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Abstract: Navigation and positioning of autonomous underwater vehicles (AUVs) in the complex
and changeable marine environment are crucial and challenging. For the positioning of AUVs, the
integrated navigation of the strap-down inertial navigation system (SINS), Doppler velocity log
(DVL), and pressure sensor (PS) has a common application. Nevertheless, in the complex underwater
environment, the DVL performance is affected by the current and complex terrain environments. The
outliers in sensor observations also have a substantial adverse effect on the AUV positioning accuracy.
To address these issues, in this paper, a novel tightly integrated navigation model of the SINS, DVL,
and PS is established. In contrast to the traditional SINS, DVL, and PS tightly integrated navigation
methods, the proposed method in this paper is based on the velocity variation of the DVL beam
by applying the DVL bottom-track and water-track models. Furthermore, a new robust interacting
multiple models (RIMM) information fusion algorithm is proposed. In this algorithm, DVL beam
anomaly is detected, and the Markov transfer probability matrix is accordingly updated to enable
quick model matching. By simulating the motion of the AUV in a complex underwater environment,
we also compare the performance of the traditional loosely integrated navigation (TLIN) model, the
tightly integrated navigation (TTIN) model, and the IMM algorithm. The simulation results show that
because of the PS, the velocity and height in the up-change amplitude of the four algorithms are small.
Compared with the TLIN algorithm in terms of maximum deviation of latitude and longitude, the
RIMM algorithm also improves the accuracy by 39.1243 m and 26.4364 m, respectively. Furthermore,
compared with the TTIN algorithm, the RIMM algorithm improves latitude and longitude accuracy
by 1.8913 m and 11.8274 m, respectively. A comparison with IMM also shows that RIMM improves
the accuracy of latitude and longitude by 1.1506 m and 7.2301 m, respectively. The results confirm
that the proposed algorithm suppresses the observed noise and outliers of DVL and further achieves
quick conversion between different DVL models while making full use of the effective information of
the DVL beams. The proposed method also improves the navigation accuracy of AUVs in complex
underwater environments.

Keywords: autonomous underwater vehicle; the strap-down inertial navigation system; Doppler
velocity log; the water-track model; the tightly integrated navigation; robust interacting multiple models

1. Introduction

Autonomous underwater vehicles (AUVs) have a wide range of applications, such as
ocean pollutant monitoring [1], marine biology exploration [2], and pipeline inspection [3].
Such applications have an annual potential market of billions of dollars [4]. The underwater
vehicle navigation system is a vital enabler for such applications by providing informa-
tion such as position, velocity, and attitude [5]. However, the accuracy of the position
information depends on the AUV’s working environment.
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In the underwater environment, the global positioning system (GPS) is unavailable.
As an alternative, the strap-down inertial navigation system (SINS) is often considered
an essential part of the navigation system. Nevertheless, SINS is affected by the inherent
drift error of the inertial sensors; hence, it is unable to provide long-term high positioning
accuracy. The error accumulation in SINS is partly addressed by using the Doppler velocity
log (DVL) as an auxiliary sensor. Therefore, SINS and DVL integrated navigation systems
are commonly used for AUVs.

In the complex underwater environment, the SINS/DVL integrated navigation system
needs to face several navigation challenges. To improve the accuracy of the integrated
navigation system, a variety of filter models and algorithms have been proposed. The
Kalman filter (KF) is a well-known technique for integrated navigation applications; see,
e.g., [6–9]. Nevertheless, the traditional Kalman filter can be applied to linear systems,
whereas navigation systems often demonstrate nonlinear behaviors. To address this issue,
the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) are used in the
integrated navigation system [10–12]. Karimi et al. compared EKF and UKF algorithms
for the inertial navigation system (INS) and DVL integrated system. Their investigations
showed that the EKF results are closer to the actual values than those of the UKF [13]. Xing
et al. proposed an extended Kalman filter (EKF) to synthesize the multi-source information
from an inertial measurement unit (IMU), optical flow, pressure sensor, and ArUco markers.
The proposed method enables the robot to obtain highly accurate positioning [14]. The
accuracy of both EKF and UKF is also influenced by other factors such as filter model and
noise characteristics.

To further improve the accuracy, an adaptive Kalman filter (AKF) was designed for
the SINS/DVL integrated navigation system [15]. Gao et al. proposed an AKF algorithm
that has a recursive noise estimator [16]. Huang et al. also devised an improved variational
AKF based on the expectation-maximization (EM) algorithm (VAKFEM) [17]. The results
confirm that the proposed AKF improves the estimation accuracy effectively and that the
AKF is robust in the presence of vigorous maneuvers and rough sea conditions. Combining
deep learning techniques with KF is also considered in the literature to improve navigation
system stability. For instance, Li et al. built a nonlinear autoregressive with an exogenous
input model subject to the availability of DVL. They then showed that this model could
predict the output of DVL [18]. For cases where the DVL information is missing, Zhu et al.
proposed a hybrid prediction method by combining the long short-term memory neural
network (LSTM) and machine-learning-assisted adaptive filtering [19]. The above study is,
however, based on the loosely integrated navigation model, which cannot make effective
use of sensor data. The loose system structure can achieve good data fusion results in a less
disturbed underwater environment.

DVL is an active sonar system; hence, it is easily affected in complex underwater
environments. There exist marine creatures, large distance trenches, and powerful sound-
absorbing materials in the underwater environment. These factors affect the accuracy of
the DVL beam measurements. Furthermore, water velocity variation strongly affects the
SINS and DVL integrated navigation system.

To fully exploit the valid information in the sensor data fusion process, tightly in-
tegrated navigation models are also considered. Liu et al. [20] built a tight navigation
model that involves two types of DVL with four beams in the Janus structure. Additionally,
Wang et al. [21] built a tightly integrated navigation model based on the 3-D velocity of
DVL. Shede et al. [22] built a tightly integrated navigation system based on dual adaptive
factors, which suppress the DVL outliers.

To handle the measurement noise variance of each DVL beam individually, Jin et al. [23]
proposed a tightly coupled method in which an adaptive Kalman filter was utilized to
dynamically estimate the observation noise. Xu et al. [24] applied the statistical similarity
measure (SSM) to quantify the similarity between two random vectors of DVL. They then
built a cost function to avoid the loss of normal measurement information. Yona et al. [25]
also applied deep learning algorithms for the compensation of DVL beam outliers. These
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studies used the normal beam information of DVL through tightly integrated models. Nev-
ertheless, these models often use the bottom-track velocity measurement of DVL, which is
a simplification of the water-track model of DVL. Therefore, in complex underwater envi-
ronments, these techniques have a limited detection range for DVL. A single observation
variance matrix is unsuitable for the integrated navigation system during long voyages.

Since a single model is unable to characterize the complex motion environment, an
interacting multiple models (IMM) algorithm is proposed for underwater navigation.
IMM was first applied to target-tracking missions to autonomously integrate multiple
models [26,27]. It has then been used in positioning applications to describe the uncer-
tainty of the system model and statistics characteristic of observation noise. Yao et al. [28]
applied an IMM-aided zero velocity update (ZUPT) technology for an INS/DVL integrated
navigation system to mitigate the navigation error during the pure INS mode. Further,
Yao et al. [29] proposed the IMM-UKF-aided SINS and ultra-short baseline (USBL) cali-
bration solution. It was shown that the proposed solution could maintain its robustness
when the quality of observation changed. To further enhance INS/DVL navigation system
performance in the complex underwater environment, a hybrid interacting multiple models
(HIMM) algorithm was proposed in [30], which includes both bottom-track and water-track
velocity measurements of DVL. This method effectively limits DVL’s bottom-track outages.
Zhu and He [31] proposed a robust IMM-KF for INS/DVL integrated navigation. However,
their proposed method uses two fixed measurement covariance matrices, which might not
be able to fully cover the actual model. To address this issue, Zhang et al. [32] proposed
an improved interacting multiple model-unscented Kalman filter (IIMM-UKF) with both
adaptivity and robustness for AUV navigation. However, these approaches are based
on a loosely integrated navigation system and do not make effective use of the beam of
DVL. Moreover, the SINS/DVL navigation system has to face instantaneous outliers and
gradually changing outliers. Therefore, these models fail to estimate the state vector where
the observation noise increases and thus affects the robustness of the navigation system.

To address the above issue, in this paper, a novel tightly integrated navigation model is
established for SINS, DVL, and PS based on the effects of DVL water-track and bottom-track
velocity measurement models. Furthermore, we present a robust IMM model (RIMM),
which is based on a DVL beam processing strategy. This strategy includes data anomaly
detection and the virtual beam (VB) method by a tightly integrated system and a modified
Markov transfer probability matrix. RIMM ensures that each model can be converted
quickly into outliers and outlier noise.

The rest of this paper is organized as follows. Section 2 introduces the SINS, DVL,
and PS systems and establishes the SINS, DVL, and PS tightly integrated navigation model
based on the DVL water-track and bottom-track velocity measurement models. Section 3
explains the principle of the proposed RIMM algorithm. Section 4 verifies the proposed
model and algorithm by comparing simulations with the existing methods. The paper is
ended by providing conclusions in Section 5.

2. Materials and Methods

An AUV navigation system is composed of SINS, DVL, and a pressure sensor (PS),
as shown in Figure 1. SINS provides required velocity, attitude, and position information
through a gyroscope and an accelerometer. DVL has a four-beam Janus structure, and it
does not require external information to reduce the error accumulation in SINS. The PS is a
device that provides depth information for AUV, and it is usually considered an alternative
to DVL. To make full use of the effective information from the sensor, the system adopts a
tightly coupled navigation structure.

In Figure 1, n represents the navigation frame with an east–north–up (ENU) orienta-
tion, d represents the DVL body frame aligned with a right–forward–up orientation, and
beam represents the original four-channel body frame.
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shown in Figure 2, in practice, the application of this mode can be affected by the irregular 
ocean floor and changes in the angle between the AUV and the ocean floor, where DVL 
cannot offer its bottom-track velocity measurement continuously. In such cases, the water-
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tablish a water-track velocity measurement model. 
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ing process. Therefore, to reflect the changing characteristics of the current velocity, a first-
order Markov process is used to simulate the process of water velocity changes [33,34]. 
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Figure 1. Tightly coupled navigation system of SINS, DVL, and PS.

2.1. DVL Working Model

Bottom-track and water-track velocity measurements are the two main modes of
operation for DVL on AUVs. The bottom-track measurement mode is usually used in
the model of the SINS and DVL integrated navigation system for AUVs. Nevertheless,
as shown in Figure 2, in practice, the application of this mode can be affected by the
irregular ocean floor and changes in the angle between the AUV and the ocean floor, where
DVL cannot offer its bottom-track velocity measurement continuously. In such cases, the
water-track velocity measurement mode needs to be applied. For this reason, DVL needs
to establish a water-track velocity measurement model.
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Figure 2. DVL failure condition.

The current velocity changes over time and is influenced by the wind speed, tem-
perature, salinity, and topography of the environment. The current velocity is a slowly
changing process. Therefore, to reflect the changing characteristics of the current velocity, a
first-order Markov process is used to simulate the process of water velocity changes [33,34].

Suppose that the correlation distance in the area is Lauv = [L E, LN , LU ] and the velocity
of the vehicle is Vauv = [VE, VN , VU ]. The correlation time of the current velocity is:[

τE τN τU
]T
= [ LE

VE

LN
VN

LU
VU

]T (1)

where τE, τN , and τU are the correlation time in the three directions; LE, LN , and LU are the
correlation distances eastward, northward, and upward, respectively, that remain constant
within a certain area; and VE, VN , and VU represent the eastward, northward, and upward
velocities, respectively, in frame n. The velocity of the vehicle changes with time, and thus
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different velocities match various correlation times. The higher the speed of the AUV, the
lower the correlation time.

Ignoring errors, the first-order Markov process is used to describe the change in the
water current velocity:[ .

V
n
CE

.
V

n
CN

.
V

n
CU

]T
= diag(τE τN τU)[Vn

CE Vn
CN Vn

CU]
T (2)

where Vn
CE, Vn

CN, and Vn
CU are the current velocities in the east, north, and upward directions

in frame n, respectively.
For DVL with the four-beam Janus structure, the current velocity affects the velocity

of DVL beams. To assess the effect of the current velocity on the effective information of
each DVL beam, it is necessary to convert the current velocity in frame n to frame d. The
conversion relationships are as follows:

Vd
C = Cd

bCb
nVn

C (3)

where Vn
C= [Vn

CE Vn
CN Vn

CU
]T and b is the AUV body frame. Cb

n is the direction cosine
matrix of transformation from frame n to frame b, and Cd

b is the direction cosine matrix of
transformation from frame b to d frame. The relationships between different frames are
shown in Figure 3, where the frame is represented by a red line and Vb indicates the velocity
in frame b. Frame n is also represented by a black line, and Vn indicates the velocity in
the n frame. The blue line is drawn to represent the DVL frame (frame d), and Cd

b can be
expressed as:

Cd
b =


0 cos α − sin α

cos α 0 − sin α
0 − cos α − sin α

− cos α 0 − sin α

 (4)

where α represents the horizontal angle between the beams and the AUV. Usually, α = 70
◦
.
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Ignoring sensor errors, the velocity of DVL under frame d is defined as:

Vd
DVL =

[
Vd

DVL_1 Vd
DVL_2 Vd

DVL_3 Vd
DVL_4

]T
(5)

where Vd
DVL_1, Vd

DVL_2, Vd
DVL_3, and Vd

DVL_4 represent the true velocity information for each
beam of DVL in frame d.
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The DVL water-track measurement can be modeled as:

Ṽ
d
DVL_C = Vd

DVL(1 + δK) + Vd
C + ωc (6)

where δK is the scale factor error of DVL and ωc represents the white noise. The DVL
bottom-track measurement can also be modeled as [14]:

Ṽ
d
DVL_B = Vd

DVL(1 + δK) + Vd
B + ωb (7)

where Vd
B =

[
b1 b2 b3 b4

]
represents the biases of the four beams of DVL and ωb

represents the white noise.

2.2. SINS, DVL, and PS Tightly Coupled Integrated Method

In contrast to the traditional SINS, DVL, and PS tightly integrated navigation methods,
the tightly integrated navigation method used in this paper is based on the velocity variation
of the DVL beam, applying the DVL bottom-track model and the water-track model. The
state equation of the tightly coupled integrated method under frame n can be expressed as:

.
X = FX + GW (8)

where X is the state vector, F represents the state transition matrix, G is the system noise
matrix, and W denotes the process noise vector. The state vector X is 24-dimensional and
can be expressed as follows:

X = [∅x∅y∅z δVn
E δVn

N δVn
U δλ δL δh ∇x∇y∇z εx εy εz b1 b2 b3 b4 δK Vn

CE Vn
CN Vn

CU bPS
]T (9)

where ∅x, ∅y, and ∅z denote SINS misalignment angles; δVn
E, δVn

N , and δVn
U are SINS

velocity errors; δλ, δL, and δh denote the longitude, latitude, and height error of SINS,
respectively; ∇x, ∇y, and ∇z denote accelerometer biases of SINS; εx, εy, and εz denote
gyroscope biases in three directions of frame b; and bPS is the PS bias. The system state
transition matrix F can be written as follows:

F=


F111111 F121212 F131313 −Cn

b 03×303×303×3
F212121 F222222 F232323 03×303×303×3 Cn

b
03×303×303×3 F323232 F333333 Cn

b 03×303×303×3

09×909×909×9

015×15015×15015×15

 (10)

where F11, F12, F13, F21, F22, F23, F32, and F33 are defined as follows:

F11 =

 0 wiesin L+VEtan L
RN+h −wiecos L− VEtan L

RN+h
−wiesin L+VEtan L

RN+h 0 VN
RM+h

wiecos L+VEtan L
RN+h

VE
RM+h 0



F12 =

 0 1
RM+h 0

1
RN+h 0 0
tan L

RN+h 0 0



F13 =


0 0 VN

(R M +h)2

−wiesin L 0 − VE
(R N +h)2

wiecos L+VE sec2 L
RN

0 − VEtan L
(R N +h)2



F21 =

 0 − f n
U f n

N
f n
U 0 − f n

E
− f n

N f n
E 0
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F22 =


VE tan L−VU

RN+h 2wiesin L+VEtan L
RN+h −2wiecos L−VEtan L

RN+h
−2wiesin L− 2VEtan L

RN+h − VU
RM+h − VN

RM+h
−2wiecos L+ 2VE

RN+h
2VN

RM+h 0



F23 = (V n×)




0 0 VN
(R M +h)2

−2wiesin L 0 − VE
(R N +h)2

−2wiecos L+VE sec2 L
RN

0 VEtan L
(R N +h)2




F32 =

 0 1
RM+h 0

sec L
RN+h 0 0

0 0 1



F33 =


0 0 − VN

(R M +h)2

VEtan L sec L
RN+h 0 − VEsec L

(R N +h)2

0 0 0


where RM and RN are the transverse radius and meridian radius of the Earth, respectively,
L is the latitude, h denotes the height, and wie is the Earth’s rotation rate. The matrices G
and W are:

G=

 I3×33×33×3 03×303×303×3
03×303×303×3 I3×33×33×3
018×3018×3018×3 018×3018×3018×3

, W=
[

wn
g

wn
a

]
(11)

The measurement equation is made up of three components, including the difference
between the SINS’ velocity and the DVL bottom-track velocity, the difference between
the SINS’ velocity and the DVL water-track velocity, and the difference between the SINS’
height and PS measurement value.

Ignoring sensor errors, the velocity of SINS in different coordinate systems is defined
as follows: 

Vb
SINS =

[
Vb

x Vb
y Vb

z

]T

Vn
SINS =

[
Vn

SINS_N Vn
SINS_E Vn

SINS_U
]T

Vd
SINS =

[
Vd

SINS_1 Vd
SINS_2 Vd

SINS_3 Vd
SINS_4

]T
(12)

where Vb
SINS denotes the velocity of SINS under the b frame, Vb

SINS denotes the velocity of
SINS under the n frame, and Vd

SINS denotes the velocity of SINS under the d frame. The
relationship between the velocity of SINS and the velocity of DVL is:

Vd
DVL = Vd

SINS = Cd
bCb

nVn
SINS (13)

Considering the installation angle error between the gyroscope and DVL, it is assumed
that the installation angle’s error after calibration compensation is:

ϕ = [ϕx ϕy ϕz
]

(14)

Furthermore, Cd
b , considering the installation angle error between the gyroscope and

DVL, is expressed as: {
C̃

d
b = Cd

b(I3×3+ϕϕϕ×)
C̃

b
n = Cb

n(I3×3 +∅×)
(15)

where ∅= [∅x ∅y ∅z
]
.

The velocity information of SINS can be expressed in the d frame as:

Ṽ
d
SINS = C̃

d
bC̃

b
n(V

n
SINS + δVn

SINS) ≈ C̃
d
bCb

nVn
SINS + C̃

d
bCb

nδVn
SINS + C̃

d
bCb

n∅× Vn
SINS (16)
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According to Equations (13) and (16):

Ṽ
d
SINS = Vd

DVL + C̃
d
bCb

nδVn
SINS−C̃

d
bCb

nVn
SINS ×∅ (17)

The observation equation of the integrated navigation system contains three parts.
The observation equation for the tightly integrated navigation system of the SINS velocity
and DVL water-track velocity is:

Z1 = Ṽ
d
DVL_C − Ṽ

d
SINS = δKVd

DVL + Vd
C + ωc − C̃

d
bCb

nδVn
SINS + C̃

d
bCb

nVn
SINS ×∅ (18)

The difference between the SINS velocity and DVL bottom-track velocity is taken as
the observation:

Z2 = Ṽ
d
DVL_B − Ṽ

d
SINS = δKVd

DVL + Vd
B + ωb − C̃

d
bCb

nδVn
SINS + C̃

d
bCb

nVn
SINS ×∅ (19)

and the PS error measurement model is:

H̃PS = HPS + δbPS + wPS (20)

where H̃PS represents the sensor measurement, HPS represents the true value, δbPS repre-
sents the PS biases, and wPS represents the white noise.

The difference between the SINS height and the PS measurement is therefore taken as
the observation:

Z3 = H̃PS − H̃SINS = HPS + δbPS + wPS − HSINS − δh = δbPS + wPS−δh (21)

where H̃SINS represents the SINS height measurement and HSINS represents the SINS true
height value.

Finally, the system observation equation is expressed as:

Z=

Z111
Z222
Z333

=HX+V (22)

where the transfer matrix H is:

H =

 HC1C1C1 HC2C2C2 04×13 Vd
DVL Cd

bCb
n 0

HB111 HB222 04×9 I4×4 Vd
DVL 04×4

01×8 −1 01×14 1

 (23)


HC111 = C̃

d
bCb

nVn
SINS×

HC222 = −C̃
d
bCb

n

HB111 = C̃
d
bCb

nVn
SINS×

HB222 = −C̃
d
bCb

n

(24)

and the measurement noise vector V is:

V =
[
ωc ωb wPS

]T (25)

3. Robust Interacting Multiple Models

To improve the stability of SINS, DVL, and PS integrated navigation systems, we
propose the RIMM. The RIMM system includes three models: SINS, DVL, and PS tightly
integrated navigation model without DVL beam error, SINS/DVL tightly integrated naviga-
tion model with water-track velocity error mode, and SINS, DVL, and PS tightly integrated
navigation model with bottom-track velocity error mode. The SINS, DVL, and PS tightly
integrated navigation model without DVL beam error is the main model of the system. The



Sensors 2022, 22, 9479 9 of 22

process of the RIMM algorithm includes five steps, including model interaction, model
filtering, model probability update, modified transfer probability matrix, and estimation
fusion (Figure 4).
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3.1. Model Interaction

By initializing the model conditions, we obtain the state vector and covariance matrix
of each robust Kalman filter input at the current moment of the model. The parameters are
calculated as follows.

The predicted model probability from model i to model j is:

uij(k− 1)= pijui(k− 1)/
r

∑
i=1

pijui(k− 1) (26)

where pij is a Markov transition probability matrix representing the probability of conver-
sion from model i to model j, ui(k− 1) is the probability of model i at epoch k−1, and r is
the number of models. Here, we set r = 3.

The mixing state vector and its estimated covariance of each filter are updated accord-
ing to the predicted model probability:

X̂Oj(k−1) =
r

∑
i=1

X̂i(k−1)uij(k− 1) (27)

POj(k−1) =
r

∑
i=1

(P i(k−1) + [X̂i(k−1) − X̂Oj(k−1)]
[

X̂i(k−1) − X̂Oj(k−1)

]T
)uij(k− 1) (28)

where X̂i(k−1) and Pi(k−1) are the state estimate and its covariance matrix of filter i at the
last epoch, respectively, X̂Oj(k−1) is the mixing state vector estimate of filter j in the current
epoch, and POj(k−1) is its corresponding covariance matrix.

3.2. Robust Kalman Filter

To improve the stability of the system, a robust Kalman filter algorithm is proposed
to avoid the influence of DVL beam errors on navigation stability. The state equation and
observation equation are shown in Equations (8) and (22), respectively. Here, we transform
Equations (8) and (22) into the discrete-time formula:{

Xj(k) = ∅k,k−1Xj(k−1) + GkWk
Zk = HkXj(k) + Vj(k)

(29)
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The update and prediction processes of the Kalman filter are [35]:

X̂j(k,k−1) = ∅k,k−1X̂Oj(k,k−1) (30)

where X̂j(k,k−1) is the predicted state estimate of filter j and ∅k,k−1 is the state transition matrix.

Pj(k,k−1) = ∅k,k−1P0j(k−1)∅T
k,k−1 + GkQkGT

k (31)

where Pj(k,k−1) and P0j(k−1) are the predicted estimate covariance and updated estimate
covariance, respectively, and Qk is the state variance matrix, which remains the same for all
the filters.

rj(k) =
(

Zk −HkX̂j(k,k−1)

)
(32)

where rj(k) is the residual of Kalman.

Kj(k) = Pj(k,k−1)H
T
k (H kPj(k,k−1)H

T
k + Rj(k)

)−1
(33)

Xj(k) = X̂j(k,k−1) + Kj(k)rj(k) (34)

Pj(k) =
(

I−Kj(k)Hk

)
Pj(k,k−1) (35)

Kj(k) is the Kalman gain, Rj(k) is the observation variance matrix of different filters,
and Pj(k) is the updated estimate covariance.

In the Kalman filter process, outliers are found by monitoring large-beam measurement
errors [14]. The velocity differences between SINS and DVL are then calculated under the
d frame:

Ṽ
d
DVL − Ṽ

d
SINS = Vd

error (36)

Normally, Vd
error follows a zero-mean Gaussian distribution; nevertheless, in cases

where the DVL beam is affected by the external environment, Vd
error does not follow the

zero-mean Gaussian distribution. Therefore, threshold β can be used to determine whether
the beam measurement is available.

Normal : Vd
error< β

Abnormal : Vd
error ≥ β

(37)

In [21], a DVL beam processing strategy is introduced, which includes data anomaly
detection and the virtual beam (VB) method. As shown in Figure 3, the method assumes
that the DVL beam has the following characteristics:

Vd
DVL_1= −Vd

DVL_3
Vd

DVL_2= −Vd
DVL_4

(38)

If VB is not available, the beam measurement is isolated, and only the SINS and PS
integrated navigation is used.

3.3. Model Probability Update

Based on the Gaussian assumption, the likelihood function of each model is:

f j(k)= exp
(
−1

2
rT

j(k)A
−1
j(k)rj(k)

)
/
(
(2π)m

∣∣∣Aj(k)

∣∣∣)1/2
(39)

where m is the dimension of the observation vector. The model probability is updated as:

Λj(k) =
r

∑
i=1

pijui(k− 1) (40)
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uj(k) = f j(k)Λj/
r

∑
j=1

f j(k)Λj (41)

3.4. Modified Transfer Probability Matrix

The traditional IMM algorithm artificially selects a fixed transition probability matrix
according to prior knowledge. However, the motion environment of the AUV is uncertain,
and a fixed transition probability matrix inevitably influences the sensors’ data fusion.
Generally, when the motion state of the AUV changes, the probability of changing the
mismatched model to a matched model increases, while the probability of maintaining
the existing model decreases. To ensure that the transfer probability matrix of the IMM
algorithm is changed according to the motion state of the AUV, the correction parameter is
defined as [36]:

τij =
pji

k ·Λj(k)

pij
k ·Λj(k)

(42)

For i 6= j,
p′ij =

(
τij
)α pij (43)

where p′ij is the modified transfer probability matrix and α is the modified factor. The larger
the value of α, the faster the correction. The elements on the main diagonal are

p′ii= 1− (τ i1
)α pi1 − · · · −(τ ir)

α pir (44)

Given the principle of the dominance of the main diagonal, we set a threshold σ. If
after probability correction the value of the principal diagonal element is less than σ, the
correction is made according to the methods of Equations (45) and (46).

p′ii= σ (45)

p′ij = (1− σ)
pij

1− pii
, i 6= j (46)

3.5. Estimation Fusion

Based on the model probability update in Section 3.3, the state vector and its covariance
matrix of each filter are fused to calculate the combined state estimation and covariance
matrix as the final filtering output:

X̂k =
r

∑
j=1

X̂j(k)uj(k) (47)

Pk =
r

∑
j=1

uj(k)[Pj(k)+(X̂j(k)−X̂k)(X̂j(k)−X̂k)
T ] (48)

4. Results and Discussion

In this section, simulations are used to evaluate the feasibility of the proposed algo-
rithm. Firstly, the RIMM algorithm is compared with the traditional loosely integrated
navigation algorithm and the tightly integrated navigation algorithm, assuming that DVL
is working properly. Then, in the case of abnormal DVL operation, the RIMM algorithm
is compared with the traditional loosely integrated navigation algorithm and the tightly
integrated navigation algorithm. Finally, the RIMM algorithm and IMM algorithm are
compared and analyzed for different conditions of DVL.

In addition, to compare the performance differences between the three methods, root-
mean-squared error (RMSE), mean error, and maximum deviation are used to describe the
statistical properties. The RMSE is the arithmetic square root of the variance that reflects
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the degree of dispersion of a data set. The smaller the RMSE value, the more accurate the
prediction model is in describing the experimental data. RMSE is defined as:

RMSE =

√
∑N

i=1(xi−x)2

N
(49)

The whole simulation time lasts for 1300 s, which includes acceleration, decelera-
tion, uniform, and turning motion, as shown in Figures 5 and 6. The AUV starts at
[23.8

◦
N, 117

◦
E] at a depth of 5 m. The sampling frequencies for IMU, DVL, and PS are

200 Hz, 1 Hz, and 1 Hz, respectively. The main performance parameters of IMU, DVL,
and PS are listed in Table 1. Because of the different sampling frequencies at each sensor,
synchronization of the sensor before data fusion is required. In this paper, the least-squares
registration method is used for time synchronization [37].
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Table 1. Main performance parameters of the sensors.

Sensors Parameter Value

Gyroscope Biases drift 0.02
◦
/h

Random walk noise 0.002
◦
/
√

h

Accelerometer
Biases drift 200 ug

Random walk noise 100 ug/
√

Hz

DVL
Biases drift 0.002 m/s

Scale factor error 0.002
PS Biases drift 0.005

In the simulation process, the initial attitude is θ = 0
◦
, γ = 0

◦
, ψ = 0

◦
, and the initial

velocity is 0 m/s. In the SINS/DVL/PS integrated navigation system, the installation error
between SINS and DVL is [0.001

◦
, 0.002

◦
, 0.007

◦
], and the scale factor of DVL is 0.002. The

AUV simulates at medium sea level; the attitude angles of the AUV are
θ = θmsin( 2π

5 t + θ0
)

γ = γmsin( 2π
7 t + γ0

)
ψ = ψmsin( 2π

6 t + ψ0
) (50)

where θm = 3
◦
, γm = 4

◦
, and ψm = 3

◦
, and the rolling periods are 5, 7, and 6 s. The initial

phases are θ0 = 0
◦
, γ0 = 0

◦
,. and ψ0 = 0

◦
.

4.1. DVL Working Properly

In this section, DVL is in a stable working state. In Figure 7, the loosely integrated
navigation algorithm (TLIN) is shown by a red line, the tightly integrated navigation (TTIN)
is depicted by a blue line, and the RIMM algorithm is illustrated by a black line. Figure 7
shows that the velocity errors of the three methods are stable in the three-dimensional
direction. Table 2 also shows that there is no significant difference between them. The
maximum deviations of TTIN, TLIN, and RIMM in the δVn

E are 0.0182 m/s, −0.0157 m/s,
and 0.0074 m/s, respectively, and the maximum deviations of TTIN, TLIN, and RIMM in
the δVn

N are 0.0099 m/s, −0.0066 m/s, and 0.0024 m/s, respectively.
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Table 2. Velocity error parameters for the three algorithms when DVL working properly.

Algorithm Content δVn
E (m/s) δVn

N (m/s) δVn
U (m/s)

TTIN
maximum deviation 0.0182 0.0099 0.00030

mean error 0.0004 −0.0004 0.00006
RMSE 0.0075 0.0025 0.00015

TLIN
maximum deviation −0.0157 −0.0066 0.00010

mean error −0.0033 −0.0014 0.00001
RMSE 0.0063 0.0025 0.00004

RIMM
maximum deviation 0.0074 0.0024 0.00007

mean error 0.0027 0.0008 0.00002
RMSE 0.0037 0.0010 0.00003

In terms of position error, the PS can provide high-precision depth information during
the motion of the AUV. Figure 8 shows that the height position always maintains a stable
high precision throughout the navigation process. Table 3 also shows that the maximum
height deviation position has a −0.084 m error during the entire simulation process. Fur-
thermore, the velocity error in the δVn

U also remains stable because of the PS, and the
maximum velocity errors of TTIN, TLIN, and RIMM are 0.00030 m/s, 0.00010 m/s, and
0.00007 m/s, respectively. Therefore, when DVL is in a stable working state, the three
integrated navigation algorithms show stable navigation and positioning accuracy.
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Table 3. Position error parameters for the three algorithms when DVL working properly.

Algorithm Content δL (m) δλ (m) δh (m)

TTIN
maximum deviation 6.236 4.233 −0.084

RMSE 0.1981 0.3133 0.0542

TLIN
maximum deviation −4.803 −6.668 0.019

RMSE 0.9117 0.9900 0.0093

RIMM
maximum deviation 1.7721 3.8828 −0.031

RMSE 0.5119 1.2951 0.0194

4.2. DVL Works in a Complex Environment

The navigation accuracy of DVL is also affected by the external operating conditions
of the AUV. We consider six failure cases for the DVL beam, as shown in Table 4, where
DVL is in the bottom-track measurement mode in a complex environment. In the tightly
integrated navigation mode, the integrated navigation operation modes corresponding to
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different DVL beam failures are SINS, DVL, and PS and SINS and PS. In cases 4, 5, and 6,
only SINS and PS can be used for navigation. To compare the proposed RIMM with the
loosely integrated navigation and the tightly integrated navigation, the main considerations
in this section are cases 1, 2, and 3.

Table 4. The failure modes of the DVL beam and operation modes of the integrated navigation
system.

Failure Case Failure Beam Working Mode

1 Beam 1, Beam 2, Beam 3, or Beam 4 SINS, DVL, and PS
2 Beam 1 and Beam 2 SINS, DVL, and PS
3 Beam 1 and Beam 4 SINS, DVL, and PS
4 Beam 1 and Beam 3 SINS and PS
5 Beam 1, Beam 2, and Beam 3 SINS and PS
6 Beam 1, Beam 2, Beam 3, and Beam 4 SINS and PS

The impact of the external environment on DVL is shown in Figures 9 and 10. The
value 1 in Figure 9 indicates that the DVL beam is in an abnormal state, and the value
0 indicates that the DVL beam is in a normal state. In terms of the impact of water flow
on DVL, the simulation is conducted on the impact of east flow velocity and north flow
velocity, and the flow velocity is 0.5 m/s, as shown in Figure 10. There are four processes to
simulate the abnormal situation of DVL shown in Figures 9 and 10. The first phase is based
on failure case 1 in DVL bottom-track measurement mode lasting for 50 s. The second
phase is based on failure case 2 in DVL bottom-track measurement mode lasting for 50 s.
The third phase is failure case 3 in the bottom-track measurement mode lasting for 50 s,
and the fourth phase is the normal state, where the water flow affects the working status of
DVL, lasting for 100 s.
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The simulation results of DVL working in a complex environment are shown in
Figures 11 and 12. Since DVL has two kinds of beam information that cannot be used from
450 s to 500 s, the loosely integrated navigation (TLIN) can only be switched to the SINS and
PS navigation modes. Furthermore, because of the small height change and the accurate
height information proposed by PS, the velocity error and position error in the up direction
are small. In the horizontal direction, the velocity and position of the AUV produce errors
that cannot be quickly eliminated after DVL recovers to normal operation. Therefore, they
continue to be accumulated in the AUV’s subsequent movement process. Table 5 shows
that the maximum speed deviations of the east and north velocities are −0.0964 m/s and
−0.1644 m/s, respectively. Table 6 also shows that the maximum deviations of latitude and
longitude are −39.467 m and −39.125 m, respectively.
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Table 5. Velocity error parameters for the three algorithms when DVL works in a complex
environment.

Algorithm Content δVn
E (m/s) δVn

N (m/s) δVn
U (m/s)

TTIN
maximum deviation 0.0792 0.0035 0.00020

mean error 0.0156 0.0007 0.00002
RMSE 0.0353 0.0013 0.00005

TLIN
maximum deviation −0.0964 −0.1644 0.00026

mean error −0.0318 −0.0327 −0.00008
RMSE 0.0419 0.0792 0.00012

RIMM
maximum deviation 0.0347 0.0009 0.00012

mean error 0.0098 −0.0002 0.00006
RMSE 0.0142 0.0003 0.00007

Table 6. Position error parameters for the three algorithms when DVL works in a complex
environment.

Algorithm Content δL (m) δλ (m) δh (m)

TTIN
maximum deviation 2.234 24.516 0.037

RMSE 0.5458 2.8552 0.0107

TLIN
maximum deviation 39.467 39.125 0.105

RMSE 1.3033 21.5413 0.0380

RIMM
maximum deviation 0.3427 12.6886 0.087

RMSE 0.0084 5.0236 0.0467

Compared with the loosely integrated navigation algorithm, the tightly integrated nav-
igation (TTIN) algorithm and RIMM algorithm have higher stability. Figure 11 also shows
that in the first three failure processes, both the tightly integrated navigation algorithm and
RIMM algorithm can make full use of the effective information of the DVL beam. The appli-
cation of Equations (37) and (38) ensures that the effective beam information is fully used to
guarantee that the AUV is always in the SINS/DVL/PS integrated navigation mode. Due
to the influence of water flow, the precision of the tightly integrated navigation algorithm
only considering the beam starts to decrease. Tables 5 and 6 show that the mean errors of
the east velocity and the north velocity are 0.0156 m/s and 0.0007 m/s, respectively, and
the maximum deviations of latitude and longitude are 2.234 m and 24.516 m, respectively.

Since the RIMM algorithm includes the water-track velocity measurement mode and
bottom-track velocity measurement mode of DVL, the mean errors of the east velocity
and the north velocity are 0.0098 m/s and −0.0002 m/s, respectively. The maximum
deviations of latitude and longitude are 0.3427 m and 12.6886 m, respectively. Compared
with the tightly integrated navigation algorithm, the mean errors of the east velocity
and the north velocity decreased by 37.1% and 71.4%, respectively. The accuracy of the
maximum deviations of latitude and longitude has also been improved by 84.6% and 48.2%,
respectively. This is mainly because the RIMM algorithm not only has the advantage of the
tightly integrated algorithm to make full use of the effective information of the DVL beam
but also can make corresponding mode conversions according to the actual situation and
use different models for combined filtering.

4.3. Comparison of RIMM and IMM Algorithms

Here, the traditional IMM algorithm is compared with the proposed RIMM algorithm.
The DVL working environment in the simulation is consistent with that in Section 4.2.
Through simulation, AUV velocity and position changes under the RIMM algorithm and
the traditional IMM algorithm are shown in Figures 13 and 14, where the results of the
RIMM algorithm are shown by a black line, and the results of the IMM algorithm are
shown by a green line. In the simulation process, due to the role of PS, the velocity and
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height in the up-change amplitude of the two algorithms are small. Therefore, this section
mainly compares the differences between the two algorithms in plane velocity and position
error optimization.
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As shown in Figures 13 and 14, in the first 200 s when DVL is operating normally, the
traditional IMM algorithm and the proposed RIMM algorithm have the same positioning
accuracy. After 200 s, the simulated environment begins to affect the DVL beam. These
environmental factors mainly increase the observation noise of the corresponding DVL
beam and affect the speed and position error of the underwater machine. Furthermore,
SINS as the main positioning sensor is affected by the increase in the error at the auxiliary
DVL sensor. Therefore, the cumulative errors cannot be effectively controlled and hence
increase the velocity and position errors in both algorithms. However, compared with the
traditional IMM algorithm, the instantaneous observation noise has less influence on the
RIMM algorithm. Therefore, there are only slight changes in the speed and location errors.

In the simulation, the velocity and position error parameters of RIMM and IMM
algorithms change, as shown in Tables 7 and 8. The average and maximum position
errors of the RIMM algorithm are smaller than those of the IMM algorithm. For the
RMSE value, the east velocity and north velocity of the IMM algorithm are 0.0269 and
0.0013, respectively, and the east velocity and north velocity of the RIMM algorithm are
0.0084 and 0.0003, respectively. This shows that the RIMM algorithm is more stable than
the IMM algorithm. In the case of position error, although the RIMM algorithm’s RMSE
value of latitude error is 5.0236, which is higher than IMM’s RMSE value of longitude error
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of 2.8552, the maximum deviation of the RIMM algorithm’s longitude error during the
whole simulation process is 10.5600 m, which is lower than IMM’s maximum deviation
of longitude error of 17.7901 m. These indicate that although the longitude error greatly
fluctuates, the accuracy remains acceptable.

Table 7. Velocity error parameters for the two algorithms.

Algorithm Content δVn
E (m/s) δVn

N (m/s) δVn
U (m/s)

IMM
maximum deviation 0.0585 −0.0017 −0.00013

mean error 0.0044 −0.0009 −0.00007
RMSE 0.0269 0.0013 0.00008

RIMM
maximum deviation 0.0347 0.0010 0.00012

mean error 0.0098 −0.0002 0.00006
RMSE 0.0142 0.0003 0.00007

Table 8. Position error parameters for the two algorithms.

Algorithm Content δL (m) δλ (m) δh (m)

IMM
maximum deviation −1.4933 17.7901 0.091

RMSE 0.4509 2.8552 0.0107

RIMM
maximum deviation 0.3427 10.5600 0.0426

RMSE 0.0084 5.0236 0.0467

Figures 15 and 16 show the process of model probability change for the RIMM and
IMM algorithms, which are the key factors determining filter precision. Model 1 shown
by black points indicates that there is no external interference in the filtering process for
DVL. Model 2 shown by red points indicates that DVL is filtered by the bottom-track
measurement mode. Furthermore, Model 3 depicted by green points indicates that DVL is
filtered by considering the influence of water flow. Figure 15 shows that the traditional IMM
algorithm uses a fixed Markov transfer probability. When external noise is generated, the
IMM algorithm cannot convert the probability quickly. This is the reason for the reduced
navigation accuracy of the IMM algorithm.
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Figure 16 also shows that the RIMM algorithm can be adaptively transformed to
the corresponding model when the external environment of DVL is changed. When the
external ambient noise of DVL disappears, RIMM can quickly convert to the corresponding
model state. Compared with the traditional IMM algorithm, the adaptive Markov model
probability change enables SINS and DVL integrated navigation to adapt to a variety of
environmental changes, thus reducing errors in the navigation process and enhancing
system stability.

5. Conclusions

In this paper, a novel tightly integrated navigation system of SINS, DVL, and PS was
proposed for complex underwater environments. The tightly integrated navigation system
is based on the DVL water-track velocity measurement model and the DVL bottom-track
velocity measurement model. The RIMM algorithm was further proposed, which is based
on a tightly integrated navigation system of SINS, DVL, and PS. This algorithm can detect
the outliers and abnormal noises of DVL beams and use the variable Markov transition
probability matrix to achieve fast conversion of different models. Simulating the motion
process of the AUV in a complex environment, the results show that compared with the
TLIN algorithm in terms of maximum deviation of latitude and longitude, the RIMM
algorithm improves the accuracy by 39.1243 m and 26.4364 m, respectively. Compared with
the TTIN algorithm, the RIMM algorithm also improves latitude and longitude accuracy
by 1.8913 m and 11.8274 m, respectively. A comparison with IMM also shows that RIMM
improves the accuracy of latitude and longitude by 1.1506 m and 7.2301 m, respectively.
The proposed theoretical method effectively limits the impact of different environmental
noises on the tightly integrated navigation system and improves the navigation accuracy
of the entire navigation system.

Although the feasibility of the proposed algorithm is verified by simulation, it is
still necessary to further verify the actual effect through experiments. In the future, we
will verify the positioning efficiency and accuracy of the algorithm in the actual process
through experiments and further consider the problem that the positioning accuracy may
be reduced due to the interruption of inter-sensor communication in the actual process.
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