Flexible UWB and MIMO Antennas for Wireless Body Area Network: A Review
Abstract
:1. Introduction
- Firstly, a detailed study of available flexible substrates in literature is carried out, which forms the basis of designing the flexible antennas for WBAN applications. In addition to this, detailed advantages and disadvantages of these substrates based on their operational performance are presented.
- Secondly, various flexible UWB antenna design techniques are reviewed, and their operational performances are discussed.
- Thirdly, to enhance the data rate and improve isolation between the components, flexible UWB MIMO antenna design techniques are reviewed for various antennas available in the literature. Their summarized results are analyzed and presented. This review paper will help WBAN antenna engineers to design their antennas accordingly
2. Flexible Material
2.1. Conductive Materials
2.2. Substrate Materials
Substrate | Dielectric Constant | Dielectric Loss (tanδ) | Thickness (mm) | Ref. |
---|---|---|---|---|
(a) Paper | ||||
Photo paper | 3.2 | 0.05 | 0.44 | [42] |
Kodak photo | 2.85 | 0.05 | 0.254 | [43] |
Synthetic paper | 2 | 0.0022 | 0.26 | [44] |
(b) Textile | ||||
Denim | 1.67 | 0.0035 | 2 | [6] |
Plain woven polyester | 2.193 | 0.004 | 0.5 | [28] |
Felt | 1.22 | 0.016 | 2 | [29] |
Acrylic fabric | - | - | 0.5 | [31] |
Cordura fabric | 2.05 | 0.025 | 2 | [45] |
(c) Polymers | ||||
Liquid crystal polymers | 3 | 0.002 | 0.225 | [48] |
Polydimethylsiloxane (PDMS) | 2.7 | 0.134 | 1.5 | [24] |
Polyethylene (PE) | 2.82 | 0.005 | 0.125 | [55] |
Polyethylene terephthalate (PET) | 3.16 | 0.0071 | 0.125 | [56] |
Polyimide (PI) | 2.91 | 0.005 | 0.2 | [13] |
Poly(tetrafluoroethylene) (PTFE) | 2.2 | 0.0009 | 0.127 | [52] |
Kapton polyimide (KP) | 3.4 | 0.002 | 0.0508 | [12] |
PDMS-Al2O3-G | 15.8 | 0.052 | 3.57 | [50] |
PDMS-GM | 1.85 | 0.014 | 3 | [51] |
PTFE/E-glass | 2.5 | 0.003 | 4 | [53] |
PTFE/CNT | - | - | 2 | [54] |
3. Flexible UWB Antenna Design Strategies
4. Flexible UWB MIMO Antenna
5. Challenges of Designing a Flexible Antenna
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Movassaghi, S.; Abolhasan, M.; Lipman, J.; Smith, D.; Jamalipour, A. Wireless body area networks: A survey. IEEE Commun. Surv. Surv. Surv. Surv. Tutor. 2014, 16, 1658–1686. [Google Scholar] [CrossRef]
- Mohapatra, H.; Rath, A.K. Fault tolerance in WSN through PE-LEACH protocol. IET Wirel. Sens. Syst. 2019, 9, 358–365. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, P.; Ullah, N.; Saleem, S.; Higgins, H.; Kwak, K.S. A review of wireless body area networks for medical applications. arXiv 2010, arXiv:1001.0831. [Google Scholar] [CrossRef] [Green Version]
- Hall, P.S.; Hao, Y. Antennas and propagation for body centric communications. In Proceedings of the 2006 First European Conference on Antennas and Propagation, Nice, France, 6–10 November 2006; pp. 1–7. [Google Scholar]
- Rao, S.; Llombart, N.; Moradi, E.; Koski, K.; Bjorninen, T.; Sydanheimo, L.; Rabaey, J.M.; Carmena, J.M.; Rahmat-Samii, Y.; Ukkonen, L. Miniature implantable and wearable on-body antennas: Towards the new era of wireless body-centric systems [antenna applications corner]. IEEE Antennas Propag. Mag. 2014, 56, 271–291. [Google Scholar] [CrossRef]
- Mahmood, S.N.; Ishak, A.J.; Saeidi, T.; Soh, A.C.; Jalal, A.; Imran, M.A.; Abbasi, Q.H. Full ground ultra-wideband wearable textile antenna for breast cancer and wireless body area network applications. Micromachines 2021, 12, 322. [Google Scholar] [CrossRef]
- Hasan, K.; Bisis, K.; Ahmed, K.; Nafi, N.S.; Islam, M.S. A comprehensive review of wireless body area network. J. Netw. Comput. Appl. 2019, 143, 178–198. [Google Scholar] [CrossRef]
- Salayma, M.; Al-Dubai, A.; Romdhani, I.; Nasser, Y. Wireless body area network (WBAN): A survey on reliability fault tolerance and technologies coexistence. ACM Comput. Surv. 2017, 50, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Mavromoustakis, C.X.; Mastorakis, G.; Batalla, J.M. Internet of Things (IoT) in 5G Mobile Technologies; Springer: Cham, Switzerland, 2016; p. 8. [Google Scholar]
- Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Arefin, M.; Ali, M.; Haque, A. Wireless body area network: An overview and various applications. J. Comput. Commun. 2017, 5, 53–64. [Google Scholar]
- Khaleel, H.R.; Al-Rizzo, H.M.; Rucker, D.G.; Mohan, S. A compact polyimide-based UWB antenna for flexible electronics. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 564–567. [Google Scholar] [CrossRef]
- Kirtania, S.G.; Elger, A.W.; Hasan, M.R.; Wisniewska, A.; Sekhar, K.; Karacolak, T.; Sekhar, P.K. Flexible antennas: A review. Micromachines 2020, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Yuce, M.R. Review of medical implant communication system (MICS) band and network. ICT Express 2016, 2, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, Q.H.; Ur-Rehman, M.; Qaraqe, K.; Alomainy, A. Advances in Body-Centric Wireless Communication: Applications and State-Of-The-Art (No. 65); Institution of Engineering and Technology: London, UK, 2016. [Google Scholar]
- Garcia-Pardo, C.; Andreu, C.; Fornes-Leal, A.; Castelló-Palacios, S.; Perez-Simbor, S.; Barbi, M.; Vallés-Lluch, A.; Cardona, N. Ultrawideband technology for medical in-body sensor networks: An overview of the human body as a propagation medium, phantoms, and approaches for propagation analysis. IEEE Antennas Propag. Mag. 2018, 60, 19–33. [Google Scholar] [CrossRef]
- Sabath, F.; Mokole, E.L.; Samaddar, S.N. Definition and classification of ultra-wideband signals and devices. URSI Radio Sci. Bull. 2005, 2005, 12–26. [Google Scholar]
- Yan, S.; Soh, P.J.; Vandenbosch, G.A. Wearable ultrawideband technology—A review of ultrawideband antennas, propagation channels, and applications in wireless body area networks. IEEE Access 2018, 6, 42177–42185. [Google Scholar] [CrossRef]
- Li, W.; Hei, Y.; Grubb, P.M.; Shi, X.; Chen, R.T. Compact inkjet-printed flexible MIMO antenna for UWB applications. IEEE Access 2018, 6, 50290–50298. [Google Scholar]
- Ali Khan, M.U.; Raad, R.; Tubbal, F.; Theoharis, P.I.; Liu, S.; Foroughi, J. Bending analysis of polymer-based flexible antennas for wearable, general IoT applications: A review. Polymers 2021, 13, 357. [Google Scholar] [CrossRef]
- Zain, N.M.; Aris, M.A.; Ja’afar, H. Effect of Conductive Materials and Substrates for Flexible Patch Antennas: A Comprehensive Review. In Proceedings of the 2021 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Penang, Malaysia, 20–22 December 2021; pp. 1–4. [Google Scholar]
- Barahona, M.; Betancourt, D.; Ellinger, F. Comparison of UWB chipless tags on flexible substrates fabricated using either aluminum, copper or silver. In Proceedings of the 2016 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cairns, QLD, Australia, 19–23 September 2016; pp. 78–81. [Google Scholar]
- Parameswari, S.; Chitra, C. Compact textile UWB antenna with hexagonal for biomedical communication. J. Ambient. Intell. Humaniz. Comput. 2021, 1–8. [Google Scholar] [CrossRef]
- Janapala, D.K.; Nesasudha, M.; Mary Neebha, T.; Kumar, R. Design and development of flexible PDMS antenna for UWB-WBAN applications. Wirel. Pers. Commun. 2022, 122, 3467–3483. [Google Scholar] [CrossRef]
- Simorangkir, R.B.; Yang, Y.; Esselle, K.P.; Zeb, B.A. A method to realize robust flexible electronically tunable antennas using polymer-embedded conductive fabric. IEEE Trans. Antennas Propag. 2018, 66, 50–58. [Google Scholar] [CrossRef]
- Mohamadzade, B.; Simorangkir, R.B.; Hashmi, R.M.; Lalbakhsh, A. A conformal ultrawideband antenna with monopole-like radiation patterns. IEEE Trans. Antennas Propag. 2020, 68, 6383–6388. [Google Scholar]
- Elobaid, H.A.E.; Rahim, S.K.A.; Himdi, M.; Castel, X.; Kasgari, M.A. A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 1333–1336. [Google Scholar]
- Lin, X.; Chen, Y.; Gong, Z.; Seet, B.C.; Huang, L.; Lu, Y. Ultrawideband textile antenna for wearable microwave medical imaging applications. IEEE Trans. Antennas Propag. 2020, 68, 4238–4249. [Google Scholar] [CrossRef]
- Mersani, A.; Osman, L.; Ribero, J.M. Flexible UWB AMC antenna for early stage skin cancer identification. Prog. Electromagn. Res. M 2019, 80, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Poffelie, L.A.Y.; Soh, P.J.; Yan, S.; Vandenbosch, G.A. A high-fidelity all-textile UWB antenna with low back radiation for off-body WBAN applications. IEEE Trans. Antennas Propag. 2016, 64, 757–760. [Google Scholar] [CrossRef]
- Klemm, M.; Troester, G. Textile UWB antennas for wireless body area networks. IEEE Trans. Antennas Propag. 2006, 54, 3192–3197. [Google Scholar] [CrossRef] [Green Version]
- Lebaric, J.E.; Adler, R.W.; Limbert, M.E. Ultra-wideband, zero visual signature RF vest antenna for man-portable radios. In Proceedings of the 2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force (Cat. No. 01CH37277), McLean, VA, USA, 28–31 October 2001; Volume 2, pp. 1291–1294. [Google Scholar]
- Corchia, L.; Monti, G.; De Benedetto, E.; Tarricone, L. Wearable antennas for remote health care monitoring systems. Int. J. Antennas Propag. 2017, 2017, 3012341. [Google Scholar] [CrossRef]
- Hamouda, Z.; Wojkiewicz, J.L.; Pud, A.A.; Kone, L.; Bergheul, S.; Lasri, T. Flexible UWB organic antenna for wearable technologies application. IET Microw. Antennas Propag. 2018, 12, 160–166. [Google Scholar]
- Kaufmann, T.; Verma, A.; Al-Sarawi, S.F.; Truong, V.T.; Fumeaux, C. Comparison of two planar elliptical ultra-wideband PPy conductive polymer antennas. In Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, IL, USA, 8–14 July 2012; pp. 1–2. [Google Scholar]
- Thomas, K.; Verma, A.; Truong, V.-T.; Weng, B.; Shepherd, R.; Fumeaux, C. Efficiency of a compact elliptical planar ultra-wideband antenna based on conductive polymers. Int. J. Antennas Propag. 2012, 2012, 972696. [Google Scholar]
- Sharma, A.K.; Sharma, A.K.; Sharma, R. Model study of complex conductivity and permittivity of CNT/PANI composite (CPC) material for application of THz antenna. Mater. Today Proc. 2021, 46, 5833–5837. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, M.; Oh, J.; Kim, J.; Cho, S.; Jun, J.; Jang, J. Platinum-decorated carbon nanoparticle/polyaniline hybrid paste for flexible wideband dipole tag-antenna application. J. Mater. Chem. A 2015, 3, 7029–7035. [Google Scholar] [CrossRef]
- Koritsoglou, O.; Theodorakos, I.; Zacharatos, F.; Makrygianni, M.; Kariyapperuma, D.; Price, R.; Cobb, B.; Melamed, S.; Kabla, A.; de la Vega, F.; et al. Copper micro-electrode fabrication using laser printing and laser sintering processes for on-chip antennas on flexible integrated circuits. Opt. Mater. Express 2019, 9, 3046–3058. [Google Scholar]
- Lamminen, A.; Arapov, K.; de With, G.; Haque, S.; Sandberg, H.G.; Friedrich, H.; Ermolov, V. Graphene-flakes printed wideband elliptical dipole antenna for low-cost wireless communications applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1883–1886. [Google Scholar] [CrossRef] [Green Version]
- Ibanez-Labiano, I.; Nourinovin, S.; Alomainy, A. Graphene inkjet-printed ultrawideband tapered coplanar-waveguide antenna on kapton substrate. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–4. [Google Scholar]
- Abutarboush, H.F.; Shamim, A. A reconfigurable inkjet-printed antenna on paper substrate for wireless applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1648–1651. [Google Scholar] [CrossRef]
- Saha, T.K.; Knaus, T.N.; Khosla, A.; Sekhar, P.K. A CPW-fed flexible UWB antenna for IoT applications. Microsyst. Technol. 2018, 28, 5–11. [Google Scholar]
- Abutarboush, H.F. Silver nanoparticle inkjet-printed multiband antenna on synthetic paper material for flexible devices. Alex. Eng. J. 2022, 61, 6349–6355. [Google Scholar] [CrossRef]
- Rahayu, Y.; Kirana, T. Flexible Multi-Layer Condura Fabric Ultra Wide-Band Antenna For Telemedicine Application. In Proceedings of the 2021 9th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 3–5 August 2021; pp. 133–137. [Google Scholar]
- Atanasova, G.L.; Atanasov, N.T. Impact of electromagnetic properties of textile materials on performance of a low-profile wearable antenna backed by a reflector. In Proceedings of the 2020 International Workshop on Antenna Technology (iWAT), Bucharest, Romania, 25–28 February 2020; pp. 1–4. [Google Scholar]
- Yu, Y.; Jin, P.; Ding, K.; Zhang, M. A flexible UWB CPW-fed antenna on liquid crystal polymer substrate. In Proceedings of the 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015; Volume 2, pp. 1–3. [Google Scholar]
- Nikolaou, S.; Abbasi, M.A.B. Design and development of a compact UWB monopole antenna with easily-controllable return loss. IEEE Trans. Antennas Propag. 2017, 65, 2063–2067. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, M.T.; Ubic, R.; Jantunen, H. (Eds.) Microwave Materials and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Alqadami, A.S.; Nguyen-Trong, N.; Mohammed, B.; Stancombe, A.E.; Heitzmann, M.T.; Abbosh, A. Compact unidirectional conformal antenna based on flexible high-permittivity custom-made substrate for wearable wideband electromagnetic head imaging system. IEEE Trans. Antennas Propag. 2019, 68, 183–194. [Google Scholar]
- Muhamad, W.A.W.; Ngah, R.; Jamlos, M.F.; Soh, P.J.; Ali, M.T. High-gain dipole antenna using polydimethylsiloxane–glass microsphere (PDMS-GM) substrate for 5G applications. Appl. Phys. A 2017, 123, 102. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, S.; Wen, P.; Xiao, X.; Che, W.; Guan, X. Flexible CPW-fed fishtail-shaped antenna for dual-band applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 770–773. [Google Scholar]
- Zhang, K.; Zhao, D.; Chen, W.; Zheng, L.; Yao, L.; Qiu, Y.; Xu, F. Three-dimensional woven structural glass fiber/polytetrafluoroethylene (PTFE) composite antenna with superb integrity and electromagnetic performance. Compos. Struct. 2022, 281, 115096. [Google Scholar]
- Huang, A.; Liu, F.; Cui, Z.; Wang, H.; Song, X.; Geng, L.; Wang, H.; Peng, X. Novel PTFE/CNT composite nanofiber membranes with enhanced mechanical, crystalline, conductive, and dielectric properties fabricated by emulsion electrospinning and sintering. Compos. Sci. Technol. 2021, 214, 108980. [Google Scholar]
- Marasco, I.; Niro, G.; Lamanna, L.; Piro, L.; Guido, F.; Algieri, L.; Mastronardi, V.M.; Qualtieri, A.; Scarpa, E.; Desmaele, D.; et al. Compact and flexible meander antenna for surface acoustic wave sensors. Microelectron. Eng. 2020, 227, 111322. [Google Scholar] [CrossRef]
- Tomaszewski, G.; Jankowski-Mihułowicz, P.; Potencki, J.; Pietrikova, A.; Lukacs, P. Inkjet-printed HF antenna made on PET substrate. Microelectron. Reliab. 2022, 129, 114473. [Google Scholar] [CrossRef]
- Riheen, M.A.; Nguyen, T.; Saha, T.K.; Karacolak, T.; Sekhar, P.K. CPW fed wideband bowtie slot antenna on pet substrate. Prog. Electromagn. Res. C 2020, 101, 147–158. [Google Scholar]
- Saeidi, T.; Ismail, I.; Alhawari, A.R.; Wen, W.P. Near-field and far-field investigation of miniaturized UWB antenna for imaging of wood. AIP Adv. 2019, 9, 035232. [Google Scholar] [CrossRef] [Green Version]
- Fang, R.; Song, R.; Zhao, X.; Wang, Z.; Qian, W.; He, D. Compact and low-profile UWB antenna based on graphene-assembled films for wearable applications. Sensors 2020, 20, 2552. [Google Scholar]
- Wang, Z.; Qin, L.; Chen, Q.; Yang, W.; Qu, H. Flexible UWB antenna fabricated on polyimide substrate by surface modification and in situ self-metallization technique. Microelectron. Eng. 2019, 206, 12–16. [Google Scholar]
- Zhang, Y.; Li, S.; Yang, Z.Q.; Qu, X.Y.; Zong, W.H. A coplanar waveguide-fed flexible antenna for ultra-wideband applications. Int. J. RF Microw. Comput.-Aided Eng. 2020, 30, e22258. [Google Scholar] [CrossRef]
- Li, W.; Zu, H.; Liu, J.; Wu, B. A low-profile ultrawideband Antenna based on flexible graphite films for on-body wearable applications. Materials 2021, 14, 4526. [Google Scholar] [CrossRef]
- Potti, D.; Kirubaveni, S.; Sudhilaya, G.; Alsath, M.G.N.; Radha, S. Thin film based optically transparent circular monopole antenna for wideband applications. Analog. Integr. Cicuits Signal Process. 2022, 110, 301–309. [Google Scholar]
- Abutarboush, H.F.; Li, W.; Shamim, A. Flexible-screen-printed antenna with enhanced bandwidth by employing defected ground structure. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1803–1807. [Google Scholar] [CrossRef]
- Hossain, K.; Sabapathy, T.; Jusoh, M.; Abdelghany, M.A.; Soh, P.J.; Osman, M.N.; Yasin, M.N.; Rahim, H.A.; Al-Bawri, S.S. A negative index nonagonal CSRR metamaterial-based compact flexible planar monopole antenna for ultrawideband applications using viscose-wool felt. Polymers 2021, 13, 2819. [Google Scholar] [CrossRef]
- Simorangkir, R.B.; Kiourti, A.; Esselle, K.P. UWB wearable antenna with a full ground plane based on PDMS-embedded conductive fabric. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 493–496. [Google Scholar] [CrossRef]
- Nadeem, I.; Choi, D.Y. Study on mutual coupling reduction technique for MIMO antennas. IEEE Access 2018, 7, 563–586. [Google Scholar] [CrossRef]
- Rekha, S.; Let, G.S. Design and SAR analysis of wearable UWB MIMO antenna with enhanced isolation using a parasitic structure. Iran. J. Sci. Technol. Trans. Electr. Eng. 2022, 46, 291–301. [Google Scholar]
- Govindan, T.; Palaniswamy, S.K.; Kanagasabai, M.; Rao, T.R.; Alsath, M.; Kumar, S.; Velan, S.; Marey, M.; Aggarwal, A. On the design and performance analysis of wristband MIMO/diversity antenna for smart wearable communication applications. Sci. Rep. 2021, 11, 21917. [Google Scholar] [CrossRef]
- Bisis, A.K.; Chakraborty, U. A compact wide band textile MIMO antenna with very low mutual coupling for wearable applications. Int. J. RF Microw. Comput. -Aided Eng. 2019, 29, e21769. [Google Scholar] [CrossRef]
- Dey, A.B.; Pattanayak, S.S.; Mitra, D.; Arif, W. Investigation and design of enhanced decoupled UWB MIMO antenna for wearable applications. Microw. Opt. Technol. Lett. 2021, 63, 845–861. [Google Scholar] [CrossRef]
- Govindan, T.; Palaniswamy, S.K.; Kanagasabai, M.; Kumar, S.; Kannappan, L. Hexagon Shaped UWB Monopole MIMO Antenna for WBAN Applications. In Proceedings of the 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 24–26 March 2022; pp. 302–305. [Google Scholar]
- Kumar Bisis, A.; Chakraborty, U. Compact wearable MIMO antenna with improved port isolation for ultra-wideband applications. IET Microw. Antennas Propag. 2019, 13, 498–504. [Google Scholar]
- Govindan, T.; Palaniswamy, S.K.; Kanagasabai, M.; Kumar, S.; Rama Rao, T.; Alsath, M.G.N. Conformal Quad-Port UWB MIMO Antenna for Body-Worn Applications. Int. J. Antennas Propag. 2021, 2021, 9409785. [Google Scholar] [CrossRef]
- Jayant, S.; Srivastava, G.; Kumar, S. Quad-Port UWB MIMO Footwear Antenna for Wearable Applications. IEEE Trans. Antennas Propag. 2022, 70, 7905–7913. [Google Scholar]
- Bisis, A.K.; Chakraborty, U. Investigation on decoupling of wide band wearable multiple-input multiple-output antenna elements using microstrip neutralization line. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21723. [Google Scholar] [CrossRef]
Conductive Materials | Conductivity (S/m) | Thickness (mm) | Ref. |
---|---|---|---|
(a) Pure Metal | |||
Copper Tape | 1 × 106 | 0.75 | [23] |
Silver | 2.2 × 106 | 0.007 | [22] |
Aluminum Tapes | - | 0.035 | [22] |
Copper Sheet | - | 0.193 | [24] |
(b) Metal Plated Textile | |||
Nylon covered with Ni/Cu/Ag | 1.02 × 105 | 0.13 | [25] |
Nickel–Copper coated fibers | 5.4 × 104 | 0.08 | [26] |
Meshed Polyester Fibers | 2 × 105 | 0.057 | [27] |
Copper polyester taffeta | 2.5 × 105 | 0.08 | [28] |
Zelt | 1 × 106 | 0.06 | [29] |
ShieldIt | 1.18 × 105 | 0.17 | [30] |
Nora | - | - | [31] |
Flectron | - | - | [32] |
Nonwoven conductive fabrics | 2.22 × 105 | 0.15 | [33] |
(c) Conductive Polymers | |||
Polyaniline (PANI) | 4500 | 0.11 | [34] |
Polypyrrole | 2720 | 0.116 | [35] |
PEDOT: PSS | 16,000 | 0.007 | [36] |
CNT/PANI | - | - | [37] |
Pt_C/PANI: CSA | 65,600 | - | [38] |
(d) Conductive Inks | |||
Silver nanoparticle | 2.2 × 106 | - | [12] |
Copper nanoparticle | 303 × 106 | 0.01 | [39] |
Graphene-based ink | 0.25 S/square | 0.01 | [40] |
Ref. No. | Size (mm2) | Operating Frequency Range (GHz) | Substrate | Gain (dB) | SAR (W/Kg) (Frequency GHz) | Efficiency (%) | Methodology | Merits/Demerits | Demerits |
---|---|---|---|---|---|---|---|---|---|
[34] 2018 | 7.2–9.2 | Kapton ( = 3.48, tanδ = 0.002) | 3.1 | - | - | Ellipse patch with CPW feed. | Simple structure and highly flexible. | Large physical dimensions. Higher cross-polarization components wen antenna is crumpled. | |
[59] 2020 | 4.1–8.0 | Graphene film ( = 3.2) | 4.1 | - | - | Rectangular patch with two “H” shaped slots. | Super flexible having bending insensitive bandwidth. | The antenna has a lesser impedance bandwidth and resonant frequencies shift at different bending scenarios. | |
[60] 2019 | 1.35–16.4 | Polyimide ( = 3.5, tanδ = 0.001) | 2.8 | - | 86% | Elliptical-shaped radiating element, fed by a linearly coplanar waveguide with ladder-shaped ground planes. | Wider impedance bandwidth, contains the entire 3.1–10.6 GHz UWB band and relatively compact. | Low gain and bending effect the far-field radiation patterns of the antenna. | |
[61] 2020 | 3.06–13.5 15.9–20.5 20.9–22 | Kapton Polyimide ( = 3.5) | 1.69 | - | 59% | Circle- rectangular hybrid shaped antenna. | Wider bandwidth and compact design. The proposed antenna maintains wide bandwidth when εr changes from 1 to 4. | Low gain and efficiency | |
[26] 2020 | 2.85–8.6 | PDMS ( = 2.77, tanδ = 0.02–0.076) | 6.2 | - | 45% | Angular ring circular patch loaded with two rectangular slots. | Stable radiation pattern across the frequency band. | Complex design, very low efficiency and large dimension. | |
[62] 2021 | 0.34–1.4 | Polyimide ( = 3.5, tanδ = 0.0027) | >4 | - | 60% | Flaring ground with arrow section slots on radiating patch. | The antenna is intended for UHF application and highly flexible due to low thickness of the substrate. | Lower bandwidth and large dimension | |
[43] 2018 | 3.2–30.0 | Photo paper ( = 2.85, tanδ = 0.05) | 4.87 | - | 86.60% | Circular patch with double stepped symmetric ground. | Super wideband and high efficiency. | SAR analysis is not studied. | |
[24] 2022 | 1.5–15 | PDMS ( = 2.7, tanδ = 0.0134) | 6.76 | 1.1979 (1.8 GHz) 1.376 (2.4 GHz) 1.0696 (0.6 GHz) 0.6966 (4.2 GHz) 0.4046 (4.8 GHz) 0.5206 (5.2 GHz) 0.3293 (5.8 GHz) | - | A fork-shaped antenna with a circular patch at the center and a crescent-shaped slot below the circle relative to the ground plane. | Better radiation characteristics, gain and bandwidth. | Large physical dimensions. | |
[28] 2020 | 1.198–4.055 | Polyester fabric ( = 1.7, tanδ = 0.004) | 2.9 | 0.0014 (10 g) (2 GHz) | 56.4% to 70.96% | Interdigit-based radiating patch with triangle slot. | Structure of the design is relatively unique. The antenna retains its performance when it is being bent or working in the proximity of tissue-mimicking phantoms. | An interdigit based radiator contribute to the coupling. Gain and bandwidth are small. The radiation patterns of the bent on-phantom antenna are slightly altered. | |
[63] 2021 | 4–8 | Soda-lime glass ( = 7.3, tanδ = 0.04) | 1.2 | - | >63% | Circular monopole antenna with dual substrates and proximity coupling fed. | Compact and transparent antenna. | Complex design and low gain | |
[64] 2020 | 1.77–6.95 | Kapton ( = 3.5, tanδ = 0.007) | 5.9 | - | 60% | Two inverted L shaped elements with a matching stub and defected ground structure. | Simple to fabricate and highly flexible. | Large dimension with low efficiency. The radiation patterns are slightly affected on bending. | |
[65] 2018 | 2.632–14.57 | Felt ( = 1.44, tanδ = 0.044) | 4.84 | - | 68% | Combination of half elliptical shaped patch with metamaterial unit cell array and Partial ground with slot. | Modified conventional rectangular compact radiator covering the UWB spectrum. | Relatively low gain and efficiency. | |
[66] 2018 | 3.68–10.3 | PDMS (εr = 2.7, tanδ = 0.02–0.07) | 4.53 | 0.147 (5 GHz) 0.174 (7 GHz) 0.09 (9 GHz) | 27% | Two arc-shaped patch with full ground plane | Simple structure with full ground to suppress antenna loading and back radiation. | Large size and very low efficiency. | |
[6] 2021 | 7–28 | Denim ( = 1.7) | 10.5 | 0.25 (3.8 GHz) 0.7 (5.8 GHz) 1.29 (7 GHz) 2.04 (28 GHz) | 96% | Photonic band gap structures and substrate integrated waveguide. | Full ground, large gain and efficiency. | Complex structure. | |
[29] 2019 | 8.2–13 | Felt (nylon-based substrate) ( = 1.22, tanδ = 0.016) | 7 | 0.0996 (8 GHz) 0.704 (10 GHz) 0.102 (12 GHz) | - | AMC antenna with square conductive elements and annularly shaped slots. | Stable radiation properties and large gain. | High SAR and on bending resonance frequency shift. |
MIMO Diversity Feature | Acceptable Values |
---|---|
ECC | <0.5 |
DG | ∼=10 dB |
MEG | <–3 dB |
TARC | <−10 dB |
CCL | <0.4 bps/Hz |
ME | <0 dB |
Ref Year | Isolation Technique | Number of Ports | Size (mm2) | Bandwidth (GHz) | Gain (dBi) | Isolation Level (dB) | SAR (W/Kg) (Frequency GHz) | Diversity Parameters | Shape of Isolation Network | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MEG (dB) | TARC (dB) | Diversity Gain (dB) | ECC | CCL (Bit/sec/Hz) | |||||||||
[19] 2018 | Defected ground plane | 2 | 22 × 31 | 2.9–12 | 2.31 | <−15 | - | - | - | - | 0.3 | 0.4 | Slot etched on the modified T—shaped on the ground plane |
[68] 2022 | Defected ground plane | 2 | 55 × 35 | 3–12 | - | <−19 | 1.27 (9 GHz) | - | - | <9.975 | <0.06 | - | E-shaped stub at the ground surface |
[69] 2021 | Antenna placement and orientation | 4 | 12 × 202 | 2.75–12 | 3.41 | <−25 | 0.02 | <−1 | <−10 | >9.5 | <0.18 | <0.1 | Distance of 0.07 λ between the elements |
[70] 2022 | Defected ground plane | 2 | 40 × 70 | 1.83–8 | 4.4 | <−22 | - | <−2.53 | <−10 | >9.6 | <0.01 | <0.2 | Two “I” shaped stubs in series on the ground plane |
[71] 2022 | Defected ground plane | 2 | 50 × 35 | 1.83–13.82 | 4.21 | <−21 | 0.784 (8 GHz) 0.893 (11 GHz) | <−3 | <−10 | >9.9 | <0.059 | <0.35 | Two inverted “U” shaped stubs on ground plane |
[72] 2022 | Antenna placement and orientation | 4 | 58 × 58 | 3.1–12 | 3.957 | <−16 | 0.513 (4 GHz), 0.316 (8 GHz) | - | <−12 | >9.6 | <0.1 | <0.2 | Orthogonal alignment with a 6 mm gap between the antennas |
[73] 2019 | Defected ground plane | 2 | 55 × 35 | 2.74–12.33 | 6.9 | <−26 | - | - | - | >9.9 | 0.1 | 0.13 | 8 shaped stubs placed on ground structure |
[74] 2022 | Antenna placement and orientation | 4 | 40 × 12 | (2.1–2.6), (3.1–12) | 3.1 | <−20 | 0.308 (2.4 GHZ), 0.329 (3 GHz), 0.543 (6 GHZ), 0.873 (10 GHz) | - | <−10 | >9.4 | <0.1 | <0.25 | Distance of 0.07 λ between the elements |
[75] 2022 | Defected ground plane | 4 | 92 × 92 | 2–14 | 7.2 | <−15 | 0.0058 (3 GHz), 0.0089 (5 GHz), 0.0125 (7 GHz) | - | <−10 | >9.6 | <0.36 | <0.4 | Truncating circular ground from both sides near the patch |
[76] 2019 | Neutralization line | 2 | 30 × 50 | 3.14–9.73 | - | <−32 | - | - | <−10 | >9.8 | <0.1 | <0.2 | Staircase shape parasitic element connect both the antenna |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jhunjhunwala, V.K.; Ali, T.; Kumar, P.; Kumar, P.; Kumar, P.; Shrivastava, S.; Bhagwat, A.A. Flexible UWB and MIMO Antennas for Wireless Body Area Network: A Review. Sensors 2022, 22, 9549. https://doi.org/10.3390/s22239549
Jhunjhunwala VK, Ali T, Kumar P, Kumar P, Kumar P, Shrivastava S, Bhagwat AA. Flexible UWB and MIMO Antennas for Wireless Body Area Network: A Review. Sensors. 2022; 22(23):9549. https://doi.org/10.3390/s22239549
Chicago/Turabian StyleJhunjhunwala, Vikash Kumar, Tanweer Ali, Pramod Kumar, Praveen Kumar, Pradeep Kumar, Sakshi Shrivastava, and Arnav Abhijit Bhagwat. 2022. "Flexible UWB and MIMO Antennas for Wireless Body Area Network: A Review" Sensors 22, no. 23: 9549. https://doi.org/10.3390/s22239549
APA StyleJhunjhunwala, V. K., Ali, T., Kumar, P., Kumar, P., Kumar, P., Shrivastava, S., & Bhagwat, A. A. (2022). Flexible UWB and MIMO Antennas for Wireless Body Area Network: A Review. Sensors, 22(23), 9549. https://doi.org/10.3390/s22239549