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Abstract: As a newly emerging distributed machine learning technology, federated learning has unique
advantages in the era of big data. We explore how to motivate participants to experience auctions
more actively and safely. It is also essential to ensure that the final participant who wins the right to
participate can guarantee relatively high−quality data or computational performance. Therefore, a
secure, necessary and effective mechanism is needed through strict theoretical proof and experimental
verification. The traditional auction theory is mainly oriented to price, not giving quality issues as
much consideration. Hence, it is challenging to discover the optimal mechanism and solve the privacy
problem when considering multi−dimensional auctions. Therefore, we (1) propose a multi−dimensional
information security mechanism, (2) propose an optimal mechanism that satisfies the Pareto optimality
and incentive compatibility named the SecMDGM and (3) verify that for the aggregation model based
on vertical data, this mechanism can improve the performance by 2.73 times compared to that of random
selection. These are all important, and they complement each other instead of being independent or
in tandem. Due to security issues, it can be ensured that the optimal multi−dimensional auction has
practical significance and can be used in verification experiments.

Keywords: game theory; federated learning; mechanism design; auction theory; partial homomor-
phic encryption

1. Introduction

With the deep integration and application of artificial intelligence in different indus-
tries [1–3] and social life [4–6], model training needs more participants. In this paper, we
discuss how to motivate participants to provide their multi−dimensional information, such
as data [7,8] and computing power.

However, data privacy and security risks [9,10] have caused widespread concern and
even anxiety and panic. Federated learning [11–14] is attracting increasing attention as it
can build aggregation models by ensuring that there is no need to submit raw data outside
the local area [15–17]. Federated learning plays a perfect role in protecting privacy in
model aggregation [18,19], but a suitable mechanism is needed to motivate someone to
participate in this task before computing. Zhan et al. [20,21] focused on how to motivate
clients effectively to participate in federated learning reliably and conducted extensive
research on the existing work about incentive mechanisms for federated learning. From an
economic perspective, federated learning only provides a technology but does not consider
why the clients should participate or what benefits they can gain. However, Zhan et al. did
not consider security and multi−dimensional information in the mechanism. Therefore,
we need to provide a better mechanism for federated learning.

We need a standard and unified framework and theory with which we can compare
and research the advantages and disadvantages of mechanisms [22,23] in the resource
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allocation and system design of federated learning. This is why we thought of the theory
of auction mechanism design [24–26]. A suitable mechanism allows the game decision to
obtain better payoffs, ceteris paribus, and it is applied in many fields [6,27,28]. In the latest
edition of Nature, DeepMind [7] discusses human−centered mechanism design options.
The design of the mechanism is present in almost all resource allocation issues, including
taxation, voting, and spectrum auctions.

The three critical mechanism design theories are auction, contract, and bargaining. In
the 1960s, William Vickrey [29] and Armando Ortega Reichert made pioneering contribu-
tions to auction theory. The 2020 Nobel Prize in economics was awarded to Paul Milgrom
for his contributions to improving auction theory and new auction forms. As he said, when
a traditional economic theory cannot explain and calculate the complex scenes of reality, we
require a high−performance computing solution based on traditional theory to evaluate
the mechanisms, getting better social welfare in the meanwhile. Therefore, it is ideal to
explore the challenges of federated learning by mechanism design.

The most well−known application of auction theory, on which this paper is based,
includes advertising positions [30,31] and antique auctions. However, all problems related
to resource allocation are inseparable from auction theory. This is a completely theoretical
system that goes far beyond the auction application. First−price auction is a simple
process [32] in which many buyers bid on an item and the highest bidder procures the item
(paying the highest bidding price).

Homomorphic encryption is a unique method supporting algebraic operations in
ciphertext data. It plays a central role in the security mechanism discussed in this paper.
On the Internet, clients in federated learning need to not only compete for participation but
also ensure the quality and security of the winner. Therefore, it is necessary to develop an
improved auction mechanism. It is critical to ensure that the bidding information is not
intercepted by competitors or leaked and that the clients submit real multi−dimensional
information. Hence, a secure multi−dimensional optimal auction mechanism is crucial.

The ubiquitous online advertising [33,34] auction faces a similar security problem
as federated learning. This is just a snapshot of many scenes we have not explored yet,
and the mechanical design of federated learning discussed in this paper is one of the
most representative. As it considers not only the security during the auction but also the
quality after the auction, it requires studying a multi−dimensional mechanism. Traditional
auctions are price−oriented, and considering only price will lead to sacrificing quality.
However, when participants are requested to provide information other than price, such
as multi−dimensional information about their counting ability, this can compromise their
privacy. This seems to be a contradiction. Therefore, we need to explore a secure auction
mechanism for federated learning that can guarantee the quality of participants and the
privacy of multi−dimensional information. We solve this problem for the first time by
designing security mechanisms named the SecMDGM for multi−dimensional information
in federated learning.

The optimal mechanism is for participants to voluntarily provide information regard-
ing their actual price and computing power and other multi−dimensional information.
An auction with this feature is called “strategy−proof,” and the auction mechanism that
follows this winner−pick rule is called the “direct mechanism.” The idea of strategy−proof
as the core of auction design was first given by the American Nobel Prize winner William
Vickery. However, does this still hold for the case of multi−dimensional encrypted mes-
sages? Designing a mechanism to maximize the expected profit and satisfy the Pareto
equilibrium and incentive compatibility is necessary, which is addressed in Section 3.

Figure 1 provides the framework of the SecMDGM mechanism, including the auction
stage (select the participant) and the calculation stage (agglomerate the model) of federation
learning. Unlike other research on federated learning, we consider both quality and security
for the first time. This is why we do not compare it with other papers in an experiment in
Section 4. Briefly, we focus more on the right side in Figure 1. This paper is an extension of
federated learning.
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Figure 1. Framework for the design of federated learning security mechanisms.

This paper explores how to make different participants more active in federated learn-
ing upfront and ensure that the final winner can provide a higher−quality model instead of
a low price. Meanwhile, focuses on the privacy protection of personal multi−dimensional
data. To sum up, the contributions of this paper are as follows:

(1) Security:

(1) We realized the computation of the ciphertext score function for mechanism
design based on partial homomorphic.

(2) We redeployed the federated learning process to cover bid submission, auction
calculation, and model aggregation security.

(2) Necessity:

(1) The mechanism proposed in this paper considers the multi−dimensional
information of bidders, which is more in line with actual demand.

(2) It is proved that our mechanism is Pareto optimal and satisfies incentive
compatibility (IC), which is the primary measure of mechanism performance.

(3) It is proved that the mechanism can maximize the participants’ profit, and the
equation and proof of the optimal strategy are provided.

(3) Effectiveness:

(1) Experiments show that our mechanism can improve the accuracy of the feder-
ated learning model while ensuring security.

(2) Our mechanism is also suitable for vertical data.

The rest of this paper is organized as follows: Section 2 presents the work on mech-
anism design, federated learning, and cryptographic algorithms and the relationship
between them. Section 3 theoretically proves the security and necessity of the proposed
multi−dimensional security mechanism. In Section 4, the effectiveness of the proposed
mechanism is experimentally verified. Section 5 provides the conclusion.

2. Preliminaries and Notations

This paper explores the secure federated learning mechanism under multi−dimensional
information for the first time from the game theory perspective. Not only does it guarantee the
feasibility of security in multi−dimensional auctions, it also proves that the multi−dimensional
mechanism can obtain a dominant strategy in the cryptographic process and satisfies incentive
compatibility, which also enables participants to obtain the maximum expected revenue.
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Since many fields of knowledge are involved here, Section 2.1 introduces auction
theory in mechanism design and the difficulty of multi−attribute auctions, Section 2.2
discusses partial homomorphic encryption and its security guarantees, and Section 2.3
discusses the vertical federation learning model.

They are interdependent, and multi−dimensional auctions can only provide the opti-
mal mechanisms in theory. They cannot guarantee the feasibility of the application because
participants will be reluctant to submit crucial information for fear of their privacy being
compromised, even if they know that this is the optimal strategy. Partial homomorphic
encryption solves this problem. As a new distributed solution, computing security in
federated learning has also been deeply explored. However, in addition to the security
of the calculation itself, security is necessary for the participant selection stage as well,
especially when the participants are providing multi−dimensional private information
instead of simply price. High−quality participants decide the performance of the final
aggregation model.

2.1. Multi−Dimensional Auction and Mechanism Design

In this paper, the design of the federated learning mechanism is the core issue. Even
the discussion about security and quality is based on the mechanism design itself. Therefore,
the most crucial thing is comprehending the mechanism design theory and the relationship
between mechanism design and auction theory in federated learning.

The principal−agent model is the basic analytical framework of mechanism design
theory, as shown in Figure 2. First, the principal designs a mechanism, which is the main
contribution of this paper. Second, multiple participants compete to participate in federated
learning according to the given auction mechanism. Auction, bargaining, and cooperation
theory are the three major mechanism design theories. An auction is a market mechanism
in which participants make bids and determine the allocation of resources and the price
paid according to a set of defined rules [35]. Paul Milgrom was awarded the Nobel Prize in
Economics for his important contributions to auction theory.
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We abstract the limited participating resources on the server as the auction object of
the mechanism, and the participants who want to participate in the model aggregation
become buyers. Under the optimal mechanism, the service provider can maximize social
welfare by selecting the best participant, which can be the best performance of the focusing
function. Each participant can honestly provide the highest−quality bidding information
for maximum benefit. Under the optimal mechanism, the service provider can improve the
performance of the aggregation function by selecting the right participants to maximize
social welfare.

Mechanism design theory provides ways to avoid these dilemmas under specific
circumstances. Dominant mechanisms allow participants to show their personal preferences
and achieve social goals. To better understand the auction mechanism, we list examples
of a first−price auction. As shown in Figure 3, in the first−price auction, each participant
uses a specific value to bid for the item [36,37]. At this time, the auction mechanism must
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make two decisions. First, who will obtain the item? It can be seen that the third participant
obtained the item, with the highest bid price. Second, what amount needs to be paid?
The winner needs to pay USD 8. This is one of the most manageable single−dimensional
auctions that can help us understand the multi−dimensional auction theory better.
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In the traditional mechanism design, the VCG auction mechanism satisfies the condi-
tions of incentive compatibility (IC) and individual rationality (IR), which can maximize
the expected profit of participants. This is effective in single−item single−dimensional
auctions, but single−item multi−attribute auctions require further exploration.

Definition 1. VCG Mechanism.

The allocation x(b) and payment rules p(b) of the VCG mechanism satisfy the follow-
ing two equations, respectively:

xi(b) = argmax
ω∈Ω

n

∑
i=1

bi(ω) (1)

pi(b) = (max
ω∈Ω

∑
j 6=i

bj(ω))−∑
j 6=i

bj(ω
∗) (2)

where b stands for the bid of the participants
Here, is an alternative formula representation of the payment rules in the VCG mechanism.

pi(b) = bi(ω
∗)− [

n

∑
j=1

bj(ω
∗)−max

ω∈Ω
∑
j 6=i

bj(ω)] (3)

This can help us better understand the theoretical proof of the SecMDGM mechanism
in Section 3. The multi−dimensional auction originated from the requirements of the
U.S. Department of Defense for the procurement and supply of weapons. Competitive
procurement of weapons considers not only price but also various performance metrics
of the weapon, including technical characteristics, delivery dates, labor performance, and
estimated program costs. Equation (4) provides a simple score function for measuring
the mechanism design, which is related to the utility function and price p induced by the
multi−dimensional feature information Q = (q1, q2, · · · , qm).

Score = U(q1, · · · , qm)− p (4)

Bichler defined multi−dimensional auction [38] as an auction mode in which multiple
attributes of the item are considered when buyers and sellers trade, that is, an auction mode
in which the two parties conduct multiple negotiations on other quality attributes in addi-
tion to the price. The experimental research shows that, for buyers, the multi−dimensional
auction is better than the single−dimensional auction. Sometimes, the situation of suppli-
ers will also improve. However, we improve the multi−dimensional auction theory via
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practical applications in federated learning and avoid the leakage of private information by
guaranteeing security.

Many practical and theoretical problems, such as the formulation of laws and regu-
lations, administrative management, and democratic elections, can be transformed into
mechanism design problems. This paper translates the federated learning problem into an
optimization problem for the auction mechanism, and the proof and measurement index of
the SecMDGM mechanism is provided in Section 3.

2.2. Partial Homomorphic Encryption

Compared with the single−dimensional auction, the multi−dimensional auction can
improve the quality of the participants but requires providing more personal information.
From a theoretical point of view, multi−attribute auctions are enough. However, from a
practical point of view, we need to design a multi−attribute auction mechanism and ensure
the security of the bidding information. Therefore, the SecMDGM mechanism needs the
support of cryptography.

Homomorphic encryption [39] can support algebraic operations of ciphertext. To satisfy
the requirements of confidentiality, cryptographers have designed different types of encryp-
tion methods according to different NP−hard problems. According to the different computing
powers, these can be divided into partial and fully homomorphic encryption. Unlike the
slower computation of fully homomorphic encryption [33–35], partial homomorphic encryp-
tion [40] is compatible with our auction mechanism in terms of security and computation
performance. This is the first time that the security method and the multi−dimensional
mechanism have been skillfully combined and provide strict theoretical proof.

The Paillier encryption algorithm is a representative additive homomorphic algorithm
invented by Paillier in 1999 [41], based on the difficult question in the compound residual
category. Moreover, the RSA encryption algorithm is the first that can be used for encryption
and digital signatures that are easy to understand and operate. After surviving various
attacks, it has gradually become widely accepted. It is generally considered one of the best
public key cryptography algorithms and representative of multiplicative homomorphism
algorithms. The SecMDGM mechanism skillfully uses the characteristics of Paillier and
RSA encryption algorithms and applies them to the auction mechanism.

In this paper, fully homomorphic encryption is not considered because (1) it will be costly
in terms of time and (2) the server is completely trustworthy in federated learning. Security
can be achieved by adding several encryption and decryption calculations. Therefore, because
the time cost of a partially homomorphic encryption algorithm can be completely ignored,
this paper does not make an experimental comparison of time complexity.

In this paper, partial homomorphic encryption provides theoretical support for security
calculation. A public−key cryptosystem, for all keys (pk, sk), that is generated by the
key generation algorithm Gen(1n), has a plaintext space M and a ciphertext space C. For
messages m1, m2 ∈ M in plaintext space, the corresponding ciphertext data c1 = Epk(m1)
and c2 = Epk(m2) satisfy Equation (5).

Decsk(c1 ◦ c2) = m1 ◦m2 (5)

If the operator ◦ is an additive operation, homomorphic encryption is called additive
homomorphic. If it is a multiplicative operation, it is called multiplicative homomorphic.
If an encryption method is homomorphic to only one operation, it is called partial homo-
morphic encryption. Otherwise, it is called fully homomorphic encryption. We prove the
security of the encryption algorithms of Paillier and RSA as follows.

2.2.1. The Security of Paillier Additive Homomorphic Encryption

The encryption and decryption process of Paillier, where pk2 = (n, g) is the public key
and sk2 = (λ, µ) is the private key, is as follows:

First, the key needs to be generated.
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(1) Randomly choose two large prime numbers p and q that satisfy gcd(pq, (q − 1)) = 1
and satisfy p and q of equal length.

(2) Calculate n = pq as well as λ = lcm(p − 1, q− 1). Here, lcm denotes the least common
multiple.

(3) Randomly select integer g ∈ Z∗n2 .

(4) Define the function L(x) = x−1
n and calculate µ = (L(gλmodn2))

−1modn.

Here, is Paillier’s encryption process.

(1) Input a plaintext m that satisfies 0 ≤ m ≤ n.
(2) Choose a random number r that satisfies 0 ≤ r < n and r ∈ Z∗n.
(3) Calculate the ciphertext c = gmrnmod n2.

Paillier’s decryption process is as follows:

(1) Input a ciphertext message c that satisfies c ∈ Z∗n2 .
(2) Calculate the plaintext m = L

(
cλmod n2) ∗ µmodn.

Paillier satisfies the standard definition of security for encryption schemes, semantic
security, i.e., indistinguishability under chosen−plaintext attack (IND−CPA). Intuitively,
the ciphertext does not reveal any information in plaintext. The security of Paillier can be
reduced to the decisional composite residuosity assumption (DCRA), i.e., given a composite
number n and an integer z. It is NP−hard to determine whether z is n times residual under
mod n2, i.e., whether there exists y satisfying z ≡ yn(mod n2).
2.2.2. The Security of RSA Multiplicative Homomorphic Encryption

Assuming that the ciphertext is c and the plaintext is m, the encryption process of RSA
is as follows:

c = mEmodN (6)

where pk1 = (E, N) is the public key and sk1 = (D, N) is the private key. Here, we use the
public key to encrypt and the private key to decrypt. When N = p*q, L = lcm(p − 1, q − 2),
and gcd(E, L) = 1 are satisfied when 1 < E < L and E*D mod L = 1 when 1 < D < L, the key
is generated.

The decryption process of RSA is as follows:

m = cDmodN (7)

The security of the RSA encryption scheme depends on whether the attacker can
quickly obtain the plaintext m. The easy method is to obtain the plaintext m by finding
the private key D. To obtain the private key D, we need to decompose N into p and q
and then calculate p−1 and q−1 to derive D from E. Thus, the security of RSA relies on
the knowledge of number theory that factorizing a large integer’s prime factor is difficult
and inefficient. Briefly, it relies on the difficulty of factoring large numbers. There is no
polynomial−time method for factoring the decomposition of large factors.

Figure 1 shows the overall framework of this article. The secure computing of federated
learning refers to steps 4 to 7 with pk3, which experts have thoroughly studied. Our research
focuses on steps 1 to 3, with pk1 and pk2 corresponding to RSA and Paillier, which are not in
traditional federated learning. With these steps, clients can participate more actively in model
aggregation. The improvement of the multi−dimensional auction has further improved the
quality of the winner. In addition, the guarantee of partial homomorphic encryption ensures
that participants are no longer worried about data leakage. In Section 3, we directly use
Encrypt/E() and Decrypt/D() to represent the encryption and decryption functions.

2.3. Vertical Federated Learning

The Google team [42] initially proposed federated learning to explore a predictive
model that enables multiple smartphones to learn and share cooperatively. Different
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from traditional distributed learning, it can aggregate models without taking the original
parameters out of the local area. The key Equation (8) is as follows:

ω(t + 1) =
∑N

i=1 Ciωi(t + 1)

∑N
i=1 Ci

(8)

where Ci is the weight of the participants
One of the important issues unsolved in federated learning is the non−independent

homogeneous distribution of data. The SecMDGM mechanism of this paper involves
this problem because it measures multi−dimensional information and more dimensional
information can provide a higher−quality winner for the server.

Traditional horizontal federated learning considers that two datasets have more over-
lapping features and fewer overlapping users. However, in real situations, the data
providers in horizontal federated learning often compete.

As shown in Figure 4, each column represents the respective features of the partic-
ipants. Since the features of the participants are different, it does not satisfy an inde-
pendent homogeneous distribution. However, vertical federated learning that considers
multi−dimensional data can improve the model’s accuracy.
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Therefore, we design an incentive mechanism based on vertical data. Vertical fed-
erated learning is considered when there are more users overlapping and fewer features
overlapping. This is consistent with our idea of the multi−dimensional information auc-
tion, which not only improves the performance of the server model but also performs
experimental validation from the perspective of vertical federation learning in Section 4.

3. Theory of SecMDGM Mechanism for Federated Learning

As a distributed integration approach, federated learning has many advantages. How
to make clients voluntarily submit higher−quality data or local computing performance
is an important area of focus. We design an incentive mechanism named SecMDGM to
facilitate federated learning tasks based on the theory of first−price auction. The use of
multi−attribute auctions is intuitive, but it is essential to completely prove the theory since
this allows us to do away with the theoretical system of the VCG model, given in definition
1. We need to improve the proof to ensure that such a mechanism is feasible and necessary.
Since participants provide more and more private information, how can they reduce their
worries about the information being leaked, even if they can theoretically get the best
benefits? Moreover, whether the participants of multi−round federated learning will steal
bid information from each other is also a security issue.

The multi−dimensional bid information of the auction is calculated in the score
function, which is mentioned in Equation (4). It is important to ensure the security of the
score function, which also protects the safety of the client’s original private information.
Due to the particularity of the federated learning task, the server is trusted by default, so
participants only get the public key. Only the server has the corresponding private key.
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This section of the paper looks at how to ensure that the score function of the
server is not leaked, a security guarantee that needs to be achieved to ensure that the
multi−dimensional bidding information of clients will not be leaked. In addition, this
section will theoretically prove the necessity of the SecMDGM mechanism from the per-
spectives of Pareto optimality and incentive compatibility. This means that the mechanism
can maximize the revenue of all parties.

3.1. Algorithms and Framework of the SecMDGM Mechanism

The SecMDGM mechanism is based on the theory of first−price auction, one of the
fundamental theories for auction mechanism. The algorithms and framework in this
subsection focus on steps 1 to 4 in Figure 1. We believe the model clustering for federation
learning can be found in papers dedicated to the computation of federation learning.

The auction theory in this paper is based on multi−dimensional attributes, as shown
in Equation (9), where Q is the set of bidder features. We should pay attention not only to
the bidding price but also to the data quality, computing performance, and other factors in
bidding. Therefore, a scoring function Score(Q, p) is needed to measure each feature, and
each feature has its corresponding weight, which is mentioned in Equation (4). In other
words, the auction’s winner needs to be measured in multiple dimensions to win finally.

Equation (9) indicates the m dimension feature the client i needs to submit, and Q
denotes the feature array.

Qi = (q1, q2, · · · , qm) (9)

bidclient_i

(
Encryptpk1(Q), Encryptpk2(p)

)
= (10)

bidclienti

(
Encryptpk1(q1), · · · , Encryptpk1(qm), Encryptpk2(p)

)
Equation (10) indicates that client i submits the feature array Q and the bid price p to

the seller, which refers to the server. Moreover, since the seller has distributed the auction
rules and the public keys to the buyers separately, as known in the first step shown in
Figure 1, the clients need to encrypt their submitted bid information separately.

Figure 1 displays the overall framework of the SecMDGM mechanism, and the mech-
anism is divided into seven steps. The last steps of model aggregation are well known,
and the first steps are the mechanism design that is the focus of this paper. Thanks to
its inclusion, participants can actively participate in the training of the model, while the
security of the data is guaranteed. Algorithm 1 provides the pseudo−code. This section
provides the flow of the SecMDGM mechanism, and the next section analyzes in detail how
this mechanism is realized and proved.

3.2. Cryptographic Utility and Score Functions for the SecMDGM Mechanism

The utility function is a commonly used measurement method in microeconomics,
which is used to measure buyers’ satisfaction when they consume an item. In this paper, it
is the satisfaction of the server with the bidding information provided by the clients. This
is a subjective feeling perception, so there are many different types of utility functions and
the server determines the weights of the features.

The indifference curve is used to show that items of two groups in different combina-
tions can provide the same utility. The consumer’s choice of any point on the curve is of
equal utility to the consumer because the combination represented by any point provides
the consumer with no difference in satisfaction. Hence, it is termed the utility’s indifference
curve. The multi−dimensional information in the bidding of clients is such a combination.
We must ensure that it conforms to the federal learning requirements by giving the suitable
utility function and the corresponding indifference curve.
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Algorithm 1: Federated Learning Security Mechanism in Round b

Input: Number of clients: N;
Number of participants in the last round: K;
Local multi−dimensional data;
Round b − 1.

Output: Global model parameter ω(t):

1. for t = 1 to T do

2. client1 to clientN ← pk1, pk2 and Score(Q, p) rules

3. for i = 1 to N do

4. Qi ← arg max U (Qi) − c(Qi, θi) in Equation (17)

5. p i ← c(Qi, θi) +
∫ θ

θ cθ(Q, t)( 1−F(t)
1−F(θ) )

N−1
dt in Equation (18)

6. E(Qi)← encrypt with pk1

7. E(pi)← encrypt with pk2

8. submit bid(E(Qi), E(pi))

9. end for

10. E(Score)← Epk1, pk2 (U(q1, · · · , qm)− p)

11. Score← Dsk1, sk2 (E(Score)

12. win← 0 or 1

13. Add winner to round b − 1 for federated learning

14. Complete the auction

15. for i = 1 to K + 1 do

16. clienti ← pk3, p i, global ω(t) from server

17. ωi(t + 1)← trains the clienti

18. server← Epk3(ωi(t + 1))

19. end for

20. ω(t + 1)← ω(t + 1) = ∑N
i=1 Ci Dsk3 ωi(t+1)

∑N
i=1 Ci

in Equation (8)

21. end for
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There are two typical forms of indifferentiable curves, the curve for perfect substitutes
and the curve for perfect complements.

Take two items, for example. If a buyer wants to buy a thirst quencher when there are
only two drinks to choose from, milk and coffee, then they are perfect substitutes, i.e., the
buyer who buys milk will not buy coffee. As shown in Figure 5a, the three indifference
curves represent the different demands for drinks. Equation (11) represents the utility
function of the corresponding perfect substitutes.
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U(q1, q2) = α1q1 + α2q2 (11)

If a buyer wants to buy eyeglasses, then lenses and frames are perfect complementary
items because they must be presented together. As shown in Figure 5b, the two indifference
curves represent the different demands for pairs of eyeglasses, respectively. Equation (12)
represents the utility function of the corresponding perfect complements. In addition to
the different results in the calculation of the utility function, the main difference between
perfect substitutes and perfect complements is the different results in the marginal rates
of substitution (MRS). The MRS for perfect substitutes is 0 (Equation (13)), and the latter
result is ∞.

U(q1, q2) = min(α1q1, α2q2) (12)

MRS = −∆q2

∆q1
(13)

The multi−dimensional features of clients, such as CPU performance, memory capac-
ity, hard disk capacity, network bandwidth, and other performance, can replace each other,
so the perfect substitution utility function is suitable for calculating the multi−dimensional
information in federated learning.

Figure 6 represents the perfect−substitution−type preference relationship (indifference
curve) for three−dimensional features when m is equal to three: q1, q2, and q. Figure 6 is an
abstract description, so we do not consider the weight of each feature. We also do not need
to consider the weights in the theoretical proof because they do not affect the proof of the
mechanism design. The indifference curve means that for different combinations of features,
all the points on the same surface have the same degree of utility for the server. This figure
provides a better understanding of the utility function of the multi−dimensional auction.

The perfect substitution utility function has excellent theoretical support as a type of
utility function. However, in federated learning, the training usually involves multiple
rounds. In addition, the clients are generally not fixed, i.e., the auction is conducted in
multiple rounds. To ensure that the multi−dimensional information of participants in
different rounds is not leaked and the weights of the server are not leaked, we encrypted
the perfect substitution utility function in Equation (14).

U(q1, · · · , qm) = α1q1 + α2q2 + · · ·+ αmqm (14)
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= Dsk2 Epk2(α1q1) + Epk2(α2q2) + · · ·+ Epk2(αmqm)

= Dsk2 Epk2(Dsk1(Epk1(α1) ∗ Epk1(q1)

= Dsk2 Epk2(Dsk1(Epk1(α1) ∗ Epk1(q1) + Epk2

(
Dsk1

(
Epk1(α2) ∗ Epk1(q2)

))
+ · · ·+ Epk2

(
Dsk1

(
Epk1(αm) ∗ Epk1(qm)

))
)

Equation (6) is the utility function of the security mechanism proposed in this paper.
The server provides two public keys: pk1 for the multiplication operation and pk2 for the
addition operation. Since the intermediate values after the encryption operation no longer
contain the original plaintext data, their security is guaranteed.
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The score function is Equation (15), which is the utility function minus the price p
submitted by the client when bidding. The following equation provides the encryption and
decryption process of the scoring function, whose security guarantees are discussed in Sec-
tion 2, so only its secure calculation process is shown here. The scoring function is used as
part of the rules of the SecMDGM mechanism. Since we introduced the multi−dimensional
information, a corresponding scoring function is needed to add as a supplement to the
first−price auction rules.

Scoreclienti
= U

(
qi1 , · · · , qim

)
− pi

= Dsk2 Epk2

(
U
(
qi1 , · · · , qim

)
− pi

)
= Dsk2 Epk2

(
U
(
qi1 , · · · , qim

))
− Dsk2 Epk2(pi)

(15)

The encrypted utility and scoring functions in this paper simultaneously ensure that (1)
the communication process is secure when the client submits features and price to the server
and (2) other malicious parties do not steal the parameters of the server when the auction
is being executed. In addition, with these two functions, we developed scoring rules for
multi−dimensional auctions. Sections 3.3 and 3.4 will prove that the mechanism discussed in
this paper can be guaranteed in theory due to the introduction of the scoring function.

3.3. Maximize the Expected Profit of the SecMDGM Mechanism

In this section, we prove the necessity of the SecMDGM mechanism to maximize the
overall profit. This necessity is reflected in two aspects:

(1) The SecMDGM mechanism in this paper is based on multi−dimensional auction
theory, which is more in line with the real auction of federated learning. Not only the
price but also qualities are considered.

(2) An excellent mechanism enables the server to spend less but achieves a higher per-
formance of the model. At the same time, all the participants are willing to submit
more real data and local computing resources for the federated learning task to obtain
higher profits.
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The first point of necessity is intuition, and the higher the dimensionality of features,
the higher the quality of the results. However, because of the introduction of the first point,
we need more theory to ensure that the second point holds. We can measure the second
point of necessity by the scoring function in the server, which is referred to in the previous
section. The profit can be calculated by Equation (16). The profit is equal to the expected
revenue given by the server minus the cost of the participation of the winner. The cost c of
the winner is related not only to the parameter Q but also to the privacy parameter θ.

pro f it(Q, p|θ) = (p− c(Q, θ)) ∗ Prob(win|Score(Q, p)) (16)

How can we design the incentive mechanism so that the two parties of federated learning
maximize their profits? Submitting the real data of Q and p will be the optimal strategy.
Equations (17) and (18) are the optimal bidding strategies. The proof is given below.

Theorem 1. Maximize the Expected Profit from the SecMDGM Mechanism.

Qwinner = argmaxU(Q)− c(Q, θ) (17)

pwinner = c(Qwinner, θ) +
∫ θ

θ cθ(Q, t)( 1−F(t)
1−F(θ) )

N−1
dt (18)

Proof of Theorem 1. We use the reduction to absurdity to prove Equation (17).
Suppose that there is a dominant bidding strategy bid(Q, p) in client i, who get the

maximize maximum expected profit.
Contradiction: Exists another bidding strategy bid(Q′, p′) 6= bid(Q, p), satisfies the

following equations. {
Q′ = argmaxU(Q′)− c(Q′, θ′)

p′ = p + U(Q′)−U(Q)
(19)

If the following conditions are satisfied, then the strict predominance of bid(Q, p) is
replaced by bid(Q′, p′).

pro f it(Q′, p′
∣∣θ′) ≥ pro f it(Q, p

∣∣θ) (20)

Transformation of Equation p′ = p + U(Q′)−U(Q) can gets U(Q)− p = U(Q′)− p′

and Score(Q, p) = Score(Q′, p′). Since the scores are equal, then Q′ = Q = Qwinner. This
contradicts with bid(Q′, p′) 6= bid(Q, p). Therefore, Q′ = argmaxU(Q′)− c(Q′, θ′) holds
and Equation (17) holds.

Equivalence Proof Equation (16): From the above, it is clear that once Equation (20) is
proved then Equation (17) will hold.

pro f it(Q′, p′
∣∣θ′) = (p′ − c

(
Q′, θ′

))
∗ Prob(win

∣∣Score
(
Q′, p′

)
) (21)

= (p− c(Q, θ) +
(
U
(
Q′
)
− c
(
Q′, θ′

)
− ((U(Q)− c(Q, θ)))

)
∗ Prob(win

∣∣Score
(
Q′, p′

)
)

≥ (p− c(Q, θ)) ∗ Prob(win
∣∣Score

(
Q′, p′

)
)

= pro f it(Q, p|θ)

Therefore, Equation (20) holds, contradiction exists and Equation (17) holds.
The proof of Equation (18) is described in detail in articles [43,44], where F() is the

distribution function. Due to space limitations, it will not be repeated in this paper. Since
the values of Q and p are the client’s own strategy actions that are carried out locally before
bidding, encryption is not required at this step. Therefore, the SecMDGM mechanism has
the optimal strategies if the participants join the game. �
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3.4. Pareto Optimal Mechanism and Incentive Compatibility (IC) of the SecMDGM Mechanism

Section 3.3 proved that the game has optimal strategies under the rules set by the
SecMDGM mechanism, but it does not mean that the mechanism itself is optimal. In this
section, we prove that the mechanism itself is optimal.

It is generally believed that the essential criteria to evaluate a mechanism include the
effective allocation of resources and maximization of profit. Whereas efficient resource
allocation needs to be demonstrated by proving Pareto optimality, maximizing profit must
consider incentive compatibility. Therefore, we prove that the SecMDGM mechanism
satisfies Pareto optimality and incentive compatibility.

Theorem 2. Pareto Optimal of the SecMDGM Mechanism.

The Pareto optimal mechanism can maximize the social surplus. It describes a state of
optimal allocation of resources. There is no way to make it more profitable without causing
losses to the other party.

Proof of Theorem 2. Equation is: Surplus = U(Q)− c(q). Since Equation (17) has proved
that in the optimal strategy, Qwinner = argmaxU(Q)− c(Q, θ).

These two equations are understood from different perspectives, but their results are
the same, and we differ in obtaining the value of c from a global perspective, but since
the mechanism proves Equation (17). The optimal strategy of the participants is to make
the whole mechanism Pareto optimal. This means Surplus can be the maximum when
Q = Qwinner. Pareto Optimal of the SecMDGM Mechanism holds. �

Theorem 3. Incentive Compatibility (IC) of the SecMDGM Mechanism.

The federated learning mechanism allows clients to pursue their individual profits
while maximizing collective profit. That means incentive compatible.

Proof of Theorem 3. If there exist clients who bid bid(Q′, p), where ∃j, qj > qj′ . Equation
(17) has proved that when Qwinner = argmaxU(Q)− c(Q, θ), the client can maximize the
expected profit. From the utility function, it is known that U(Q) > U(Q′), and it is deduced
that Score(Q) > Score(Q′). Thus, the winner that the mechanism chooses is the one that
pursues their individual interests. �

The above two theorems show that the SecMDGM mechanism discussed in this paper
can maximize the profit of both client and server and the client can actively submit more
data and other multi−dimensional parameters, thus maximizing personal profit.

4. Experimental Verification of Federated Learning Security Mechanisms

To verify that the SecMDGM mechanism is not only secure and necessary but also
effective, we simulate the federated learning process of the auction through experiments.

It is well known that algorithmic game theory can be divided into game strategy
solving and mechanism design. Section 3.2 proves that the SecMDGM mechanism has
the optimal game strategy. However, we focus on exploring the design of the mechanism
so the experiments do not pursue the optimization of the game strategy but verify the
effectiveness of the SecMDGM mechanism when the optimal solution has been proven.

Therefore, the weights of the score function are arbitrary and values will be given
below. Suppose you want to reproduce the verification experiments to meet the rules of the
SecMDGM mechanism. In that case, you can obtain some performance improvements of
federated learning by using arbitrary values. Moreover, the features sought by each server
are different, so the weight value is not essential.
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In addition, no existing federal learning work can implement security mechanisms
and multi−dimensional auctions. Therefore, the benchmark for this experiment is federal
learning computing without a mechanism design in the same dataset.

To reduce the influence of the machine model on the results, the servers of this
experiment are all based on the same operating system (Cents 7.9), which has the same
performance as the Alibaba Cloud Server, with the same CPU model: Intel Xeon E5−2682
v4. The number of cores and memory capacity are taken as variables.

4.1. Data and Environment

The model trained for the experiments is a logistic regression model, with a public
dataset involving breast cancer, with 569 participants and 30 dimensions. The features
are calculated from the digital image of a fine needle aspiration (FNA) of a breast mass.
They describe the characteristics of the nucleus existing in the image. Table 1 provides a
classification of this dataset.

Table 1. Dataset of breast cancer *.

Classification Number

Benign 357
Malignant 212

* Retrieved from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29,
29 November 2022.

As the multi−dimensional auction is perfectly consistent with the vertical data, this
experiment is based on federal learning of vertical data and the features of the breast cancer
dataset meet this requirement. As mentioned in the previous section, Q = q1 · · · qm denotes
the multi−dimensional features submitted by clients. It can be CPU performance, memory
capacity, number of local data users, number of local data features, etc.

In this experiment, we select two−dimensional features Q = q1, q2 for federated
learning auctions and arbitrarily select a1 = 0.4, a2 = 0.6. As federated learning is usually a
multi−round process, the multi−dimensional information of the client is important and
should be encrypted. The security of encryption and decryption, as well as the steps in the
auction mechanism, have been discussed in detail in the preceding sections. This section
deliberately does not emphasize the encryption and decryption process but is completed
under ciphertext.

To facilitate an intuitive presentation of the effectiveness of the SecMDGM mechanism
in federated learning, the experiments began with round b of bidding. In round b − 1, the
accuracy of the logistic regression model was set to about 90% to reflect the improvement
in the performance of different participants. In this experiment, q1 denotes the performance
of the client’s computer, q2 represents the number of features of local data, and p represents
the bid price. For the three features, we perform Min–Max normalization, which is shown
in Equation (22), and complete the auction process in steps according to the specified
parameter weights and auction rules of the SecMDGM mechanism.

qnor =
q− qmin

qmax − qmin (22)

As shown in Table 2, after normalization, encryption, and decryption, using the perfect
substitution utility and score function in Section 3, the highest scorer is the winner of this
round of the first−price auction. Meanwhile, the winner needs to pay RMB 300 and provide
1VCPU 1Gib and 15−dimensional local data to participate in the model training. Therefore,
client three can add to the training of the federated learning model.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
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Table 2. The bth bid for federated learning.

Client q1 q2 p Score Win

1 1vCPU 1Gib 9 features RMB 400 −0.21 0
2 2vCPU 8Gib 5 features RMB 600 −0.18 0
3 1vCPU 1Gib 15 features RMB 300 0.04 1
4 1vCPU 4Gib 10 features RMB 350 −0.01 0
5 1vCPU 4Gib 5 features RMB 400 0.34 0

The process of aggregation model of federated learning is also under encryption.
To present the experimental results, the encryption and decryption processes are not
emphasized in the experimental process. Figure 7 shows the flowchart of round b bidding,
with five bidders and one winner. It is a partial diagram of Figure 1, which provides us with
a more visual understanding of the local process of the experiment. Although the weights
are chosen arbitrarily, the experimental data are from public datasets and the complete
auction rules, cryptographic functions, and computational functions are provided. Thus,
this is a reproducible experiment.
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4.2. Results and Analysis

Section 3 proves the security provided by and the necessity of the SecMDGM mecha-
nism based on multi−dimensional auctions. This section corroborates that the SecMDGM
mechanism can improve the model’s accuracy by providing effective incentive to the five
participants. Table 3 compares the work in this paper with state−of−the−art algorithms.
We are the first to implement both the cryptographic mechanism and multi−dimensional
auction in federated learning under vertical data. This is why we did not reproduce them
in the experiments. On the basis of the baseline, we compare the winner and a random
client under the SecMDGM mechanism.

Table 3. Comparison with state−of−the−art algorithms.

Mechanism
Design

Encrypted
Mechanism

Federated
Learning

Encrypted
Federated
Learning

Vertical Data

Federated
Avering [45]

√

Pysyft [46,47]
√ √

FMore [48]
√ √

FATE [49]
√ √ √

This Paper
√ √ √ √ √
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There are many different scenarios of federated learning. However, what remains
limited is the budget funds and the number of participants on the server. The aim of
the SecMDGM mechanism is to achieve a better model with less budget overhead, and
we conduct model training on federated learning based on vertical data. The SecMDGM
mechanism enables each client to participate actively. This can ensure a better model for
the server and better profits for the client, and the multi−dimensional privacy features will
not be leaked to other participants.

The baseline of this paper is the model in round b − 1. To make the gap in the
accuracy more apparent, we adjust the accuracy of the baseline to 90%. The experiments
are compared by comparing random clients with the winner under the auction mechanism
in round b, which can highlight the effectiveness of the SecMDGM mechanism.

Figure 8 shows the accuracy curves of the models with different participants. The
accuracy of the models in round b is better than that of the models in round b − 1, and the
accuracy of the model for the winner is obviously better than that for a random client. This
can highlight the effectiveness of the SecMDGM mechanism.
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More precisely, Figure 9 displays the improvement in the model accuracy by two
different mechanisms. The SecMDGM mechanism is found to improve the model accuracy
by nearly 3 times compared to that using the method of random clients. The optimal
mechanism showed a more significant improvement than the random auction mechanism.
The performance of the randomly selected client improved by about 1%, with almost no
change. In contrast, for the aggregation model based on the vertical data, the performance
of the winner improved by 2.73 times.
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Figure 10 shows the loss curves of different models. Due to more characteristic
dimensions of the winner, its loss curve shows a more significant jump than others in the
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first few iterations. Moreover, it can converge quickly within a reasonable range, which is
acceptable and reasonable.
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The receiver operating characteristic (ROC) and the area under the ROC curve (AUC)
are often used to measure the goodness of the model. The horizontal axis of the ROC
curve is the FPR, and the vertical axis is the TPR. The larger the AUC, the better the model.
Figure 11 shows that the winner model is better than the randomly selected client.
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As the experiment in this section only verifies the effectiveness of the design of the
SecMDGM mechanism, the values of m in p1~pm and a1~am are far lower than in the
real scenes. Nevertheless, they are sufficient to reflect the effectiveness of the SecMDGM
mechanism.

The SecMDGM mechanism in federated learning is theoretically proved in Sections 2
and 3 and verified by experiments in Section 4. Therefore, the multi−dimensional secure
federated learning mechanism in this paper is secure, necessary, safe, and effective. In
future work, we can not only consider the mechanism but also discuss the optimal strategy
of the game. We believe that this will lead to improved results.

5. Conclusions

There is no doubt about the importance of federated learning, and research has grad-
ually focused on the security of the aggregation model. However, the issue is not only
in the computation but also in motivating participants to join in the federated learning.
In this paper, first, the multi−dimensional auction mechanism has been verified theoreti-
cally and experimentally to improve the performance of the model. However, federated
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learning participants often change, and the provided data and computational perfor-
mance will dynamically change for fear of leaks. Second, security is considered to make
multi−dimensional auctions more practical, and we solve this challenge by the partial
homomorphic encryption scheme. Through theoretical proof and experimental verification,
the security, necessity, and effectiveness of the SecMDGM mechanism are proved. However,
the actual environment is more complex and changeable, and more difficult problems
remain to be solved, such as multi−winner auctions and multi−dimensional incentive
mechanisms with budget constraints, which need to be discussed in the future.
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