Validity and Reliability of Wearable Motion Sensors for Clinical Assessment of Shoulder Function in Brachial Plexus Birth Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Test Procedure
- Shoulder flexion–extension: The participant lifted both arms as high as possible in the sagittal plane, then back to neutral position. Arms were then extended maximally backward and then returned to neutral.
- Elbow flexion–extension: The participant lifted both arms as high as possible in the sagittal plane, then back to neutral position. Arms were then extended maximally backward and then returned to neutral.
- Forearm pronation–supination: The participant held both arms straight with palms facing anteriorly if possible and then flexed both elbows to the horizontal plane (~90 degrees). Maximal forearm pronation and supination were performed by rotating the forearms inwards and outwards.
- MMS1 global abduction: Maximal abduction was performed by lifting both arms as far as possible in the frontal plane with straight arms and then returning to neutral position.
- MMS2 global external rotation: The participant first flexed the elbows approximately 90 degrees and was then instructed to move forearms inwards as much as possible before performing the maximal outward rotation of the shoulders by moving forearms outwards as far as possible.
- MMS3 hand to neck: The participant lifted one hand at a time and placed it on the back of the neck before returning to neutral position. The participant was encouraged to perform the movement with control if high speed was used to reach the neck.
- MMS4 hand to spine: The participant lifted one hand at a time and placed the back of the hand on the back, reaching as high up as possible. The participant was encouraged to perform the movement with control if high speed was used to reach the back.
- MMS5 hand to mouth: The participant lifted one hand at a time to the mouth, placing the fingertips over the mouth.
- MMS6 internal rotation. The participant put the palm of the hand, one at a time, over the navel.
2.3. Equipment and Sensor Placement
2.4. Data Processing and Outcome Measure Calculations
- Peak angles (maximum and minimum) in all joints and all three planes;
- Range of motion (RoM, peak maximum–peak minimum) in all joints and all three planes;
- Average angular speed in shoulder motion in all three planes, defined as shoulder RoM*mean performance frequency (°/s), where mean performance frequency is defined as number of repetitions/second.
2.5. Statistics
3. Results
3.1. Validity
3.2. Reliability
4. Discussion
4.1. System Validity
4.2. Reliability of Shoulder, Scapula, and Elbow Movement
4.3. Methodological Aspects and Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Looven, R.; Le Roy, L.; Tanghe, E.; Samijn, B.; Roets, E.; Pauwels, N.; Deschepper, E.; De Muynck, M.; Vingerhoets, G.; Van den Broeck, C. Risk factors for neonatal brachial plexus palsy: A systematic review and meta-analysis. Dev. Med. Child. Neurol. 2020, 62, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Al-Qattan, M.M.; El-Sayed, A.A.; Al-Zahrani, A.Y.; Al-Mutairi, S.A.; Al-Harbi, M.S.; Al-Mutairi, A.M.; Al-Kahtani, F.S. Narakas classification of obstetric brachial plexus palsy revisited. J. Hand. Surg. Eur. Vol. 2009, 34, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Pondaag, W.; Malessy, M.J.; van Dijk, J.G.; Thomeer, R.T. Natural history of obstetric brachial plexus palsy: A systematic review. Dev. Med. Child. Neurol. 2004, 46, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Smith, B.T.; Egro, F.M.; Stanger, M.; Koster, W.; Grunwaldt, L.J. Timing of Nerve Recovery After Nerve Grafting in Obstetrical Brachial Plexus Palsy Patients With Isolated Upper Trunk Neuromas. Ann. Plast. Surg. 2021, 87, 446–450. [Google Scholar] [CrossRef]
- Pondaag, W.; Malessy, M.J.A. Outcome assessment for Brachial Plexus birth injury. Results from the iPluto world-wide consensus survey. J. Orthop. Res. 2018, 36, 2533–2541. [Google Scholar] [CrossRef] [PubMed]
- Clarke, H.M.; Curtis, C.G. An approach to obstetrical brachial plexus injuries. Hand. Clin. 1995, 11, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.J. Neonatal brachial plexus palsy--management and prognostic factors. Semin. Perinatol. 2014, 38, 222–234. [Google Scholar] [CrossRef] [PubMed]
- O’Berry, P.; Brown, M.; Phillips, L.; Evans, S.H. Obstetrical Brachial Plexus Palsy. Curr. Probl. Pediatr. Adolesc. Health Care 2017, 47, 151–155. [Google Scholar] [CrossRef]
- Duff, S.V.; DeMatteo, C. Clinical assessment of the infant and child following perinatal brachial plexus injury. J. Hand. 2015, 28, 126–133; quiz 134. [Google Scholar] [CrossRef] [Green Version]
- Curtis, C.; Stephens, D.; Clarke, H.M.; Andrews, D. The active movement scale: An evaluative tool for infants with obstetrical brachial plexus palsy. J. Hand. Surg. 2002, 27, 470–478. [Google Scholar] [CrossRef]
- Abzug, J.M.; Chafetz, R.S.; Gaughan, J.P.; Ashworth, S.; Kozin, S.H. Shoulder function after medial approach and derotational humeral osteotomy in patients with brachial plexus birth palsy. J. Pediatr. Orthop. 2010, 30, 469–474. [Google Scholar] [CrossRef]
- Russo, S.A.; Kozin, S.H.; Zlotolow, D.A.; Nicholson, K.F.; Richards, J.G. Motion Necessary to Achieve Mallet Internal Rotation Positions in Children With Brachial Plexus Birth Palsy. J. Pediatr. Orthop. 2019, 39, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.W.; Justice, D.; Chung, K.C.; Yang, L.J. A systematic review of evaluation methods for neonatal brachial plexus palsy: A review. J. Neurosurg. Pediatr. 2013, 12, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Herisson, O.; Maurel, N.; Diop, A.; Le Chatelier, M.; Cambon-Binder, A.; Fitoussi, F. Shoulder and elbow kinematics during the Mallet score in obstetrical brachial plexus palsy. Clin. Biomech. 2017, 43, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahon, J.; Malone, A.; Kiernan, D.; Meldrum, D. Reliability of 3D upper limb motion analysis in children with obstetric brachial plexus palsy. Physiol. Meas. 2017, 38, 524–538. [Google Scholar] [CrossRef]
- Bialocerkowski, A.E.; Wrigley, T.; Galea, M. Reliability of the V-scope system in the measurement of arm movement in children with obstetric brachial plexus palsy. Dev. Med. Child. Neurol. 2006, 48, 913–917. [Google Scholar] [CrossRef]
- Kibler, W.B. The role of the scapula in athletic shoulder function. Am. J. Sport. Med. 1998, 26, 325–337. [Google Scholar] [CrossRef] [Green Version]
- McQuade, K.J.; Smidt, G.L. Dynamic scapulohumeral rhythm: The effects of external resistance during elevation of the arm in the scapular plane. J. Orthop. Sport. Phys. 1998, 27, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Struyf, F.; Nijs, J.; Baeyens, J.P.; Mottram, S.; Meeusen, R. Scapular positioning and movement in unimpaired shoulders, shoulder impingement syndrome, and glenohumeral instability. Scand. J. Med. Sci. Sports 2011, 21, 352–358. [Google Scholar] [CrossRef]
- Vanhoutte, E.K.; Faber, C.G.; van Nes, S.I.; Jacobs, B.C.; van Doorn, P.A.; van Koningsveld, R.; Cornblath, D.R.; van der Kooi, A.J.; Cats, E.A.; van den Berg, L.H.; et al. Modifying the Medical Research Council grading system through Rasch analyses. Brain 2012, 135, 1639–1649. [Google Scholar] [CrossRef]
- Cutti, A.G.; Giovanardi, A.; Rocchi, L.; Davalli, A.; Sacchetti, R. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med. Biol. Eng. Comput. 2008, 46, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Parel, I.; Cutti, A.G.; Fiumana, G.; Porcellini, G.; Verni, G.; Accardo, A.P. Ambulatory measurement of the scapulohumeral rhythm: Intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture 2012, 35, 636–640. [Google Scholar] [CrossRef] [PubMed]
- van den Noort, J.C.; Wiertsema, S.H.; Hekman, K.M.C.; Schönhuth, C.P.; Dekker, J.; Harlaar, J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med. Biol. Eng. Comput. 2014, 52, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Mahon, J.; Malone, A.; Kiernan, D.; Meldrum, D. Kinematic differences between children with obstetric brachial plexus palsy and healthy controls while performing activities of daily living. Clin. Biomech. 2018, 59, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Richardson, R.T.; Russo, S.A.; Chafetz, R.S.; Warshauer, S.; Nice, E.; Kozin, S.H.; Zlotolow, D.A.; Richards, J.G. Reachable workspace with real-time motion capture feedback to quantify upper extremity function: A study on children with brachial plexus birth injury. J. Biomech. 2022, 132, 110939. [Google Scholar] [CrossRef]
- Wilson, J.D.; Khan-Perez, J.; Marley, D.; Buttress, S.; Walton, M.; Li, B.; Roy, B. Can shoulder range of movement be measured accurately using the Microsoft Kinect sensor plus Medical Interactive Recovery Assistant (MIRA) software? J. Shoulder Elb. Surg. 2017, 26, e382–e389. [Google Scholar] [CrossRef]
- Nazarahari, M.; Chan, K.M.; Hossein, R. A novel instrumented shoulder functional test using wearable sensors in patients with brachial plexus injury. J. Shoulder Elb. Surg. 2021, 30, e493–e502. [Google Scholar] [CrossRef]
- Walmsley, C.P.; Williams, S.A.; Grisbrook, T.; Elliott, C.; Imms, C.; Campbell, A. Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review. Sports Med. Open 2018, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Ertzgaard, P.; Öhberg, F.; Gerdle, B.; Grip, H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors--A validity study. Man. Ther. 2016, 21, 241–249. [Google Scholar] [CrossRef]
- Öhberg, F.; Lundström, R.; Grip, H. Comparative analysis of different adaptive filters for tracking lower segments of a human body using inertial motion sensors. Meas. Sci. Technol. 2013, 24, 085703. [Google Scholar] [CrossRef]
- Merayo, J.M.G.; Brauer, P.; Primdahl, F.; Petersen, J.; Nielsen, O. Scalar calibration of vector magnetometers. Meas. Sci. Technol. 2000, 11, 120–132. [Google Scholar] [CrossRef]
- Höglund, G.; Grip, H.; Öhberg, F. The importance of inertial measurement unit placement in assessing upper limb motion. Med. Eng. Phys. 2021, 92, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Madgwick, S.O.; Harrison, A.J.; Vaidyanathan, A. Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE Int. Conf. Rehabil. Robots 2011, 2011, 5975346. [Google Scholar] [CrossRef]
- Woltring, H.J.; Long, K.; Osterbauer, P.J.; Fuhr, A.W. Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics. J. Biomech. 1994, 27, 1415–1432. [Google Scholar] [CrossRef] [PubMed]
- Söderkvist, I.; Wedin, P.A. Determining the movements of the skeleton using well-configured markers. J. Biomech. 1993, 26, 1473–1477. [Google Scholar] [CrossRef]
- Senk, M.; Chèze, L. Rotation sequence as an important factor in shoulder kinematics. Clin. Biomech. 2006, 21 (Suppl. S1), S3–S8. [Google Scholar] [CrossRef]
- de Winter, A.F.; Heemskerk, M.A.; Terwee, C.B.; Jans, M.P.; Devillé, W.; van Schaardenburg, D.J.; Scholten, R.J.; Bouter, L.M. Inter-observer reproducibility of measurements of rang.ge of motion in patients with shoulder pain using a digital inclinometer. BMC Musculoskelet. Disord. 2004, 5, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vet, H.C.W.d.; Terwee, C.B.; Mokkink, L.B.; Knol, D.L. Measurement in Medicine: A Practical Guide; Cambridge University Press: New York, NY, USA; Cambridge, UK, 2011. [Google Scholar]
- Stagni, R.; Fantozzi, S.; Cappello, A.; Leardini, A. Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: A study on two subjects. Clin. Biomech. 2005, 20, 320–329. [Google Scholar] [CrossRef]
- Cao, L.; Masuda, T.; Morita, S. Compensation for the effect of soft tissue artefact on humeral axial rotation angle. J. Med. Dent. Sci. 2007, 54, 1–7. [Google Scholar] [PubMed]
- Hamming, D.; Braman, J.P.; Phadke, V.; LaPrade, R.F.; Ludewig, P.M. The accuracy of measuring glenohumeral motion with a surface humeral cuff. J. Biomech. 2012, 45, 1161–1168. [Google Scholar] [CrossRef]
- Cappozzo, A.; Catani, F.; Leardini, A.; Benedetti, M.G.; Croce, U.D. Position and orientation in space of bones during movement: Experimental artefacts. Clin. Biomech. 1996, 11, 90–100. [Google Scholar] [CrossRef]
- Russo, S.A.; Kozin, S.H.; Zlotolow, D.A.; Thomas, K.F.; Hulbert, R.L.; Mattson, J.M.; Rowley, K.M.; Richards, J.G. Scapulothoracic and glenohumeral contributions to motion in children with brachial plexus birth palsy. J. Shoulder Elb. Surg. 2014, 23, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Duff, S.V.; Dayanidhi, S.; Kozin, S.H. Asymmetrical shoulder kinematics in children with brachial plexus birth palsy. Clin. Biomech. 2007, 22, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Short, N.; Almonroeder, T.G.; Fenker, C.A.; Fisher, O.A.; Francetic, K.E.; Hodel, A.E.; Lange, C.A.; Mathew, M.M. Intra-rater reliability of goniometry to measure scapular protraction and retraction. J. Hand. 2022, 35, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S.; Ertzgaard, P.; Lundgren, M.; Grip, H. Test-Retest Reliability of Kinematic and Temporal Outcome Measures for Clinical Gait and Stair Walking Tests, Based on Wearable Inertial Sensors. Sensor 2022, 22, 1171. [Google Scholar] [CrossRef]
Subject Data | BPBI | Control |
---|---|---|
Sex (F/M) | 4 F, 2 M | 6 F, 3 M |
Age (Years) | 16.8 (8–22) | 19.7 (8–25) |
Affected side | 2 R, 4 L | N/A |
Preferred side | Non-affected 1 | 2 L, 7 R |
Day between examinations | 5.8 (2–8) | 4.1 (2–7) |
Statistics | Task Type | Scapula | Upper Arm | Lower Arm |
---|---|---|---|---|
ME (95% CI) | Shoulder one plane 1 | −0.6 (−6.4, 5.2) | −0.3 (−4.4, 3.9) | −0.3 (−5.4, 4.8) |
Elbow one plane 2 | −0.6 (−2.9, 1.7) | 0.2 (−1.6, 1.9) | −0.7 (−5.4, 4.1) | |
Shoulder and elbow 3 | −0.3 (−2.6, 2.1) | −0.3 (−3.5, 2.8) | −0.6 (−7.5, 6.4) | |
k | Shoulder one plane 1 | 0.040 | 0.000 | 0.004 |
Elbow one plane 2 | −0.432 | 0.000 | −0.001 | |
Shoulder and elbow 3 | 0.021 | −0.002 | 0.004 |
Task | Joint | Outcome Score | ICC (p-Value) |
---|---|---|---|
MMS2 | Shoulder | Maximal ext rotation | 0.55 (0.22) |
RoM IE | 0.62 (0.18) | ||
Glenohumeral | Maximal ext rotation | 0.71 (0.09) | |
RoM IE | 0.90 (0.00) | ||
Scapulothoracic | RoM ant–post | 0.93 (0.00) | |
RoM up–down | 0.82 (0.04) | ||
RoM protr–retr | 0.90 (0.00) | ||
MMS3 | Shoulder | Peak flexion | 0.89 (0.02) |
Peak abduction | 0.76 (0.05) | ||
Peak external rotation | 0.62 (0.11) | ||
RoM FE | 0.91 (0.01) | ||
RoM ab–add | 0.83 (0.03) | ||
RoM IE | 0.81 (0.04) | ||
Average angular speed FE | 0.82 (0.03) | ||
Average ang speed ab–add | 0.72 (0.07) | ||
Average ang speed IE | 0.69 (0.08) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grip, H.; Källströmer, A.; Öhberg, F. Validity and Reliability of Wearable Motion Sensors for Clinical Assessment of Shoulder Function in Brachial Plexus Birth Injury. Sensors 2022, 22, 9557. https://doi.org/10.3390/s22239557
Grip H, Källströmer A, Öhberg F. Validity and Reliability of Wearable Motion Sensors for Clinical Assessment of Shoulder Function in Brachial Plexus Birth Injury. Sensors. 2022; 22(23):9557. https://doi.org/10.3390/s22239557
Chicago/Turabian StyleGrip, Helena, Anna Källströmer, and Fredrik Öhberg. 2022. "Validity and Reliability of Wearable Motion Sensors for Clinical Assessment of Shoulder Function in Brachial Plexus Birth Injury" Sensors 22, no. 23: 9557. https://doi.org/10.3390/s22239557
APA StyleGrip, H., Källströmer, A., & Öhberg, F. (2022). Validity and Reliability of Wearable Motion Sensors for Clinical Assessment of Shoulder Function in Brachial Plexus Birth Injury. Sensors, 22(23), 9557. https://doi.org/10.3390/s22239557