A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications
Abstract
:1. Introduction
2. The Photoacoustic Effect and Its Potential
3. Acoustic Wave Generation
3.1. Materials Explored in Photoacoustic Imaging
3.2. Optical Energy Absorption Materials for Ultrasound Probes
3.2.1. Thin Films Metallic Devices
3.2.2. Organic Pigments
3.2.3. Metallic Nanoparticles
3.2.4. Carbonaceous Materials
3.2.5. Comparison between Optically Absorbing Materials
3.3. Acoustic Energy Release Materials for Ultrasound Probes
4. Modeling and Design
Main Steps for Modeling Using a Commercial Tool
5. Characterization
5.1. Photoacoustic Emission
5.2. Ultrasound Beam Steering
5.3. Ultrasound Detectors
6. Outlook and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colchester, R.J.; Little, C.; Dwyer, G.; Noimark, S.; Alles, E.J.; Zhang, E.Z.; Loder, C.D.; Parkin, I.P.; Papakonstantinou, I.; Beard, P.C.; et al. All-Optical Rotational Ultrasound Imaging. Sci. Rep. 2019, 9, 5576. [Google Scholar] [CrossRef] [Green Version]
- Kye, H.; Song, Y.; Ninjbadgar, T.; Kim, C.; Kim, J. Whole-Body Photoacoustic Imaging Techniques for Preclinical Small Animal Studies. Sensors 2022, 22, 5130. [Google Scholar] [CrossRef] [PubMed]
- Dieberg, G.; Smart, N.A.; King, N. Minimally Invasive Cardiac Surgery: A Systematic Review and Meta-Analysis. Int. J. Cardiol. 2016, 223, 554–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zileli, M. Philosophy of Minimally Invasive Spine Surgery. World Spinal Column J. 2014, 5, 75–79. [Google Scholar] [CrossRef]
- Raghavendra, P.; Pullaiah, T. Advances in Cell and Molecular Diagnostics; Press, A., Ed.; Elsevier Science Publishing Co., Inc.: London, UK, 2018. [Google Scholar]
- Bodea, S.V.; Westmeyer, G.G. Photoacoustic Neuroimaging—Perspectives on a Maturing Imaging Technique and Its Applications in Neuroscience. Front. Neurosci. 2021, 15, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Valluru, K.S.; Chinni, B.K.; Rao, N.A.; Bhatt, S.; Dogra, V.S. Basics and Clinical Applications of Photoacoustic Imaging. Ultrasound Clin. 2009, 4, 403–429. [Google Scholar] [CrossRef]
- Knox, H.J.; Chan, J. Acoustogenic Probes: A New Frontier in Photoacoustic Imaging. Acc. Chem. Res. 2018, 51, 2897–2905. [Google Scholar] [CrossRef]
- Li, C.; Liu, C.; Fan, Y.; Ma, X.; Zhan, Y.; Lu, X.; Sun, Y. Recent Development of Near-Infrared Photoacoustic Probes Based on Small-Molecule Organic Dye. RSC Chem. Biol. 2021, 2, 743–758. [Google Scholar] [CrossRef]
- Rich, L.J.; Seshadri, M. Photoacoustic Imaging of Vascular Hemodynamics: Validation with Blood Oxygenation Level-Dependent MR Imaging. Radiology 2015, 275, 110–118. [Google Scholar] [CrossRef]
- Attia, A.B.E.; Balasundaram, G.; Moothanchery, M.; Dinish, U.S.; Bi, R.; Ntziachristos, V.; Olivo, M. A Review of Clinical Photoacoustic Imaging: Current and Future Trends. Photoacoustics 2019, 16, 100144. [Google Scholar] [CrossRef]
- Steinberg, I.; Huland, D.M.; Vermesh, O.; Frostig, H.E.; Tummers, W.S.; Gambhir, S.S. Photoacoustic Clinical Imaging. Photoacoustics 2019, 14, 77–98. [Google Scholar] [CrossRef]
- Baac, H.W.; Ok, J.G.; Maxwell, A.; Lee, K.T.; Chen, Y.C.; Hart, A.J.; Xu, Z.; Yoon, E.; Guo, L.J. Carbon-Nanotube Optoacoustic Lens for Focused Ultrasound Generation and High-Precision Targeted Therapy. Sci. Rep. 2012, 2, srep00989. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L.V. Noninvasive Laser-Induced Photoacoustic Tomography for Structural and Functional in Vivo Imaging of the Brain. Nat. Biotechnol. 2003, 21, 803–806. [Google Scholar] [CrossRef]
- Ecclestone, B.R.; Bell, K.; Abbasi, S.; Dinakaran, D.; van Landeghem, F.K.H.; Mackey, J.R.; Fieguth, P.; Haji Reza, P. Improving Maximal Safe Brain Tumor Resection with Photoacoustic Remote Sensing Microscopy. Sci. Rep. 2020, 10, 17211. [Google Scholar] [CrossRef]
- Liu, W.; Yao, J. Photoacoustic Microscopy: Principles and Biomedical Applications. Biomed. Eng. Lett. 2018, 8, 203–213. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.H.; Xia, F.; Sawan, M. Photoacoustic Imaging for Monitoring of Stroke Diseases: A Review. Photoacoustics 2021, 23, 100287. [Google Scholar] [CrossRef]
- Ivankovic, I.; Merčep, E.; Schmedt, C.G.; Deán-Ben, X.L.; Razansky, D. Real-Time Volumetric Assessment of the Human Carotid Artery: Handheld Multispectral Optoacoustic Tomography. Radiology 2019, 291, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ku, G.; Wegiel, M.A.; Bornhop, D.J.; Stoica, G.; Wang, L.V. Noninvasive Photoacoustic Angiography of Animal Brains in Vivo with Near-Infrared Light and an Optical Contrast Agent. Opt. Lett. 2004, 29, 730. [Google Scholar] [CrossRef] [Green Version]
- Merčep, E.; Deán-Ben, X.L.; Razansky, D. Imaging of Blood Flow and Oxygen State with a Multi-Segment Optoacoustic Ultrasound Array. Photoacoustics 2018, 10, 48–53. [Google Scholar] [CrossRef]
- Erfanzadeh, M.; Zhu, Q. Photoacoustic Imaging with Low-Cost Sources; A Review. Photoacoustics 2019, 14, 1–11. [Google Scholar] [CrossRef]
- Hu, S.; Wang, L.V. Photoacoustic Imaging and Characterization of the Microvasculature. J. Biomed. Opt. 2010, 15, 011101. [Google Scholar] [CrossRef] [PubMed]
- MacCuaig, W.M.; Jones, M.A.; Abeyakoon, O.; McNally, L.R. Development of Multispectral Optoacoustic Tomography as a Clinically Translatable Modality for Cancer Imaging. Radiol. Imaging Cancer 2020, 2, e200066. [Google Scholar] [CrossRef] [PubMed]
- Sowmiya, C.; Thittai, A.K. Simulation of Photoacoustic Tomography (PAT) System in COMSOL and Comparison of Two Popular Reconstruction Techniques. In Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging; SPIE: Bellingham, WA, USA, 2017; p. 10137. [Google Scholar] [CrossRef]
- Omar, M.; Schwarz, M.; Soliman, D.; Symvoulidis, P.; Ntziachristos, V. Pushing the Optical Imaging Limits of Cancer with Multi-Frequency-Band Raster-Scan Optoacoustic Mesoscopy (RSOM). Neoplasia 2015, 17, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargiulo, S.; Albanese, S.; Mancini, M. State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. Contrast Media Mol. Imaging 2019, 2019, 5080267. [Google Scholar] [CrossRef] [PubMed]
- Mallidi, S.; Luke, G.P.; Emelianov, S. Photoacoustic Imaging in Cancer Detection, Diagnosis, and Treatment Guidance. Trends Biotechnol. 2011, 29, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Laufer, J.G.; Zhang, E.Z.; Treeby, B.E.; Cox, B.T.; Beard, P.C.; Johnson, P.; Pedley, B. In Vivo Preclinical Photoacoustic Imaging of Tumor Vasculature Development and Therapy. J. Biomed. Opt. 2012, 17, 056016. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, S.; Chekkoury, A.; Glasl, S.; Vetschera, P.; Koberstein-Schwarz, B.; Omar, M.; Ntziachristos, V. Three-Dimensional Optoacoustic Mesoscopy of the Tumor Heterogeneity in Vivo Using High Depth-to-Resolution Multispectral Optoacoustic Tomography. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing 2017; Oraevsky, A.A., Wang, L.V., Eds.; SPIE: Bellingham, WA, USA, 2017. [Google Scholar]
- Zhou, Y.; Yao, J.; Wang, L.V. Tutorial on Photoacoustic Tomography. J. Biomed. Opt. 2016, 21, 061007. [Google Scholar] [CrossRef] [Green Version]
- Heijblom, M.; Piras, D.; van den Engh, F.M.; van der Schaaf, M.; Klaase, J.M.; Steenbergen, W.; Manohar, S. The State of the Art in Breast Imaging Using the Twente Photoacoustic Mammoscope: Results from 31 Measurements on Malignancies. Eur. Radiol. 2016, 26, 3874–3887. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Li, W.; Yang, M.; Li, C. Developing a Photoacoustic Whole-Breast Imaging System Based on the Synthetic Matrix Array. Front. Phys. 2020, 8, 1–7. [Google Scholar] [CrossRef]
- Oraevsky, A.A.; Clingman, B.; Zalev, J.; Stavros, A.T.; Yang, W.T.; Parikh, J.R. Clinical Optoacoustic Imaging Combined with Ultrasound for Coregistered Functional and Anatomical Mapping of Breast Tumors. Photoacoustics 2018, 12, 30–45. [Google Scholar] [CrossRef]
- Manohar, S.; Dantuma, M. Current and Future Trends in Photoacoustic Breast Imaging. Photoacoustics 2019, 16, 100134. [Google Scholar] [CrossRef]
- Rao, A.P.; Bokde, N.; Sinha, S. Photoacoustic Imaging for Management of Breast Cancer: A Literature Review and Future Perspectives. Appl. Sci. 2020, 10, 767. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Humayun, L.; Vienneau, E.; Vu, T.; Yao, J. Seeing through the Skin: Photoacoustic Tomography of Skin Vasculature and Beyond. JID Innov. 2021, 1, 100039. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, J.; Lee, D.; Baik, J.W.; Kim, C. Review on Practical Photoacoustic Microscopy. Photoacoustics 2019, 15, 100141. [Google Scholar] [CrossRef]
- Kang, J.; Chung, W.Y.; Kang, S.W.; Kwon, H.J.; Yoo, J.; Kim, E.K.; Chang, J.H.; Song, T.K.; Lee, S.; Kwak, J.Y. Ex Vivo Estimation of Photoacoustic Imaging for Detecting Thyroid Microcalcifications. PLoS ONE 2014, 9, e0113358. [Google Scholar] [CrossRef]
- Dogra, V.S.; Chinni, B.K.; Valluru, K.S.; Moalem, J.; Giampoli, E.J.; Evans, K.; Rao, N.A. Preliminary Results of Ex Vivo Multispectral Photoacoustic Imaging in the Management of Thyroid Cancer. Am. J. Roentgenol. 2014, 202, W552–W558. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, L.; He, X.; Su, N.; Zhao, C.; Tang, H.; Hong, T.; Li, W.; Yang, F.; Lin, L.; et al. Photoacoustic/Ultrasound Dual Imaging of Human Thyroid Cancers: An Initial Clinical Study. Biomed. Opt. Express 2017, 8, 3449. [Google Scholar] [CrossRef] [Green Version]
- Karlas, A.; Pleitez, M.A.; Aguirre, J.; Ntziachristos, V. Optoacoustic Imaging in Endocrinology and Metabolism. Nat. Rev. Endocrinol. 2021, 17, 323–335. [Google Scholar] [CrossRef]
- Bohndiek, S.E.; Sasportas, L.S.; Machtaler, S.; Jokerst, J.V.; Hori, S.; Gambhir, S.S. Photoacoustic Tomography Detects Early Vessel Regression and Normalization during Ovarian Tumor Response to the Antiangiogenic Therapy Trebananib. J. Nucl. Med. 2015, 56, 1942–1947. [Google Scholar] [CrossRef]
- Yaseen, M.A. Optoacoustic Imaging of the Prostate: Development toward Image-Guided Biopsy. J. Biomed. Opt. 2010, 15, 021310. [Google Scholar] [CrossRef] [Green Version]
- Regensburger, A.P.; Brown, E.; Krönke, G.; Waldner, M.J.; Knieling, F. Optoacoustic Imaging in Inflammation. Biomedicines 2021, 9, 483. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Noimark, S.; Ourselin, S.; West, S.J.; Finlay, M.C.; David, A.L.; Desjardins, A.E. Ultrasonic Needle Tracking with a Fibre-Optic Ultrasound Transmitter for Guidance of Minimally Invasive Fetal Surgery. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2017; Volume 10434, pp. 637–645. [Google Scholar] [CrossRef] [Green Version]
- Esenaliev, R.O. Optoacoustic Monitoring of Physiologic Variables. Front. Physiol. 2017, 8, 1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knieling, F.; Gonzales Menezes, J.; Claussen, J.; Schwarz, M.; Neufert, C.; Fahlbusch, F.B.; Rath, T.; Thoma, O.M.; Kramer, V.; Menchicchi, B.; et al. Raster-Scanning Optoacoustic Mesoscopy for Gastrointestinal Imaging at High Resolution. Gastroenterology 2018, 154, 807–809.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knieling, F.; Neufert, C.; Hartmann, A.; Claussen, J.; Urich, A.; Egger, C.; Vetter, M.; Fischer, S.; Pfeifer, L.; Hagel, A.; et al. Multispectral Optoacoustic Tomography for Assessment of Crohn’s Disease Activity. N. Engl. J. Med. 2017, 376, 1292–1294. [Google Scholar] [CrossRef]
- Zhao, T.; Desjardins, A.E.; Ourselin, S.; Vercauteren, T.; Xia, W. Minimally Invasive Photoacoustic Imaging: Current Status and Future Perspectives. Photoacoustics 2019, 16, 100146. [Google Scholar] [CrossRef]
- Su, J.L.; Wang, B.; Wilson, K.E.; Bayer, C.L.; Chen, Y.; Kim, S.; Homan, K.A.; Emelianov, S.Y. Advances in Clinical and Biomedical Applications of Photoacoustic Imaging. Expert Opin. Med. Diagn. 2011, 4, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Jo, J.; Tian, C.; Xu, G.; Sarazin, J.; Schiopu, E.; Gandikota, G.; Wang, X. Photoacoustic Tomography for Human Musculoskeletal Imaging and Inflammatory Arthritis Detection. Photoacoustics 2018, 12, 82–89. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, H.F. Photoacoustic Imaging of the Eye: A Mini Review. Photoacoustics 2016, 4, 112–123. [Google Scholar] [CrossRef]
- Fang, Z.; Yang, C.; Zheng, Z.; Jin, H.; Tang, K.; Lou, L.; Tang, X.; Wang, W.; Zheng, Y. A Mixed-Signal Chip-Based Configurable Coherent Photoacoustic-Radar Sensing Platform for in Vivo Temperature Monitoring and Vital Signs Detection. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 666–678. [Google Scholar] [CrossRef]
- Moore, C.; Jokerst, J.V. Strategies for Image-Guided Therapy, Surgery, and Drug Delivery Using Photoacoustic Imaging. Theranostics 2019, 9, 1550–1571. [Google Scholar] [CrossRef]
- Han, S.H. Review of Photoacoustic Imaging for Imaging-Guided Spinal Surgery. Neurospine 2018, 15, 306–322. [Google Scholar] [CrossRef]
- Lediju Bell, M.A. Photoacoustic Imaging for Surgical Guidance: Principles, Applications, and Outlook. J. Appl. Phys. 2020, 128, 060904. [Google Scholar] [CrossRef]
- Paltauf, G.; Nuster, R.; Frenz, M. Progress in Biomedical Photoacoustic Imaging Instrumentation toward Clinical Application. J. Appl. Phys. 2020, 128, 180907. [Google Scholar] [CrossRef]
- Weber, J.; Bollepalli, L.; Belenguer, A.M.; Antonio, M.D.; De Mitri, N.; Joseph, J.; Balasubramanian, S.; Hunter, C.A.; Bohndiek, S.E. An Activatable Cancer-Targeted Hydrogen Peroxide Probe for Photoacoustic and Fluorescence Imaging. Cancer Res. 2019, 79, 5407–5417. [Google Scholar] [CrossRef] [Green Version]
- Finlay, M.C.; Mosse, C.A.; Colchester, R.J.; Noimark, S.; Zhang, E.Z.; Ourselin, S.; Beard, P.C.; Schillin, R.J.; Parkin, I.P.; Papakonstantinou, I.; et al. Through-Needle All-Optical Ultrasound Imaging in Vivo: A Preclinical Swine Study. Light Sci. Appl. 2017, 6, e17103-7. [Google Scholar] [CrossRef] [Green Version]
- Colchester, R.J.; Zhang, E.Z.; Mosse, C.A.; Beard, P.C.; Papakonstantinou, I.; Desjardins, A.E. Broadband Miniature Optical Ultrasound Probe for High Resolution Vascular Tissue Imaging. Biomed. Opt. Express 2015, 6, 1502. [Google Scholar] [CrossRef] [Green Version]
- Noimark, S.; Colchester, R.J.; Poduval, R.K.; Maneas, E.; Alles, E.J.; Zhao, T.; Zhang, E.Z.; Ashworth, M.; Tsolaki, E.; Chester, A.H.; et al. Polydimethylsiloxane Composites for Optical Ultrasound Generation and Multimodality Imaging. Adv. Funct. Mater. 2018, 28, 1–16. [Google Scholar] [CrossRef]
- Zou, X.; Wu, N.; Tian, Y.; Wang, X. Broadband Miniature Fiber Optic Ultrasound Generator. Opt. Express 2014, 22, 18119. [Google Scholar] [CrossRef] [PubMed]
- Noimark, S.; Colchester, R.J.; Blackburn, B.J.; Zhang, E.Z.; Alles, E.J.; Ourselin, S.; Beard, P.C.; Papakonstantinou, I.; Parkin, I.P.; Desjardins, A.E. Carbon-Nanotube–PDMS Composite Coatings on Optical Fibers for All-Optical Ultrasound Imaging. Adv. Funct. Mater. 2016, 26, 8390–8396. [Google Scholar] [CrossRef] [Green Version]
- Alles, E.J.; Fook Sheung, N.; Noimark, S.; Zhang, E.Z.; Beard, P.C.; Desjardins, A.E. A Reconfigurable All-Optical Ultrasound Transducer Array for 3D Endoscopic Imaging. Sci. Rep. 2017, 7, 1208. [Google Scholar] [CrossRef] [Green Version]
- Lles, E.R.J.A.; Oimark, S.A.N.; Fthymios, E.; Aneas, M.; Hang, E.D.Z.Z.; Arkin, I.V.A.N.P.P.; Aul, P.C.; Eard, B.; Esjardins, A.D.E.D. Video-Rate All-Optical Ultrasound Imaging. Biomed. Opt. Express 2018, 9, 3481–3494. [Google Scholar]
- Chen, S.L.; Tian, C. Review Recent Developments in Photoacoustic Imaging and Sensing for Nondestructive Testing and Evaluation. Vis. Comput. Ind. Biomed. Art 2021, 4, 6. [Google Scholar] [CrossRef]
- Forrest, M.; Mims, I. Alexander Graham Bell and the Photophone: The Centennial of the Invention of Light-Wave Communications, 1880–1980. Opt. News 1976, 6, 8–16. [Google Scholar] [CrossRef]
- Manohar, S.; Razansky, D. Photoacoustics: A Historical Review. Adv. Opt. Photonics 2016, 8, 586–617. [Google Scholar] [CrossRef] [Green Version]
- Nikitichev, D.I.; Xia, W.; Hill, E.; Mosse, C.A.; Perkins, T.; Konyn, K.; Ourselin, S.; Desjardins, A.E.; Vercauteren, T. Music-of-Light Stethoscope: A Demonstration of the Photoacoustic Effect. Phys. Educ. 2016, 51, 045015. [Google Scholar] [CrossRef]
- Bell, A.G. On the Production and Reproduction of Sound by Light. Am. J. Sci. 1880, 20, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Chua, H.L.; Huong, A.; Tay, K.G. Photoacoustic Systems for Biomedical Imaging Application: A Comparison Study. AIP Conf. Proc. 2019, 2173, 020018. [Google Scholar] [CrossRef]
- Manohar, S.; Gambhir, S.S. Clinical Photoacoustic Imaging. Photoacoustics 2020, 19, 100196. [Google Scholar] [CrossRef]
- Mahmud, M.; Islam, S.; Ahmed, A.; Younis, M.; Choa, F.-S. Cross-Medium Photoacoustic Communications: Challenges, and State of the Art. Sensors 2022, 22, 4224. [Google Scholar] [CrossRef]
- Zhou, J.; Jokerst, J.V. Photoacoustic Imaging with Fiber Optic Technology: A Review. Photoacoustics 2020, 20, 100211. [Google Scholar] [CrossRef]
- Little, C.D.; Colchester, R.J.; Noimark, S.; Manmathan, G. Optically Generated Ultrasound for Intracoronary Imaging. Front. Cardiovasc. Med. 2020, 7, 525530. [Google Scholar] [CrossRef] [PubMed]
- Vannacci, E.; Belsito, L.; Mancarella, F.; Ferri, M.; Veronese, G.P.; Roncaglia, A.; Biagi, E. Miniaturized Fiber-Optic Ultrasound Probes for Endoscopic Tissue Analysis by Micro-Opto-Mechanical Technology. Biomed. Microdevices 2014, 16, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Kishor, R.; Feng, X.; Liu, S.; Ding, R.; Zhang, R.; Zheng, Y. An Analytical Study of Photoacoustic and Thermoacoustic Generation Efficiency towards Contrast Agent and Film Design Optimization. Photoacoustics 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Karlas, A.; Fasoula, N.A.; Paul-Yuan, K.; Reber, J.; Kallmayer, M.; Bozhko, D.; Seeger, M.; Eckstein, H.H.; Wildgruber, M.; Ntziachristos, V. Cardiovascular Optoacoustics: From Mice to Men—A Review. Photoacoustics 2019, 14, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Buma, T.; Spisar, M.; O’Donnell, M. High-Frequency Ultrasound Array Element Using Thermoelastic Expansion in an Elastomeric Film. Appl. Phys. Lett. 2001, 79, 548–550. [Google Scholar] [CrossRef]
- Colchester, R.J.; Mosse, C.A.; Bhachu, D.S.; Bear, J.C.; Carmalt, C.J.; Parkin, I.P.; Treeby, B.E.; Papakonstantinou, I.; Desjardins, A.E. Laser-Generated Ultrasound with Optical Fibres Using Functionalised Carbon Nanotube Composite Coatings. Appl. Phys. Lett. 2014, 104, 173502. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.P.; Kim, J.; Ha, K.; Oh, J.; Kang, H.W. Feasibility Study on Photoacoustic Guidance for High-Intensity Focused Ultrasound-Induced Hemostasis. J. Biomed. Opt. 2014, 19, 105010. [Google Scholar] [CrossRef]
- Choi, S.S.S.; Mandelis, A. Review of the State of the Art in Cardiovascular Endoscopy Imaging of Atherosclerosis Using Photoacoustic Techniques with Pulsed and Continuous-Wave Optical Excitations. J. Biomed. Opt. 2019, 24, 080902. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.; Park, E.Y.; Jeon, S.; Kim, C. Clinical Photoacoustic Imaging Platforms. Biomed. Eng. Lett. 2018, 8, 139–155. [Google Scholar] [CrossRef]
- Silva, A.D.; Henriques, C.A.; Malva, D.V.; Calvete, M.J.F.; Pereira, M.M.; Serpa, C.; Arnaut, L.G. Photoacoustic Generation of Intense and Broadband Ultrasound Pulses with Functionalized Carbon Nanotubes. Nanoscale 2020, 12, 20831–20839. [Google Scholar] [CrossRef]
- Jung, J.; Lee, W.; Kang, W.; Shin, E.; Ryu, J.; Choi, H. Review of Piezoelectric Micromachined Ultrasonic Transducers and Their Applications. J. Micromechanics Microengineering 2017, 27, 113001. [Google Scholar] [CrossRef]
- Hajati, A.; Latev, D.; Gardner, D. 3D MEMS Piezoelectric Ultrasound Transducer Technology. In Proceedings of the 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy (ISAF/PFM), Prague, Czech Republic, 21–25 July 2013; pp. 231–235. [Google Scholar] [CrossRef]
- Wang, T.; Kobayashi, T.; Lee, C. Broadband Piezoelectric Micromachined Ultrasonic Transducer (PMUT) Using Mode-Merged Design. In Proceedings of the 2015 IEEE 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xi’an, China, 7–11 April 2015; pp. 238–242. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Z.; Chan, J.; Yeow, J.T.W. Capacitive Micromachined Ultrasound Transducers for Intravascular Ultrasound Imaging. Microsystems Nanoeng. 2020, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Salim, M.S.; Abd Malek, M.F.; Heng, R.B.W.; Juni, K.M.; Sabri, N. Capacitive Micromachined Ultrasonic Transducers: Technology and Application. J. Med. Ultrasound 2012, 20, 8–31. [Google Scholar] [CrossRef] [Green Version]
- Degertekin, F.L.; Guldiken, R.O.; Karaman, M. Annular-Ring CMUT Arrays for Forward-Looking IVUS: Transducer Characterization and Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.X.; Cui, J.M.; Ai, M.Z.; Huang, Y.F.; Li, C.F.; Guo, G.C. An Acoustic Sensor Based on Active Fiber Fabry–Pérot Microcavities. Sensors 2020, 20, 5760. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, N.; Sun, K.; Zou, X.; Wang, X. Numerical Simulation of Fiber-Optic Photoacoustic Generator Using Nanocomposite Material. J. Comput. Acoust. 2013, 21, 1350002. [Google Scholar] [CrossRef]
- Won Baac, H.; Ok, J.G.; Park, H.J.; Ling, T.; Chen, S.L.; Hart, A.J.; Guo, L.J. Carbon Nanotube Composite Optoacoustic Transmitters for Strong and High Frequency Ultrasound Generation. Appl. Phys. Lett. 2010, 97, 234104. [Google Scholar] [CrossRef]
- Wang, L.V.; Yao, J. A Practical Guide to Photoacoustic Tomography in the Life Sciences. Nat. Methods 2016, 13, 627–638. [Google Scholar] [CrossRef]
- Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Functional Photoacoustic Microscopy for High-Resolution and Noninvasive in Vivo Imaging. Nat. Biotechnol. 2006, 24, 848–851. [Google Scholar] [CrossRef]
- Schwarz, M.; Omar, M.; Buehler, A.; Aguirre, J.; Ntziachristos, V. Implications of Ultrasound Frequency in Optoacoustic Mesoscopy of the Skin. IEEE Trans. Med. Imaging 2015, 34, 672–677. [Google Scholar] [CrossRef]
- Upputuri, P.K.; Pramanik, M. Recent Advances in Photoacoustic Contrast Agents for in Vivo Imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1618. [Google Scholar] [CrossRef]
- Chen, S.L. Review of Laser-Generated Ultrasound Transmitters and Their Applications to All-Optical Ultrasound Transducers and Imaging. Appl. Sci. 2017, 7, 25. [Google Scholar] [CrossRef]
- Beard, P. Biomedical Photoacoustic Imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef]
- Kim, J.W.; Galanzha, E.I.; Shashkov, E.V.; Moon, H.M.; Zharov, V.P. Golden Carbon Nanotubes as Multimodal Photoacoustic and Photothermal High-Contrast Molecular Agents. Nat. Nanotechnol. 2009, 4, 688–694. [Google Scholar] [CrossRef] [Green Version]
- Razansky, D.; Distel, M.; Vinegoni, C.; Ma, R.; Perrimon, N.; Köster, R.W.; Ntziachristos, V. Multispectral Opto-Acoustic Tomography of Deep-Seated Fluorescent Proteins in Vivo. Nat. Photonics 2009, 3, 412–417. [Google Scholar] [CrossRef]
- Stiel, A.C.; Deán-Ben, X.L.; Jiang, Y.; Ntziachristos, V.; Razansky, D.; Westmeyer, G.G. High-Contrast Imaging of Reversibly Switchable Fluorescent Proteins via Temporally Unmixed Multispectral Optoacoustic Tomography. Opt. Lett. 2015, 40, 367. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Yuan, Z. Photoacoustic-Based Multimodal Nanoprobes: From Constructing to Biological Applications. Int. J. Biol. Sci. 2017, 13, 401–412. [Google Scholar] [CrossRef]
- De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B.R.; Ma, T.J.; Oralkan, O.; et al. Carbon Nanotubes as Photoacoustic Molecular Imaging Agents in Living Mice. Nat. Nanotechnol. 2008, 3, 557–562. [Google Scholar] [CrossRef]
- Joseph, J.; Tomaszewski, M.R.; Quiros-Gonzalez, I.; Weber, J.; Brunker, J.; Bohndiek, S.E. Evaluation of Precision in Optoacoustic Tomography for Preclinical Imaging in Living Subjects. J. Nucl. Med. 2017, 58, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Razansky, D.; Vinegoni, C.; Ntziachristos, V. Multispectral Photoacoustic Imaging of Fluorochromes in Small Animals. Opt. Lett. 2007, 32, 2891. [Google Scholar] [CrossRef]
- Saremi, B.; Wei, M.-Y.; Liu, Y.; Cheng, B.; Yuan, B. Re-Evaluation of Biotin-Streptavidin Conjugation in Förster Resonance Energy Transfer Applications. J. Biomed. Opt. 2014, 19, 085008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amendola, V.; Meneghetti, M. Laser Ablation Synthesis in Solution and Size Manipulation of Noble Metal Nanoparticles. Phys. Chem. Chem. Phys. 2009, 11, 3805–3821. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Kim, J.S.; Ashkenazi, S.; O’Donnell, M.; Guo, L.J. Optical Generation of High Frequency Ultrasound Using Two-Dimensional Gold Nanostructure. Appl. Phys. Lett. 2006, 89, 093901. [Google Scholar] [CrossRef] [Green Version]
- Biagi, E.; Margheri, F.; Menichelli, D. Efficient Laser-Ultrasound Generation by Using Heavily Absorbing Films as Targets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 1669–1680. [Google Scholar] [CrossRef] [PubMed]
- Von Gutfeld, R.J.; Budd, H.F. Laser-Generated MHz Elastic Waves from Metallic-Liquid Interfaces. Appl. Phys. Lett. 1979, 34, 617–619. [Google Scholar] [CrossRef]
- Kozhushko, V.V.; Hess, P. Nondestructive Evaluation of Microcracks by Laser-Induced Focused Ultrasound. Appl. Phys. Lett. 2007, 91, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Hattori, K.; Sakai, K.; Takagi, K. Brillouin Scattering Measurement of Optothermally Excited Phonon. Jpn. J. Appl. Phys. Part 2 Lett. 1997, 36, L1415–L1418. [Google Scholar] [CrossRef]
- Han, S.; Lee, D.; Kim, S.; Kim, H.H.; Jeong, S.; Kim, J. Contrast Agents for Photoacoustic Imaging: A Review Focusing on the Wavelength Range. Biosensors 2022, 12, 594. [Google Scholar] [CrossRef]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Tian, Y.; Zou, X.; Silva, V.; Chery, A.; Wang, X. High-Efficiency Optical Ultrasound Generation Using One-Pot Synthesized Polydimethylsiloxane-Gold Nanoparticle Nanocomposite. J. Opt. Soc. Am. B 2012, 29, 2016–2020. [Google Scholar] [CrossRef]
- Agano, T.; Singh, M.K.A.; Nagaoka, R.; Awazu, K. Effect of Light Pulse Width on Frequency Characteristics of Photoacoustic Signal an Experimental Study Using a Pulse Width Tunable LED Based Photoacoustic Imaging System. Int. J. Eng. Technol. 2018, 7, 3835–3842. [Google Scholar] [CrossRef]
- Colchester, R.J.; Alles, E.J.; Desjardins, A.E. A Directional Fibre Optic Ultrasound Transmitter Based on a Reduced Graphene Oxide and Polydimethylsiloxane Composite. Appl. Phys. Lett. 2019, 114, 113505. [Google Scholar] [CrossRef]
- Hwan Lee, S.; Park, M.A.; Yoh, J.J.; Song, H.; Yun Jang, E.; Hyup Kim, Y.; Kang, S.; Seop Yoon, Y. Reduced Graphene Oxide Coated Thin Aluminum Film as an Optoacoustic Transmitter for High Pressure and High Frequency Ultrasound Generation. Appl. Phys. Lett. 2012, 101, 241909. [Google Scholar] [CrossRef]
- Chang, W.Y.; Huang, W.; Kim, J.; Li, S.; Jiang, X. Candle Soot Nanoparticles-Polydimethylsiloxane Composites for Laser Ultrasound Transducers. Appl. Phys. Lett. 2015, 107, 161903. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Chang, W.Y.; Kim, J.; Li, S.; Huang, S.; Jiang, X. A Novel Laser Ultrasound Transducer Using Candle Soot Carbon Nanoparticles. IEEE Trans. Nanotechnol. 2016, 15, 395–401. [Google Scholar] [CrossRef]
- Chang, W.Y.; Zhang, X.A.; Kim, J.; Huang, W.; Bagal, A.; Chang, C.H.; Fang, T.; Wu, H.F.; Jiang, X. Evaluation of Photoacoustic Transduction Efficiency of Candle Soot Nanocomposite Transmitters. IEEE Trans. Nanotechnol. 2018, 17, 985–993. [Google Scholar] [CrossRef]
- Hsieh, B.Y.; Kim, J.; Zhu, J.; Li, S.; Zhang, X.; Jiang, X. A Laser Ultrasound Transducer Using Carbon Nanofibers-Polydimethylsiloxane Composite Thin Film. Appl. Phys. Lett. 2015, 106, 021902. [Google Scholar] [CrossRef]
- Lee, T.; Ok, J.G.; Guo, L.J.; Baac, H.W. Low F-Number Photoacoustic Lens for Tight Ultrasonic Focusing and Free-Field Micro-Cavitation in Water. Appl. Phys. Lett. 2016, 108, 104102. [Google Scholar] [CrossRef]
- Biagi, E.; Cerbai, S.; Masotti, L.; Belsito, L.; Roncaglia, A.; Masetti, G.; Speciale, N. Fiber Optic Broadband Ultrasonic Probe for Virtual Biopsy: Technological Solutions. In Lecture Notes in Electrical Engineering; Springer: Dordrecht, The Netherlands, 2011; pp. 223–227. [Google Scholar] [CrossRef] [Green Version]
- Poduval, R.K.; Noimark, S.; Colchester, R.J.; Macdonald, T.J.; Parkin, I.P.; Desjardins, A.E.; Papakonstantinou, I. Optical Fiber Ultrasound Transmitter with Electrospun Carbon Nanotube-Polymer Composite. Appl. Phys. Lett. 2017, 110, 223701. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Liu, X.; Zhang, T.; Lei, S.; Jiang, L.; Ou-Yang, J.; Yang, X.; Zhu, B. A Novel CNTs Array-PDMS Composite with Anisotropic Thermal Conductivity for Optoacoustic Transducer Applications. Compos. Part B Eng. 2020, 196, 108073. [Google Scholar] [CrossRef]
- Hou, Y.; Ashkenazi, S.; Huang, S.-W.; O’Donnell, M. An Integrated Optoacoustic Transducer Combining Etalon And Black PDMS Structures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2719–2725. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Ding, A.; Zhang, H.; Zhang, W. The Relevant Approaches for Aligning Carbon Nanotubes. Micromachines 2022, 13, 1863. [Google Scholar] [CrossRef] [PubMed]
- Thiruvengadam, M.; Rajakumar, G.; Swetha, V.; Ansari, M.A.; Alghamdi, S.; Almehmadi, M.; Halawi, M.; Kungumadevi, L.; Raja, V.; Sarbudeen, S.S.; et al. Recent Insights and Multifactorial Applications of Carbon Nanotubes. Micromachines 2021, 12, 1502. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Luo, W.; Li, Q.; Demirci, H.; Guo, L.J. Laser-Induced Focused Ultrasound for Cavitation Treatment: Toward High-Precision Invisible Sonic Scalpel. Small 2017, 13, 1701555. [Google Scholar] [CrossRef] [PubMed]
- Tahmid, M.I.; Zaman Mamun, M.A.; Zubair, A. Near-Perfect Absorber Consisted of a Vertical Array of Single-Wall Carbon Nanotubes and Engineered Multi-Wall Carbon Nanotubes. Opt. Mater. Express 2021, 11, 1267. [Google Scholar] [CrossRef]
- Colchester, R.J.; Little, C.D.; Alles, E.J.; Desjardins, A.E. Flexible and Directional Fibre Optic Ultrasound Transmitters Using Photostable Dyes. OSA Contin. 2021, 4, 2488. [Google Scholar] [CrossRef]
- Soares, M.C.F.; Viana, M.M.; Schaefer, Z.L.; Gangoli, V.S.; Cheng, Y.; Caliman, V.; Wong, M.S.; Silva, G.G. Surface Modification of Carbon Black Nanoparticles by Dodecylamine: Thermal Stability and Phase Transfer in Brine Medium. Carbon 2014, 72, 287–295. [Google Scholar] [CrossRef]
- Sunderrajan, S.; Miranda, L.R.; Pennathur, G. Improved Stability and Catalytic Activity of Graphene Oxide/Chitosan Hybrid Beads Loaded with Porcine Liver Esterase. Prep. Biochem. Biotechnol. 2018, 48, 343–351. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Sudha, R.; Premnath, K.; Arunachalam, P.; Madhavan, J.; Al-Mayouf, A.M. Growth of Iron Diselenide Nanorods on Graphene Oxide Nanosheets as Advanced Electrocatalyst for Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2017, 42, 13020–13030. [Google Scholar] [CrossRef]
- Singh, P.; Chauhan, S.S.; Singh, G.; Sharma, M.; Singh, V.P.; Vaish, R. Anticorrosion and Electromagnetic Interference Shielding Behavior of Candle Soot-Based Epoxy Coating. J. Appl. Polym. Sci. 2020, 137, 48678. [Google Scholar] [CrossRef]
- Ramya, E.; Momen, N.; Rao, D.N. Preparation of Multiwall Carbon Nanotubes with Zinc Phthalocyanine Hybrid Materials and Their Nonlinear Optical (NLO) Properties. J. Nanosci. Nanotechnol. 2017, 18, 4764–4770. [Google Scholar] [CrossRef]
- Siregar, S.; Oktamuliani, S.; Saijo, Y. A Theoretical Model of Laser Heating Carbon Nanotubes. Nanomaterials 2018, 8, 580. [Google Scholar] [CrossRef] [Green Version]
- Bodian, S.; Colchester, R.J.; Macdonald, T.J.; Ambroz, F.; Briceno de Gutierrez, M.; Mathews, S.J.; Fong, Y.M.M.; Maneas, E.; Welsby, K.A.; Gordon, R.J.; et al. CuInS2 Quantum Dot and Polydimethylsiloxane Nanocomposites for All-Optical Ultrasound and Photoacoustic Imaging. Adv. Mater. Interfaces 2021, 8, 2100518. [Google Scholar] [CrossRef]
- Girshova, E.I.; Mikitchuk, A.P.; Belonovski, A.V.; Morozov, K.M.; Ivanov, K.A.; Pozina, G.; Kozadaev, K.V.; Egorov, A.Y.; Kaliteevski, M.A. Proposal for a Photoacoustic Ultrasonic Generator Based on Tamm Plasmon Structures. Opt. Express 2020, 28, 26161. [Google Scholar] [CrossRef]
- Lee, T.; Guo, L.J. Highly Efficient Photoacoustic Conversion by Facilitated Heat Transfer in Ultrathin Metal Film Sandwiched by Polymer Layers. Adv. Opt. Mater. 2017, 5, 1600421. [Google Scholar] [CrossRef]
- Yang, X. Modelling Heat Transfer of Carbon Nanotubes. Model. Simul. Mater. Sci. Eng. 2005, 13, 893–902. [Google Scholar] [CrossRef]
- Kang, S.; Hwang, J. Tuning the Characteristics of Photoacoustic Pressure in a Laser-Induced Photoacoustic Generator: A Numerical Study. Appl. Math. Model. 2021, 94, 98–116. [Google Scholar] [CrossRef]
- Treeby, B.E.; Cox, B.T. K-Wave: MATLAB Toolbox for the Simulation and Reconstruction of Photoacoustic Wave Fields. J. Biomed. Opt. 2010, 15, 021314. [Google Scholar] [CrossRef] [Green Version]
- Mastanduno, M.A.; Gambhir, S.S. Quantitative Photoacoustic Image Reconstruction Improves Accuracy in Deep Tissue Structures. Biomed. Opt. Express 2016, 7, 3811. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S.; Suresh, T.; Garikipati, A.; Dangi, A.; Kothapalli, S.R. Modeling Combined Ultrasound and Photoacoustic Imaging: Simulations Aiding Device Development and Artificial Intelligence. Photoacoustics 2021, 24, 100304. [Google Scholar] [CrossRef]
- Akhlaghi, N.; Pfefer, T.J.; Wear, K.A.; Garra, B.S.; Vogt, W.C. Multidomain Computational Modeling of Photoacoustic Imaging: Verification, Validation, and Image Quality Prediction. J. Biomed. Opt. 2019, 24, 121910. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yao, J. 3D Monte Carlo Simulation of Light Distribution in Mouse Brain in Quantitative Photoacoustic Computed Tomography. Quant. Imaging Med. Surg. 2021, 11, 1046–1059. [Google Scholar] [CrossRef] [PubMed]
- Muller, J.-W.; Arabul, M.Ü.; Schwab, H.-M.; Rutten, M.C.M.; van Sambeek, M.R.H.M.; Wu, M.; Lopata, R.G.P. Modeling Toolchain for Realistic Simulation of Photoacoustic Data Acquisition. J. Biomed. Opt. 2022, 27, 096005. [Google Scholar] [CrossRef] [PubMed]
- Peiró, J.; Sherwin, S. Finite Difference, Finite Element and Finite Volume Methods for Partial Differential Equations. In Handbook of Materials Modeling; Yip, S., Ed.; Springer: Dordrecht, The Netherlands, 2005; ISBN 978-1-4020-3286-8. [Google Scholar]
- El-Busaidy, S.A.S.; Baumann, B.; Wolff, M.; Duggen, L. Modelling of Open Photoacoustic Resonators. Photoacoustics 2020, 18, 100161. [Google Scholar] [CrossRef]
- Kishor, R.; Yuanjin, Z.; Wang, Z.; Lim, T.T. FEM Modelling of a SAW Microfluidic Sensor Based on the Photoacoustic Effect. In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; pp. 12–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, H.; Fang, H. Photoacoustic Waves of a Fluidic Elliptic Cylinder: Analytic Solution and Finite Element Method Study. Front. Phys. 2022, 10, 960165. [Google Scholar] [CrossRef]
- Granizo, E.; Escudero, F.; Pachacama, R.; Aquino, M.; Lozano, E. Optoacoustic Effect Analysis by FEM. AIP Conf. Proc. 2018, 2003, 020006. [Google Scholar] [CrossRef]
- Grosche, G.; Lipphardt, B.; Schnatz, H.; Santarelli, G.; Lemonde, P.; Bize, S.; Lours, M.; Narbonneau, F.; Clairon, A.; Lopez, O.; et al. Transmission of an Optical Carrier Frequency over a Telecommunication Fiber Link. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, 6–11 May 2007. [Google Scholar] [CrossRef]
- Addanki, S.; Amiri, I.S.; Yupapin, P. Review of Optical Fibers-Introduction and Applications in Fiber Lasers. Results Phys. 2018, 10, 743–750. [Google Scholar] [CrossRef]
- Oser, P.; Jehn, J.; Kaiser, M.; Düttmann, O.; Schmid, F.; Schulte-Spechtel, L.; Rivas, S.S.; Eulenkamp, C.; Schindler, C.; Grosse, C.U.; et al. Fiber-Optic Photoacoustic Generator Realized by Inkjet-Printing of CNT-PDMS Composites on Fiber End Faces. Macromol. Mater. Eng. 2021, 306, 2000563. [Google Scholar] [CrossRef]
- Wong, T.T.W.; Zhou, Y.; Garcia-Uribe, A.; Li, L.; Maslov, K.; Lin, L.; Wang, L.V. Use of a Single Xenon Flash Lamp for Photoacoustic Computed Tomography of Multiple-Centimeter-Thick Biological Tissue Ex Vivo and a Whole Mouse Body in Vivo. J. Biomed. Opt. 2016, 22, 041003. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, B.; Yu, T.; Yin, L.; Sun, M.; He, W.; Ma, C. Photoacoustic Mouse Brain Imaging Using an Optical Fabry-Pérot Interferometric Ultrasound Sensor. Front. Neurosci. 2021, 15, 672788. [Google Scholar] [CrossRef]
- Hosseinaee, Z.; Abbasi, N.; Pellegrino, N.; Khalili, L.; Mukhangaliyeva, L.; Haji Reza, P. Functional and Structural Ophthalmic Imaging Using Noncontact Multimodal Photoacoustic Remote Sensing Microscopy and Optical Coherence Tomography. Sci. Rep. 2021, 11, 11466. [Google Scholar] [CrossRef]
- Lee, C.; Choi, W.; Kim, J.; Kim, C. Three-Dimensional Clinical Handheld Photoacoustic/Ultrasound Scanner. Photoacoustics 2020, 18, 100173. [Google Scholar] [CrossRef]
- Lee, C.; Kim, J.Y.; Kim, C. Recent Progress on Photoacoustic Imaging Enhanced with Microelectromechanical Systems (MEMS) Technologies. Micromachines 2018, 9, 584. [Google Scholar] [CrossRef] [Green Version]
- Krężel, J.; Laszczyk, K.; Bargiel, S.; Gorecki, C.; Kujawińska, M.; Parriaux, O.; Tonchev, S. Simulation and In-Plane Movement Characterization of 2D MEMS Platform. In Optical Micro- and Nanometrology III; SPIE: Bellingham, WA, USA, 2010; Volume 7718, p. 77180H. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.Y.; Lim, H.G.; Baik, J.W.; Kim, H.H.; Kim, C. Versatile Single-Element Ultrasound Imaging Platform Using a Water-Proofed MEMS Scanner for Animals and Humans. Sci. Rep. 2020, 10, 6544. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Wang, L.V. Perspective on Fast-Evolving Photoacoustic Tomography. J. Biomed. Opt. 2021, 26, 060602. [Google Scholar] [CrossRef]
- Xi, L.; Sun, J.; Zhu, Y.; Wu, L.; Xie, H.; Jiang, H. Photoacoustic Imaging Based on MEMS Mirror Scanning. Biomed. Opt. Express 2010, 1, 1278. [Google Scholar] [CrossRef]
- Kusch, J.; Flockhart, G.M.H.; Bauer, R.; Uttamchandani, D. Miniaturisation of Photoacoustic Sensing Systems Using MEMS Transducer Arrays and MEMS Scanning Mirrors. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 3–5. [Google Scholar] [CrossRef] [Green Version]
- HGL Hydrophones. Available online: http://www.ondacorp.com/images/brochures/Onda_HGL_DataSheet.pdf (accessed on 22 December 2021).
- HM Hydrophones. Available online: https://www.ondacorp.com/wp-content/uploads/2020/06/Onda_HM_DataSheet.pdf (accessed on 22 December 2021).
- 75 Μm Needle Hydrophone (NH0075). Available online: https://www.acoustics.co.uk/pal/wp-content/uploads/2016/05/nh0075-75-micron-needle-hydrophone-tds-1.pdf (accessed on 22 December 2021).
- 0.2 Mm Needle Hydrophone (NH0200). Available online: https://www.acoustics.co.uk/pal/wp-content/uploads/2016/05/nh0200-0.2mm-needle-hydrophone-tds.pdf (accessed on 22 December 2021).
- Rosenthal, A.; Razansky, D.; Ntziachristos, V. High-Sensitivity Compact Ultrasonic Detector Based on a Pi-Phase-Shifted Fiber Bragg Grating. Opt. Lett. 2011, 36, 1833. [Google Scholar] [CrossRef]
- Li, H.; Dong, B.; Zhang, Z.; Zhang, H.F.; Sun, C. A Transparent Broadband Ultrasonic Detector Based on an Optical Micro-Ring Resonator for Photoacoustic Microscopy. Sci. Rep. 2014, 4, 4496. [Google Scholar] [CrossRef] [Green Version]
- Marschallinger, J.B. All-Optical Photoacoustic Imaging with Fiber-Optic Mach- Zehnder Interferometers/Submitted by Johannes Bauer-Marschallinger. Ph.D. Thesis, Johannes Kepler University Linz, Linz, Austria, 2019. [Google Scholar]
- Paltauf, G.; Nuster, R.; Haltmeier, M.; Burgholzer, P. Photoacoustic Tomography Using a Mach-Zehnder Interferometer as an Acoustic Line Detector. Appl. Opt. 2007, 46, 3352–3358. [Google Scholar] [CrossRef]
- Hochreiner, A.; Bauer-Marschallinger, J.; Burgholzer, P.; Berer, T. Fiber-Based Remote Photoacoustic Imaging Utilizing a Mach Zehnder Interferometer with Optical Amplification. In Photons Plus Ultrasound: Imaging and Sensing 2014; SPIE: Bellingham, WA, USA, 2014; Volume 8943, p. 89436B. [Google Scholar] [CrossRef]
- Kenhagho, H.N.; Rauter, G.; Guzman, R.; Cattin, P.; Zam, A. Optoacoustic Tissue Differentiation Using a Mach-Zehnder Interferometer-Preliminary Results. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018. [Google Scholar] [CrossRef]
- Wu, Q.; Okabe, Y. High-Sensitivity Ultrasonic Phase-Shifted Fiber Bragg Grating Balanced Sensing System. Opt. Express 2012, 20, 28353. [Google Scholar] [CrossRef]
- Shuaiqi, J.; Jianye, S.; Nengzhu, Z.; Lin, H.; Jian, R. Detection of Ultrasound and Photoacoustic Imaging with Fiber Bragg Gratings. X-Acoust. Imaging Sens. 2015, 1, 23–27. [Google Scholar] [CrossRef]
- Yang, Q.; Barnes, J.; Loock, H.P.; Pedersen, D. Time-Resolved Photoacoustic Spectroscopy Using Fiber Bragg Grating Acoustic Transducers. Opt. Commun. 2007, 276, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Jin, L.; Wang, L.; Bai, X.; Cheng, L.; Guan, B.O. Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging. Sci. Rep. 2017, 7, 40849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, B.; Chen, S.; Zhang, Z.; Sun, C.; Zhang, H.F. Photoacoustic Probe Using a Microring Resonator Ultrasonic Sensor for Endoscopic Applications. Opt. Lett. 2014, 39, 4372–4375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, B.; Chen, S.; Ling, T.; Guo, L.J.; Li, P. Integrated Intravascular Ultrasound and Photoacoustic Imaging Scan Head. Opt. Lett. 2010, 35, 2892–2894. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.L.; Huang, S.W.; Ling, T.; Ashkenazi, S.; Guo, L.J. Polymer Microring Resonators for High-Sensitivity and Wideband Photoacoustic Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 2482–2491. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.; Huang, S.W.; Ling, T.; Kim, J.S.; Ashkenazi, S.; Guo, L.J. Polymer Microring Resonators for High-Frequency Ultrasound Detection and Imaging. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Plumb, A.A.; Huynh, N.T.; Guggenheim, J.; Zhang, E.; Beard, P. Rapid Volumetric Photoacoustic Tomographic Imaging with a Fabry-Perot Ultrasound Sensor Depicts Peripheral Arteries and Microvascular Vasomotor Responses to Thermal Stimuli. Eur. Radiol. 2018, 28, 1037–1045. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Y.; Ma, C. Photothermally Tunable Fabry-Pérot Fiber Interferometer for Photoacoustic Mesoscopy. Biomed. Opt. Express 2020, 11, 2607. [Google Scholar] [CrossRef]
- Czuchnowski, J.; Prevedel, R. Adaptive Optics Enhanced Sensitivity in Fabry-Pérot Based Photoacoustic Tomography. Photoacoustics 2021, 23, 100276. [Google Scholar] [CrossRef]
- Ansari, R.; Zhang, E.Z.; Desjardins, A.E.; Beard, P.C. All-Optical Forward-Viewing Photoacoustic Probe for High-Resolution 3D Endoscopy. Light Sci. Appl. 2018, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Laufer, J.; Zhang, E.; Raivich, G.; Beard, P. Three-Dimensional Noninvasive Imaging of the Vasculature in the Mouse Brain Using a High Resolution Photoacoustic Scanner. Appl. Opt. 2009, 48, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Zhang, E.Z.; Beard, P.C. Characteristics of Optimized Fibre-Optic Ultrasound Receivers for Minimally Invasive Photoacoustic Detection. In Photons Plus Ultrasound Imaging and Sensing; SPIE: Bellingham, WA, USA, 2015; Volume 9323, p. 932311. [Google Scholar] [CrossRef]
Refs | Material (Thickness) | Laser model and Manufacturer | Wavelength [nm] | Repetition Rate [Hz] | Pulse Width [ns] | Laser Fluence/ Energy | Bandwidth [MHz] | Distance [mm] | Acoustic Pressure [MPa] |
---|---|---|---|---|---|---|---|---|---|
[142] | PDMS (200 nm)–Cr (10 nm)–PDMS (200 nm)–Al (50 nm) | Surelite I-20, Continuum | 532 | - | 6 | 2.35 mJ/m2 | - | - | 1.82 |
[61] | Crystal violet–PDMS (20 μm) | - | 532 | 100 | - | 86.3 mJ/cm2 | 15.1 (−6 dB) | 1.5 | 0.90 (peak-to-peak) |
[109] | Gold nanoparticles–PDMS (~4.5 μm) | Surelite, with OPO Plus, Continuum, | 700 | - | 5 | 100 mJ | 65 | - | 1.5 |
[62] | Gold nanoparticles–PDMS (105 μm at maximum) | Surelite-I-10, Continuum | 532 | 10 | 5 | 8.75 mJ/cm2 | >20 | 1 | 0.64 (peak-to-peak) |
[116] | Gold nanoparticles–PDMS (450 μm) | Falcon 527-30-M, Quantronix | 527 | 1000 | 150 | 13 mJ/cm2 | 3.1 | 1.8 | 0.18949 |
[61] | Gold nanoparticles–PDMS (200 μm) | - | 532 | - | - | 55.3 mJ/cm2 | 4.5 (−6 dB) | 1.5 | 0.41 (peak-to-peak) |
[118] | Reduced graphene oxide-PDMS (~50 μm) | SPOT-10–500-1064, Elforlight | 1064 | 100 | 2 | 15 mJ/cm2 | 24.3 | 1.6 | 1.7 (peak) |
[119] | Pyrex (500 μm)–reduced graphene oxide (100 nm)–aluminum (100 nm) | Surelite, Continuum | 532 | - | 5 | 56 mJ/cm2 | (narrow) | 2.85 | ~9 (peak) |
[110] | Graphite powder and epoxy resin mixture (20 μm) | LCS-DTL-122QT, Lasertech | 1064 | 1300 | 6 | 13 μJ | 30 (−3 dB) | few cm | 0.020 (peak-to-peak) |
[120] | Candle soot nanoparticles–PDMS (5.99 μm) | SL-III-10, Continuum | 532 | 10 | 6 | 3.57 mJ/cm2 | 21 (−6 dB) | 4.2 | 4.8 (peak) |
[122] | Candle soot–PDMS (2.15 μm) | SL-III-10, Continuum | 532 | 10 | 6 | 1 mJ/cm2 | 22.8 (−6 dB) | 7.5 | 3.78 |
[123] | Carbon nanofibers (24.4 μm)– PDMS (33.5 μm) | Minilite I, Continuum | 532 | 10 | 4 | 3.71 mJ/cm2 | 7.63 (−6 dB) | 3.65 | 12.15 (peak) |
[64] | Carbon black spray paint | FQ-200-20-V-532, Elforlight | 532 | 1000 | 10 | 8.6 μJ | 20 | 2 | 0.070 |
[128] | Carbon black–PDMS (11 μm) | MIRVISION, Keopsys | 1064 | 5000 | 5 | 0.03 J/cm2 | 41 (−6 dB) | - | - |
[82] | Carbon black–PDMS (25 μm) | - | - | - | 10 | 30 nJ | 44 (−6 dB) | - | - |
[123] | Carbon black (30 μm)–PDMS | Minilite I, Continuum | 532 | 10 | 4 | 3.71 mJ/cm2 | 7.84 (−6 dB) | 3.65 | 2.13 (peak) |
[63] | MWCNT-integrated/PDMS MWCNT-xylene/PDMS (<1μm) MWCNT-gel/PDMS | SPOT-10-500-1064, Elforlight | 1064 | - | 2 | 33.1 mJ/cm2 | 26.2 (−6 dB) 39.8 (−6 dB) 29.2 (−6 dB) | - | 13.8 (peak) 12.2 (peak) 21.5 |
[13] | CNTs–PDMS (16 μm) | Surelite I-20, Continuum | - | 20 | 6 | 42.4 mJ/cm2 | > 15 | - | > 50 (peak) |
[1] | MWCNTs–PDMS | SPOT-10-500-1064, Elforlight | 1064 | 8000 | 2 | 40 μJ | 31.3 (−6 dB) | 1.5 | 1.87 |
[60] | Functionalized CNTs, xylene, and PDMS | SPOT-10-500-1064, Elforlight | 1064 | 100 | 2 | 96.1 mJ/cm2 | 20 | - | 4 |
[83] | CNTs–PDMS (10 μm) | SPOT-10-500-1064, Elforlight | 1064 | 1000 | 2 | 41.6 mJ/cm2 36.3 mJ/cm2 | 12 (−6 dB) 15 (−6 dB) | - - | 3.6 (peak) 4.5 (peak) |
[61,124] | CNTs–PDMS | Surelite, Inc | - | - | 6 | 9.6 mJ/cm2 | 25 (−6 dB) | 9.2 | 70 (peak) |
[126] | MWCNTs (13.7 μm)–PDMS | SPOT-10-500-1064, Elforlight | 1064 | 100 | 2 | 35 mJ/cm2 | 29 (−6 dB) | 1.5 | 1.59 (peak-to-peak) |
[131] | CNTs–PDMS | - | 532 | - | 6 | 14, 16, 17.5, 18.5 mJ | - | <1 | >30 |
[59] | MWCNT–PDMS | SPOT-10-500-1064, Elforlight | 1064 | 50 | 2 | 20 μJ | 26.5 (−6 dB) | 1.5 | 8.8 (peak-to-peak) |
[65] | MWCNTs–PDMS (49 μm) | FQS-400-1-Y-1064, Elforlight | 1064 | 2000 | <5 | 76 μJ | ~27.1 | 2.7 | ~0.977 |
[158] | MWCNTs–PDMS (2–4 μm) | 1047, Mosquito Innolas | 1047 | 1000 | 11.4 | 12.7 mJ/cm2 | 1.5–12.7 MHz | 4 mm | 0.39–0.54 MPa |
[133] | Photostable dye spliced device (<20 μm)–PDMS | SPOT-10-500-1064, Elforlight | 1064 | 100 | 2 | 20.1 μJ | 31.7 (−6 dB) | 1.5 | 2.69 (peak-to-peak) |
Refs | Model, Manufacturer | Detection Range [MHz] | Sensitivity [V/Pa] | Laser Fluence/ Energy | Aperture size [μm] | Distance [mm] | Acoustic Pressure [MPa] |
---|---|---|---|---|---|---|---|
[120,169] | HGL-0085, Onda | 0.25–40 | 13 | 3.57 mJ/cm2 | 200 | 4.2 | 4.8 |
[122,169] | HGL-0085, Onda | 0.25–40 | 13 | 1 mJ/cm2 | - | 7.5 | 3.78 |
[123,169] | HGL-0085, Onda | 0.25–40 | 13 | 3.71 mJ/cm2 | 12 000 | 3.65 | 12.15 (peak) |
[62,169] | HGL-0200, Onda | 0.25–40 | 50 | 8.75 mJ/cm2 | 200 | 1 | 0.64 (peak-to-peak) |
[116,169] | HGL-0200, Onda | 0.25–40 | 50 | 13 mJ/cm2 | - | 1.8 | 0.18949 |
[119,170] | HMB-0500, Onda | 0.5–45 | 631 | 56 mJ/cm2 | - | 2.85 | ~9 (peak) |
[83,171] | 75 μm, Precision Acoustics | 1–30 | ~10 | 41.6 mJ/cm2 36.3 mJ/cm2 | - | 0 | 3.6 (peak) 4.5 (peak) |
[126,171] | 75 μm, Precision Acoustics | 1–30 | ~10 | 35 mJ/cm2 | - | 1.5 | 1.59 (peak-to-peak) |
[133,172] | 200 μm needle hydrophone, Precision Acoustics | 0.1–40 | 55 | 20.1 μJ | - | 1.5 | 2.69 (peak-to-peak) |
[118,172] | 200 μm needle hydrophone, Precision Acoustics | 0.1–40 | 55 | 15 mJ/cm2 | 600 | 1.6 | 1.7 (peak) |
Refs. | Material | Laser Model | Excitation Wavelength [nm] | Detector Bandwidth [MHz] | Laser Fluence/Energy/Power | Distance [mm] | Acoustic Pressure [MPa] |
---|---|---|---|---|---|---|---|
[128] | Polymer etalon structure with thickness of 5.9 μm | MIRVISION, Keopsys, Lannion | 1511.5 | ~30–70 | 0.03 J/cm2 | - | - |
[63,191] | 38 μm thick Parylene C polymer film spacer between two dichroic dielectric mirrors | Tunics T100S-HP CL, Yenista Optics | 1500–1550 | - | 33.1 mJ/cm2 | At the coating | 12.2–21.5 |
[160] | Polymer spacer between two dielectric mirrors | LOTIS TII LS-2145-LT150 | 700–900 1064 | 23 (−3 dB) | <4 mJ/cm2 20 mJ/cm2 | - | - |
[1] | Parylene C between two dielectric mirrors | Tunics T100S-HP CL, Yenista Optics | 1500–1600 | - | 40 μJ | 1.5 | 1.87 |
[59,192] | 5 µm thick layer of Parylene C between two mirrors | Tunics T100S-HP CL, Yenista Optics | 1520–1570 | 80 | 9 mW | 1.5 | 8.8 (peak-to-peak) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, R.C.S.; Mendes, P.M. A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications. Sensors 2022, 22, 9541. https://doi.org/10.3390/s22239541
Barbosa RCS, Mendes PM. A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications. Sensors. 2022; 22(23):9541. https://doi.org/10.3390/s22239541
Chicago/Turabian StyleBarbosa, Rita Clarisse Silva, and Paulo M. Mendes. 2022. "A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications" Sensors 22, no. 23: 9541. https://doi.org/10.3390/s22239541
APA StyleBarbosa, R. C. S., & Mendes, P. M. (2022). A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications. Sensors, 22(23), 9541. https://doi.org/10.3390/s22239541