were observed in the long wavelength region. Once more, the proposed
approach provided the highest accuracy.

3.4. Results after Adding Noise

Different amplitudes of additive normally distributed noise were introduced to the
camera responses to better mimic real-world settings. The noise had a zero mean and
a variance of σ2 for each individual channel. The signal-to-noise ratio (SNR) was using
Equation (17),

SNR = 10 log10

(
‖D‖2

F

‖e‖2
F

)
(17)

where D is the noise-free response matrix and e is the noise matrix. ‖·‖2
F represents the

Frobenius norm. The higher the SNR value, the less noise. The accuracy of the spectral
reconstruction was examined at three SNR levels: 80, 60, and 40 dB, which can be considered
typical in real-world conditions.
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Table 2 indicates the superiority of the proposed technique under both conventional
and low-noise conditions (SNR of 80 dB and 60 dB). Its performance deteriorated as noise
levels rose (SNR of 40 dB). Li’s approach had the smallest color difference for the mean
and maximum values, making it the most accurate in terms of colorimetry in the noisy
condition. However, the lowest spectral RMSE and GFC errors were still achieved by
our proposed method. Such a difference suggests that spectral accuracy may not exactly
coincide with colorimetric accuracy.

Table 2. Comparison of the performances of the proposed method and six existing methods at three
different noise levels.

RMSE (%)

SNR Results Arad Connah Xiao Li Agahian Zhao Ours

80
min 0.28 0.16 0.27 0.08 0.23 0.31 0.08

mean 5.65 1.70 1.83 1.64 1.82 2.43 1.59
max 36.47 13.93 16.08 14.47 17.91 19.09 13.69

60
min 0.28 0.16 0.28 0.11 0.23 0.28 0.10

mean 5.65 1.70 1.83 1.64 1.83 2.43 1.59
max 36.49 13.94 16.00 14.47 17.85 19.04 13.66

40
min 0.28 0.28 0.39 0.23 0.33 0.37 0.27

mean 5.76 1.87 1.98 1.82 1.99 2.54 1.79
max 35.97 14.13 16.28 14.96 17.94 18.72 13.42

CIEDE2000

SNR Results Arad Connah Xiao Li Agahian Zhao Ours

80 min 0.03 0.01 0.02 0.01 0.01 0.01 0.01
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Table 2. Cont.

CIEDE2000

SNR Results Arad Connah Xiao Li Agahian Zhao Ours

mean 1.92 0.71 0.77 0.61 0.73 0.87 0.59
max 17.54 6.67 7.94 5.90 9.26 8.55 4.79

60
min 0.04 0.01 0.04 0.01 0.03 0.04 0.01

mean 1.93 0.73 0.78 0.64 0.76 0.89 0.62
max 17.55 9.24 7.97 5.84 9.19 8.48 4.80

40
min 0.15 0.07 0.04 0.05 0.07 0.10 0.08

mean 2.35 1.44 1.49 1.33 1.55 1.56 1.45
max 16.60 9.36 11.41 6.22 11.42 9.43 9.30

GFC(%)

SNR Results Arad Connah Xiao Li Agahian Zhao Ours

80
min 61.26 83.28 79.78 91.30 80.03 79.14 92.19

mean 98.01 99.75 99.72 99.77 99.70 99.52 99.79
max 100.00 100.00 100.00 100.00 100.00 99.99 100.00

60
min 61.25 83.29 79.79 91.36 80.04 79.15 92.27

mean 98.01 99.75 99.72 99.77 99.70 99.52 99.79
max 100.00 100.00 100.00 100.00 100.00 99.99 100.00

40
min 61.19 78.95 78.95 89.57 79.45 78.56 88.15

mean 97.94 99.71 99.71 99.75 99.68 99.50 99.76
max 100.00 100.00 100.00 100.00 100.00 99.99 100.00

In addition, three test samples were randomly selected to demonstrate the model
performance at different SNR levels; their results are shown in Figure 8. It is obvious that
when noise levels rise, model performance declines.
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Figure 8. Comparison of simulated spectral reflectance reconstruction with three randomly selected
samples (No. 46, No. 376, and No. 1026) at three different noise levels.

4. Discussions

The main purpose of this study was to reconstruct the spectral reflectance of organ
samples using a commercial RGB camera. A large dataset consisting of organ and bio-tissue
samples was collected using a MSIS, and a novel spectral reconstruction algorithm was pro-
posed to provide the highest recovery accuracy. Before drawing a final conclusion, factors
affecting the model performance were discussed to offer a comprehensive understanding
of the proposed method.

More data implies more precise modeling. The core idea of the proposed method is to
establish a LUT to transform the camera responses into spectral reflectance using the lattice
regression model. Despite the fact that a smoothness constraint is believed to offer accurate
estimates for colors outside the color gamut of the training dataset, this assumption is
purely theoretical. As a result, the estimation may not be as precise for data points outside
the color gamut compared to those within.

In addition, the reconstruction accuracy is impacted by the sample distribution. Due to
the fact that the reflectance corresponding to each vertex was computed using regression on
neighboring training sample points, the estimation was inaccurate for a test color situated
in a location with a sparse distribution of training samples. This is inevitable for colors in
the boundary regions, which is where the highest colorimetric error occurs, as shown in
Table 1. As illustrated in Figure 9, the blue points represent the training samples, while
the red “+” represents the test sample with the highest reconstructed color difference.
Therefore, estimation is challenging since there are few training samples around the test
data point.
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Another significant challenge in spectrum recovery is metamerism. It should be
mentioned that this study focused mostly on organ samples. This means all the samples
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had comparable constituents, indicating that metamerism seldom happened. As a result,
the LUT was applicable, and the low-dimensional camera responses could be used to
represent the high-dimensional reflectance.

It is also worth noting that the proposed method has the potential for use in real-time
applications. In contrast to some other time-consuming methods, the proposed algorithm
is based on the well-established image processing technology of LUTs. Thus, the training
phase, or more precisely, the establishment of the LUT, is the only step that costs time and
can be accomplished in only seconds by a typical PC. In a practical application, the RGB
image can be converted into a spectral image by employing the LUT in real time.

5. Conclusions

In this study, a novel method based on lattice regression and matrix-R theory was
proposed for estimating the spectral reflectance of organ samples using camera responses.
It was compared with six widely adopted techniques, and the results confirmed its superi-
ority. Moreover, a comprehensive organ dataset made up of 33 hyperspectral images was
gathered. The k-means clustering technique was used to analyze these images, and the
resulting 6529 organ colors are thought to be representative of organ samples.

Author Contributions: Conceptualization, L.X., Y.C.; methodology, L.X., Y.C. and S.Z.; software,
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