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Abstract: Intelligent video surveillance based on artificial intelligence, image processing, and other
advanced technologies is a hot topic of research in the upcoming era of Industry 5.0. Currently, low
recognition accuracy and low location precision of devices in intelligent monitoring remain a problem
in production lines. This paper proposes a production line device recognition and localization method
based on an improved YOLOv5s model. The proposed method can achieve real-time detection and
localization of production line equipment such as robotic arms and AGV carts by introducing CA
attention module in YOLOv5s network model architecture, GSConv lightweight convolution method
and Slim-Neck method in Neck layer, add Decoupled Head structure to the Detect layer. The
experimental results show that the improved method achieves 93.6% Precision, 85.6% recall, and
91.8% mAP@0.5, and the Pascal VOC2007 public dataset test shows that the improved method
effectively improves the recognition accuracy. The research results can substantially improve the
intelligence level of production lines and provide an important reference for manufacturing industries
to realize intelligent and digital transformation.

Keywords: YOLOv5s; production line equipment; CA attention module; GSConv; Slim-Neck;
Decoupled Head

1. Introduction

Since Industry 4.0 was officially in Germany in 2013, the global manufacturing indus-
try development has rapidly progressed towards digitalization and networking. Industry
5.0, proposed in 2021, demands more sophisticated intelligent manufacturing systems and
promotes smart factories with human–machine collaboration at its core. Praveen Kumar
Reddy Maddikunta et al. [1] discussed potential applications such as smart manufacturing
for Industry 5.0. Zhang et al. [2] explored the application of blockchain technology in cloud
manufacturing platforms in the era of Industry 5.0. Aros Erick. A et al. [3] stated that
developed economies are currently developing deep learning, machine learning, virtual
reality, and augmented reality technologies geared towards industry 5.0. Laura et al. [4]
found that the technology, manufacturing, and communication industries have already
started digital transformation. Jafari et al. [5] used a four-party intelligence framework (i.e.,
intelligent automation, intelligent devices, intelligent systems, and intelligent materials)
for intelligent logistics for Industry 5.0 human–machine collaboration and highlighted the
importance of human–machine collaboration, computational methods such as machine
learning, deep learning, clustering, and regression. With the digital and intelligent trans-
formation of the global manufacturing industry, the production line as an important part
of the manufacturing industry is also undergoing tremendous transformation. In order to
control the daily production work in a timely manner, video surveillance technology has
been transferred from the field of social security to the intelligent manufacturing arena.

At present, the production line monitoring system can be classified into a traditional
monitoring system, sensor, and RFID-based monitoring system. The traditional production
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line video monitoring is through human monitoring over a long duration and manually
recording the distribution, trajectory, and location information of each piece of equipment
in the production line. This is not only difficult to ensure the accuracy of equipment infor-
mation in a large number of complex production environments, but also leads to low work
efficiency. In order to resolve the above problems, a sensor- and RFID-based monitoring
system was introduced. This kind of monitoring system uses multiple sensors to achieve
shop floor monitoring and identification [6–8] and uses RFID readers to achieve equipment
identification and maintenance [9–13]. However, such monitoring systems usually require
a large number of sensors and RFID, and the wiring installation is complicated and prone
to high failure rate, high maintenance cost, difficult acquisition, low accuracy rate, and
inaccurate position return during production and maintenance.

The recent development in deep learning-based target detection algorithms is in-
creasingly applied in the manufacturing fields, which helps resolve the earlier mentioned
limitation. The most commonly used ones include YOLO (You Only Look Once) series,
SSD (Single Shot MultiBox Detector) [14] series, R-CNN (Region-Convolutional Neural
Networks) [15], and Faster R-CNN [16]. Compared with traditional detection methods,
deep learning-based target detection algorithms exhibit high speed, high accuracy, and
robustness in complex manufacturing environments. Currently, deep learning-based YOLO
series of network models (YOLOv1 [17], v2 [18], v3 [19], v4 [20], v5) are used extensively
in the manufacturing industry. For example, Zhang [21] et al. deployed YOLOv2 for
auto-identification application in oil industry facilities. Later, Huang [22] et al. intro-
duced YOLOv3 into oil industry facilities and YOLOv3 lightweight improvement was
done to achieve fast recognition of electronic components in complex backgrounds. In
2020, Wu [23] proposed an improved YOLOv3 algorithm to detect electrical connector
defects. Song [24] et al. later proposed a grasping robot object detection method based on
the improved YOLOv5. A robot target detection platform was first designed. Gao [25] et al.
applied the YOLOv4 target detection algorithm to a robotic arm grasping system suit-
able for complex environments. Yan [26] et al. proposed YOLOv3 network for operation
area detection in their latest work in 2022. In the same year, Yu [27] et al. used the im-
proved YOLOv3 for defect detection and Luo [28] et al. proposed an engineering diagram
recognition method based on YOLOv4 algorithm for the detection of component targets
under circuit diagrams. Ge [29] et al. proposed a visual object tracking network based on
YOLOv5s, which can be used to detect robots and provide a new idea for target detection in
manufacturing. Huang [30] et al. proposed a holistic approach for fractal target detection
based on a multi-head model.

The YOLO family of algorithms has also seen applications in the field of intelligent
video surveillance. For instance, Yang [31] et al. proposed a target detection and ranging
technique based on YOLOv5 and depth cameras and applied it to practical engineering for
AGV localization. in 2022, Zou [32] et al. proposed an improved YOLOv5s helmet detection
algorithm based on a deep learning approach. This technology was then deployed to
implement a set of intelligent monitoring systems for edge terminal maintenance personnel.
Very recently, Soma [33] et al. proposed an intelligent video monitoring scheme based on
YOLOv3 for detecting people, vehicles, and background objects.

A review of the literature suggests that an accurate/efficient equipment identifica-
tion and positioning method is highly desirable for production information monitoring,
improved productivity, and ensuring orderly production. In response to this need, this
paper proposes a production line equipment identification and localization method based
on the improved YOLOv5s model, which has been demonstrated for application in a pro-
duction line energy monitoring system. The proposed method is dedicated to addressing
the current problems facing complex manufacturing environments, and will help opera-
tors effectively identify the equipment category and position equipment accurately and
efficiently in real time.
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2. Improvement of YOLOv5 Model
2.1. The YOLOv5 Model

YOLOv5 is divided into four versions according to the size of the model, namely
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, and the width and depth of each version
increases in order. The YOLOv5 model is divided into four layers of structure: Input,
Backbone, Neck, and Detect. The input contains three parts: Mosaic data enhancement,
adaptive computation of the anchor frame, and adaptive scaling of the image. During
training, the input side enriches the dataset by image stitching or overlaying random
scaling, in which the interaction ratio is obtained by adaptively computing the anchor
frame, and finally the dimensionally consistent image is obtained by adaptive scaling.

The Backbone layer extracts the main feature information. YOLOv5 version 6.0 uses
convolutional operations instead of Focus module in previous versions. The backbone
layer is mainly divided into Conv module, C3 module, and SPPF module. Conv module in
YOLOv5 version 6.0 contains Conv2d, Batch Normalization, and SiLU activation function.
C3 module contains 3. The C3 module contains 3 Conv modules and several Bottleneck
modules. The Spatial Pyramid Pooling—Fast (SPPF) module replaces the original Spatial
Pyramid Pooling (SPP) module in YOLOv5 6.0 and is much faster.

The Neck layer uses Path Aggregation Network (PANet) and Feature Pyramid Net-
works for feature fusion, fusing features from different layers to detect small and large
targets, and is responsible for passing image features to the Detect layer. Among them, Path
Aggregation Network (PANet) serves to solve the problem of arbitrary size of input data
and increase the perceptual field of the network, and Feature Pyramid Networks improve
the detection of small targets.

YOLOv5 makes a prediction for each grid of the feature map, uses the predicted
information to compare with the true information, and then decides the next convergence.
The loss function is the evaluation criterion for predicted information and the real infor-
mation, the smaller the loss function is, the closer the predicted information is to the real
information. The loss of YOLOv5 mainly contains bbox_loss (Rectangular frame loss),
cls_loss (Classification loss), and obj_loss (Confidence loss).

IoU (Interaction Over Union), also known as interaction ratio, is an indication of the
degree of overlap between the prediction bounding box and the object bounding box. It is
used to determine whether the result has been predicted successfully. A threshold value
can be set for IoU, and if the interaction ratio is greater than this threshold, the prediction is
considered successful; otherwise, the prediction fails. If the IoU threshold is set too low, it is
difficult to guarantee the quality for the detection samples. In order to achieve high quality
positive samples, the IoU threshold can be manually adjusted upward, but too high an IoU
threshold will lose the small-scale target frame. Therefore, the threshold was generally set
to 0.5. IoU is defined in Equation (1).

IoU =
Prediction bounding box∩Object bounding box
Prediction bounding box∪Object bounding box

(1)

When the prediction frame does not intersect with the real frame, the IoU loss is 0, and
IoU will affect the model convergence process. As such, YOLOv5 uses CIoU (Complete-
IoU) to calculate bbox_loss by default. The loss calculation formula of CIoU is shown in
Equation (2).

LCIoU = 1− IoU +
ρ2( b, bgt)

c2 + αv (2)

where b and bgt denote the centroids of the prediction frame and the real frame, respectively,
ρ denotes the Euclidean distance between the two centroids, and c denotes the diagonal
distance between the minimum closure region of the prediction frame and the real frame.
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α is the weight parameter as shown in Equation (3). v is used to measure the consistency of
the aspect ratio, as shown in Equation (4).

α =
v

(1− IoU) + v
(3)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(4)

YOLOv5 uses the binary cross-entropy function to calculate cls_loss and obj_loss by
default. The binary cross-entropy function is shown in Equation (5).

L = −y log p− (1− y) log(1− p) =
{
− log p , y = 1

− log(1− p) , y = 0
(5)

where y is the label corresponding to the input sample (1 for positive samples and 0 for
negative samples) and p is the probability that the model predicts this input sample to
be positive.

The YOLOv5 model is able to output the position information of the detected target
while recognizing the target. The color image and depth image are generated when using
RGB-D camera for detection, and the position coordinates are obtained by converting
the pixel coordinate system to the camera coordinate system to obtain the 3D position
coordinates of the detection target. In order to obtain more reliable depth information, the
RGB-D camera is usually calibrated for depth before detection [34,35]. The pixel coordinate
system and the camera coordinate system are shown in Figure 1. Usually, the upper-left
pixel point of the image is used as the origin position of the pixel coordinate system, and the
pixel coordinate system axes are shown as the red arrows in Figure 1. The center coordinate
point of the detected target is obtained and projected into the pixel coordinate system of the
depth image, so the pixel value of the center coordinate point of the detected target in the
depth image is the distance of the detected target to the RGB-D camera. Taking the RGB-D
camera as the origin of the camera coordinate system, the camera coordinate system axes
are shown as the blue arrows in Figure 1.
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YOLOv5 has been widely used in the field of pedestrian detection and has achieved
good results. For the detection of production line equipment that changes dynamically in
real time in a complex background, we cite YOLOv5, which has a more concise network
structure and faster processing speed, as a baseline network model for production line
equipment identification and localization improvement.
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2.2. Improvement Strategies for the YOLOv5 Model
2.2.1. Adding CA (Coordinate Attention) Attention Module

A survey of the literature shows that soon after the emergence of attention mechanisms,
attention mechanisms such as SE (Squeeze-and-Excitation) [36], CBAM [37], and CA (Coor-
dinate Attention) [38] have been widely applied to the field of deep learning. Cui [39] et al.
proposed a method based on Gramian Angular Field (GAF) and CA-based lightweight
rolling bearing fault diagnosis method to reduce the computational effort and validate
the effectiveness of adding CA attention module to neural networks. Zhang [40] et al.
proposed CaNet, a deep learning network for identifying concrete cracks, which added
a CA attention module to a model with ResNet50 as the backbone network. The result
sees a significant improvement in recall, F1 score, and accuracy, which experimentally
verified that the addition of CA attention module can effectively improve the system ac-
curacy. Cheng [41] et al. proposed a lightweight crop pest detection method based on
convolutional neural networks, using YOLOLite as the backbone network and lightweight
hourglass blocks and CA attention module to optimize the structure of the residual blocks,
and the precision was greatly improved. Wang [42] et al. proposed the CA-EfficientNetV2
model, adding the CA attention module to the head of the EfficientNetV2 model to enhance
the classification effect and thus enabling efficient feature learning. Several experimental
studies demonstrated the effectiveness of CA attention module to the neural network
framework for precision improvement.

The CA attention module not only captures the exact position of the object of interest
when learning features and constructing channel attention, but also has the same features
as attention mechanisms.

The primary role of the CA attention module is to enhance the expression of the
learning features of the mobile network. Any intermediate feature tensor in the model is
input and then transformed to an output tensor of the same size, as shown in Equation (6).
The implementation process of the CA attention module is shown in Figure 2, C represents
the input image’s channel value, H is the length of the input image, W is the width of the
input image, and r is the scaling ratio.

X= [x1, x2, . . . , xc] ∈ RH×W×C (6)
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The CA attention module obtains the feature maps in both width and height direc-
tions by performing global average pooling in both directions after inputting the feature
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maps, The output of the cth channel with input x, height h, and width w is shown in
Equations (7) and (8).

zh
c (h) =

1
W ∑

0≤i≤W
|xc(h, j) (7)

zw
c (w) =

1
H ∑

0≤j≤H
|xc(j, w) (8)

After that, the channel merging operation along the spatial dimension was performed
on the feature map, and then it was transformed using the convolutional transform func-
tion as shown in Equation (9), where δ is the nonlinear activation function and f is the
intermediate feature map used to encode the spatial information in the horizontal and
vertical directions.

f = δ(F1([zh, zw])) (9)

The decomposition of f into two separate tensors gh and gw, along the spatial di-
mension, is shown in Equations (10) and (11), where σ is the sigmoid activation function
usually used to reduce the number of channels of f by scaling down r to reduce the model
complexity.

gh = σ(Fh( f h)) (10)

gw = σ(Fw( f w)) (11)

Following Equations (10) and (11), input feature map of the attention weights in the
height direction (gh) and the attention weights in the width direction (gw) can be obtained.
Finally, the output feature map yc(i, j) in the CA is shown in Equation (12).

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (12)

2.2.2. Introducing GSConv and Slim-Neck Methods in the Neck Layer

The current target detection model cannot fully meet the requirements of real-time
detection of intelligent monitoring systems with high precision. We added GSConv and
Slim-Neck methods to the YOLOv5 network model to improve the precision and other
indicators of the model. Similar methods were proposed by Hulin Li [43] et al. in the
application of self-driving cars.

GSConv and Slim-Neck methods were added to the YOLOv5-6.0 network model
by replacing Conv in the Neck layer of the YOLOv5-6.0 version of the network with the
lightweight convolutional method GSConv. YOLOv5 backbone feature extraction network
adopts a C3 structure, with many parameters in the training process. The use scenarios
are easily restricted in the use scenarios such as intelligent monitoring systems. With
challenges in applying intelligent surveillance systems in mobiles and embedded usage
settings, the C3 module is replaced by the VoV-GSCSP module. The structure of GSConv
and VoV-GSCSP modules is shown in Figure 3.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 3. Structure of GSConv and VoV-GSCSP modules. 

2.2.3. Detect Layer Adds Decoupled Head Structure 
The inherent conflict between identifying the target class (classification problem) and 

determining the target location (regression problem), which are the two main tasks in tar-
get detection, also limits the model performance to some extent. The YOLO series net-
works use coupled detection heads in the prediction part to accomplish the tasks of iden-
tifying the target class and determining the target location simultaneously. The task of 
identifying the target category is concerned with which existing category the texture fea-
tures of the target are most similar to and determining the target location is concerned 
with the edge features of the target for bounding box parameter correction. The different 
objectives of the two tasks lead to different solutions, so the choice of the detection head 
has a certain impact on the performance of the model. 

Song et al. [44] investigated the inherent conflict between target detection classifica-
tion and position regression. Zheng et al. [45] improved YOLOV3 by adding Decoupled 
Head, which improved the performance metrics of the model, and found that the coupled 
detection head of the YOLO series network degraded the performance to some extent. Li 
[46] et al. improved YOLOv4 by decoupling the classification and regression tasks to en-
hance the performance of the model and applied to the detection of ship targets. The struc-
ture of the Decoupled Head is shown in Figure 4. The Decoupled Head goes through a 1 
× 1 convolution operation and then two parallel 3 × 3 convolution operations, one of which 
passes through a 1 × 1 convolution layer and is dimensionally reduced to complete the 
task of identifying the target class, and the other passes through two 3 × 3 convolution 
layers and then uses two parallel 1 × 1 convolutions for the task of target location and 
confidence. In summary, Decoupled Heads improves the performance of the model by 
solving the target category (classification problem) and determining the target location 
(regression problem) separately. 

We use the Decoupled Head in the Detect layer of the YOLOv5 model. We decoupled 
the coupled detection heads in the prediction part of the original model to perform the 
target detection classification task and the position regression task separately. 

Figure 3. Structure of GSConv and VoV-GSCSP modules.



Sensors 2022, 22, 10011 7 of 23

2.2.3. Detect Layer Adds Decoupled Head Structure

The inherent conflict between identifying the target class (classification problem) and
determining the target location (regression problem), which are the two main tasks in target
detection, also limits the model performance to some extent. The YOLO series networks
use coupled detection heads in the prediction part to accomplish the tasks of identifying
the target class and determining the target location simultaneously. The task of identifying
the target category is concerned with which existing category the texture features of the
target are most similar to and determining the target location is concerned with the edge
features of the target for bounding box parameter correction. The different objectives of
the two tasks lead to different solutions, so the choice of the detection head has a certain
impact on the performance of the model.

Song et al. [44] investigated the inherent conflict between target detection classifica-
tion and position regression. Zheng et al. [45] improved YOLOV3 by adding Decoupled
Head, which improved the performance metrics of the model, and found that the coupled
detection head of the YOLO series network degraded the performance to some extent.
Li [46] et al. improved YOLOv4 by decoupling the classification and regression tasks to
enhance the performance of the model and applied to the detection of ship targets. The
structure of the Decoupled Head is shown in Figure 4. The Decoupled Head goes through
a 1 × 1 convolution operation and then two parallel 3 × 3 convolution operations, one of
which passes through a 1 × 1 convolution layer and is dimensionally reduced to complete
the task of identifying the target class, and the other passes through two 3 × 3 convolution
layers and then uses two parallel 1 × 1 convolutions for the task of target location and
confidence. In summary, Decoupled Heads improves the performance of the model by
solving the target category (classification problem) and determining the target location
(regression problem) separately.
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We use the Decoupled Head in the Detect layer of the YOLOv5 model. We decoupled
the coupled detection heads in the prediction part of the original model to perform the
target detection classification task and the position regression task separately.

2.3. A Framework of Production Line Equipment Identification and Localization Method Based on
Improved YOLOv5s Model

In order to achieve accurate recognition and classification, this paper proposes a
production line equipment recognition and localization method based on an improved
YOLOv5s model. Aiming at the problems that the model is not accurate enough for object
localization and the weak expression ability of model learning features, the CA attention
module was introduced into the YOLOv5s network model architecture. To address the
problems of easy overfitting, slow training speed, and excessive parameters in the training
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process, we replaced Conv in the Neck layer with the lightweight convolution method
GSConv and introduced the Slim-Neck method. To improve the performance index of the
model for the inspection of production line equipment, we used the Decoupled Head in
the Detect layer of the YOLOv5 model.

The model of this method consists of Input, Backbone, Neck, and Detect. The Backbone
layer mainly performs feature extraction, which extracts the object information from the
image through the convolutional network for later target detection. The Neck layer blends
and combines the features to enhance the robustness of the network and strengthen the
object detection ability and passes these features to the Head layer for prediction. To
improve training speed, YOLOv5s version 6.0 replaces the Focus module with a convolution
operation of size 6 × 6, step size 2, and padding 2. The Bottleneck module is based on the
residual structure of ResNet, which can effectively reduce the training time. The C3 module
contains three standard convolutional layers and multiple Bottleneck modules. This way,
remote dependencies can be captured along one spatial direction, while accurate location
information can be preserved along the other spatial direction. The generated feature
maps are then encoded as a pair of orientation-aware and position-sensitive attention
maps, respectively, which can be applied complementarily to the input feature maps to
enhance the representation of objects of interest. Version 6.0 of YOLOv5s uses the SPPF
module instead of the SPP (Spatial Pyramid Pooling) module. The SPPF module uses
multiple small-sized pooling kernels in cascade instead of a single large-sized pooling
kernel in the SPP module. GSConv and Slim-Neck methods are introduced in Neck layer.
On the one hand, it replaces the Conv module with the lightweight convolution method
GSConv, and on the other hand, it replaces the previous C3 module with the VOV-GSCSP
module, which consists of the GSbottleneck module and Conv module, which are set up
by GSConv. Finally, the three higher resolution features from the fused features are input
to the decoupling head to complete the task of identifying the target class (classification
problem), determining the target location (regression problem) and the confidence level.
The improved network model and structure are shown in Figure 5.
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3. Production Line Equipment Identification Experiment
3.1. Build the Experimental Platform

A highly configured deep learning server benefits from high performance and im-
proved precision rate. Therefore, NVIDIA RTX A5000 was chosen as the computing GPU
for the experiments. Table 1 shows the representative environment versions required for
the experiments.

Table 1. Partial environment configuration table required for the experiment.

Name of Development Environment Configuration Versions

Ubuntu 20.04
Cuda 11.3

python 3.8
Numpy 1.21.6
Opencv 4.1.2
PyTorch 1.10.0

3.2. Making the ProductionIineData Dataset

The datasets were obtained from the simulated production line in the Intelligent Man-
ufacturing Technology Laboratory of the School of Control and Mechanical Engineering
of Tianjin Chengjian University. Six devices (AGV smart cart, AGV Raspberry Pie cart,
mechanical arm, RFID, lathe, and milling machine) of the simulated production line were
selected for real-time inspection in the experiment. The datasets used for the experiments
are (i) field dataset collection, (ii) dataset labeling, and (iii) dataset construction.

(i) Field dataset collection: In order for the model to learn more features of the six
devices, the dataset images were taken by CCD cameras at various angles, under different
environmental conditions, at different times, and in various backgrounds and cropped
to multiple sizes (1706 × 1280 px, 2844 × 1280 px, 1280 × 1706 px, 421 × 391 px). After
collation, 500 photographs of each size shot under varied situations were acquired, and
50 background pictures without the production line components were generated.

(ii) Dataset labeling: The dataset labeling is the prerequisite for the algorithmic model
to complete supervised learning. This requires manually labeling the object locations of
interest and tagging them with categories in the training and validation dataset images. The
labeled images are constructed and input into the model to obtain the model weights, and
the algorithmic model can recognize the object categories after loading the corresponding
model weights.

Make Sense was selected as the image labeling tool for this dataset, see Figure 6, before
the final labeling information was exported. The labeling information includes the position
coordinates of the object of interest in the image and the category information. As shown
in Figure 7, object information contains the center position coordinates (bx, by), height (bh),
width (bw), and whether the object contains a target and the Confidence of the contained
target in the information of each object.

The formula for Confidence is shown in Equation (13).

Confidence = X ∗ IoU (13)

X indicates whether the target is included or not; if it is included, X = 1; otherwise, X =
0. The formula for calculating IoU is shown in Equation (11).

(iii) Dataset construction: Based on the cross-validation method, 70% of all images
are used as the training set and 30% as the validation set. This dataset divides all images
into ten copies with 55 images in each copy. The training set contains 385 images and the
validation set contains 165 images. The training set was then used to train the algorithm
model under various improvement methods to obtain the model weights for different
recognition effects.
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3.3. Evaluation of the Model’s Performance Indicators

In the field of target detection, the performance of algorithmic models is usually judged
by Precision, Recall, F1 score, IoU (Intersection Over Union), P–R curve (Precision–Recall
curve), AP (Average Precision), and mAP (Mean Average Precision). These indicators are
calculated from Precision and Actual, and the model indicators are judged as shown in
Figure 8. Figure 8 corresponds to four cases: (1) TP indicates that the true category of the
sample is positive and the model predicts a positive result, then the result is predicted
correctly; (ii) TN indicates that the true category of the sample is negative and the model
predicts a negative result, then the result is predicted correctly; (iii) eFP indicates that the
true category of the sample is negative, but the model predicts a positive result, then the
result is predicted incorrectly; (iv) FN indicates that the true category of the sample is
positive and the model where FN indicates that when the true category of the sample is
positive and the model predicts a negative outcome, the outcome is incorrectly predicted.



Sensors 2022, 22, 10011 11 of 23

Sensors 2022, 22, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 7. Parameters generated during dataset labeling. 

(iii) Dataset construction: Based on the cross-validation method, 70% of all images 
are used as the training set and 30% as the validation set. This dataset divides all images 
into ten copies with 55 images in each copy. The training set contains 385 images and the 
validation set contains 165 images. The training set was then used to train the algorithm 
model under various improvement methods to obtain the model weights for different 
recognition effects. 

3.3. Evaluation of the Model’s Performance Indicators 
In the field of target detection, the performance of algorithmic models is usually 

judged by Precision, Recall, F1 score, IoU (Intersection Over Union), P–R curve (Precision–
Recall curve), AP (Average Precision), and mAP (Mean Average Precision). These indica-
tors are calculated from Precision and Actual, and the model indicators are judged as 
shown in Figure 8. Figure 8 corresponds to four cases: (1) TP indicates that the true cate-
gory of the sample is positive and the model predicts a positive result, then the result is 
predicted correctly; (ii) TN indicates that the true category of the sample is negative and 
the model predicts a negative result, then the result is predicted correctly; (iii) eFP indi-
cates that the true category of the sample is negative, but the model predicts a positive 
result, then the result is predicted incorrectly; (iv) FN indicates that the true category of 
the sample is positive and the model where FN indicates that when the true category of 
the sample is positive and the model predicts a negative outcome, the outcome is incor-
rectly predicted. 

 
Figure 8. Model metrics judgment. 

Precision represents the ratio of correct samples predicted to correct samples to all 
correct samples, as shown in Equation (14). 

Figure 8. Model metrics judgment.

Precision represents the ratio of correct samples predicted to correct samples to all
correct samples, as shown in Equation (14).

Precision =
TP

TP + FP
(14)

Recall represents the ratio of the number of correct samples predicted to be correct to
the number of all correct samples, as shown in Equation (15).

Recall =
TP

TP + FN
(15)

The P–R curve (Precision–Recall curve) is a graph with Recall as the x-axis and Preci-
sion as the y-axis, in which one can find the points where both precision and recall approach
1. The P–R curve graph is also an important indicator to judge the performance of the
algorithm model.

AP (Average Precision) is also a mainstream metric to judge the goodness of an
algorithm model, which can be approximated as the integration area under the P–R curve.
Therefore, the larger the AP value, the more the precision and recall in the P–R curve
converge to 1, and the better the algorithm model, as shown in Equation (16).

AP =
∫
(P− R curve) (16)

mAP (Mean Average Precision) is a combined judgment of the performance of the
algorithm model by averaging the APs of several categories of the prediction together.

4. Experimental Results of Identification of Production Line Equipment

In this experiment, Precision, Recall, mAP@0.5 (the average precision rate when the
IoU threshold is 0.5), and mAP@0.5:0.95 (the average precision rate when the IoU threshold
is 0.05 from 0.5 to 0.95 in steps of 0.05) were used as the metrics to evaluate the model. The
scene application of the recognition class has higher requirements for Precision, so this
experiment used Precision as the first evaluation index.

4.1. Experimental Analysis of Equipment Identification in the Production Line

In the experiments, the performance baseline was first obtained under the default
configuration of YOLOv5-6.0, (default epochs = 300, batch_size = 16, and img-size = 640.
The default configuration of the optimizer is SGD. The algorithm model training results
were viewed using Tensorboard, and the model performance baseline results are shown in
Table 2.



Sensors 2022, 22, 10011 12 of 23

Table 2. Dataset test results for the performance baseline.

Precision Recall mAP_0.5 mAP_0.5:0.95

0.887 0.807 0.885 0.607

In order to enhance the model’s accurate localization of the object of interest and to
enhance the model’s ability to learn the expression of features, CA (Coordinate attention)
attention mechanism, SE attention mechanism (Squeeze-and-Excitation Networks), CBAM
(Convolutional Block Attention Module), and ECA (Efficient Channel Attention) were
added to the Backbone layer of the model. Table 3 shows the performance comparison after
adding the four attention modules. Experimental results show that the model with the
addition of the CA attention module achieves 92.8% for accuracy, 83.2% for recall, 88.6%
for mAP@0.5, and 59.2% for mAP@0.5:0.95, meaning that a better overall performance
was achieved.

Table 3. Comparison of the models with CA, SE, CBAM, and ECA attention modules added to the
Backbone layer.

Attention Mechanism Precision Recall mAP@0.5 mAP@0.5:0.95

Add CA 0.928 0.832 0.886 0.592
Add SE 0.923 0.828 0.883 0.578

Add CBAM 0.915 0.837 0.873 0.582
Add ECA 0.868 0.798 0.862 0.525

In order to further improve the model precision and enhance the expression of the
learned features of the model, CA (Coordinate attention) attention mechanism was added
to the Backbone layer of the model and the CA (Coordinate attention) attention mechanism,
SE attention mechanism (SE) to the C3 module of the Neck layer (Squeeze-and-Excitation
Networks), CBAM (Convolutional Block Attention Module), and ECA (Efficient Channel
Attention) were added and the results were compared in terms of parameters. Table 4
shows the performance comparison after adding the four attention modules. Results show
that the performance of the model with the addition of the four attention modules is lower
compared to that before the addition.

Table 4. Comparison of the models with the four attention modules CA, SE, CBAM, and ECA added
to the C3 module of the Neck layer.

Attention Mechanism Precision Recall mAP@0.5 mAP@0.5:0.95

Add CA 0.868 0.811 0.872 0.543
Add SE 0.921 0.824 0.816 0.571

Add CBAM 0.886 0.795 0.83 0.537
Add ECA 0.884 0.843 0.878 0.541

To meet the requirements of real-time detection of intelligent monitoring systems and
reduce the number of parameters in the training process, we introduced the lightweight con-
volution method GSConv and Slim-Neck method in the Neck layer. The Conv in the Neck
layer of the YOLOv5-6.0 version of the network with the lightweight convolution method
GSConv was replaced, as well as the C3 module with the VoV-GSCSP module. Table 5
shows the performance comparison before and after the model modification. Experimental
verifications suggest that the introduction of the lightweight convolution method GSConv
and Slim-Neck method based on adding CA (Coordinate attention) attention mechanism
to the Backbone layer of the model, replacing Conv in the Neck layer of the YOLOv5-6.0
version of the network with the lightweight convolution method GSConv, and replacing the
C3 module with the VoV-GSCSP module can further improve the detection performance of
the model substantially. After introducing the lightweight convolutional method GSConv
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and Slim-Neck method in the Neck layer, the model achieves 94.5% for precision and 82.8%
for recall, mAP@0.5 achieves 88.5%, and mAP@0.5:0.95 achieves 59.3%, and the precision
and recall are greatly improved compared with the original YOLOv5-6.0 model.

Table 5. Comparison of the models after the introduction of GSConv and Slim-Neck methods in the
Neck layer with the model before the improvement.

Model Precision Recall mAP@0.5 mAP@0.5:0.95

YOLOv5-6.0 0.887 0.807 0.885 0.607
Add CA 0.928 0.832 0.886 0.592

Add CA + GSCONV + Slim Neck 0.945 0.828 0.885 0.593

To further improve the performance metrics and convergence speed of the model,
we added the Decoupled Head structure to the Detect layer of the model. The coupled
detection head in the Decoupled Detection layer of the Neck layer of the YOLOv5-6.0
version of the network was decoupled to perform the target detection classification task
and the position regression task, respectively. Table 6 shows the performance comparison
between the improved model and before the improvement. The accuracy rate of the model
after adding the Decoupled Head structure reaches 93.6%, the recall rate reaches 85.6%,
and mAP@0.5 reaches 91.8%. On the basis of maintaining the accuracy rate, the recall rate
was again improved by 2.8% and mAP@0.5 was again improved by 3.3%. Compared with
the original YOLOv5-6.0 model, the improved model had a 4.9% improvement in accuracy,
4.9% improvement in recall, and 3.3% improvement in Map@0.5, resulting in a significant
improvement in performance.

Table 6. Comparison between the improved model after adding Decoupled Head structure to Detect
layer and the improved model before.

Model Precision Recall mAP@0.5 mAP@0.5:0.95

YOLOv5-6.0 0.887 0.807 0.885 0.607
Add CA 0.928 0.832 0.886 0.592

Add CA + GSCONV + Slim Neck 0.945 0.828 0.885 0.593
Decoupled Head + CA +
GSCONV + Slim Neck 0.936 0.856 0.918 0.585

4.2. Performance Comparison

In order to verify the performance of the production line equipment identification
and localization method based on the improved YOLOv5s model, we used the produc-
tionlineData homemade dataset performance comparison, Pascal VOC2007 public dataset
performance comparison, and recognition test comparison to compare and validate the
results, respectively.

4.2.1. Performance Comparison Using ProductionlineData Homemade Dataset

Firstly, the experimental data using the same dataset for YOLOv3, YOLOv5-6.0,
YOLOv5-5.0, YOLOv5-Lite, and the model trained based on the improved method were
compared, see data in Table 7.

Table 7 shows that when the model trained using the improved method is tested, the
precision rate reaches 93.6%, the recall rate reaches 85.6%, mAP@0.5 reaches 91.8%, and
mAP@0.5:0.95 reaches 58.5%. The precision rate improved by 5.5% compared to YOLOv5-
Lite, the recall rate improved by 8.8% compared to YOLOv3, mAP@0.5 improved by 8.9%
compared to YOLOv5-5.0, and mAP@0.5:0.95 improved by 6.4% compared to YOLOv3.
The size of the weight of the model trained by the improved method is only 23% of the
YOLOv3 model. Figure 9 compares the performance parameters of the iterative process of
YOLOv3, YOLOv5-6.0, YOLOv5-5.0, YOLOv5-Lite, and the improved method. It can be
seen that the improved method achieved a substantially higher precision rate as well as
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higher recall rate and other indicators. A comparison of the P–R curve of the improved
model with the original YOLOv5-6.0 model is shown in Figure 10. Figure 10a represents the
P–R curve of the original model of YOLOv5-6.0, and Figure 10b represents the P–R curve
of the improved model. In Figure 10 we can see that the improved model outperforms the
original model of YOLOv5-6.0 in terms of mAP@0.5.

Table 7. Comparison of test results of YOLOv3, YOLOv5-6.0, YOLOv5-5.0, YOLOv5-Lite, and the
improved method using the productionlineData homemade dataset.

Model Weights Precision Recall mAP@0.5 mAP@0.5:0.95

YOLOv3 117 MB 0.896 0.768 0.832 0.521
YOLOv5-6.0 13.7 MB 0.887 0.807 0.885 0.607
YOLOv5-5.0 14.4 MB 0.899 0.839 0.829 0.569
YOLOv5-Lite 3.4 MB 0.881 0.824 0.878 0.566

Improved method 28.7 MB 0.936 0.856 0.918 0.585
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YOLOv3, YOLOv5-6.0, YOLOv5-5.0, YOLOv5-Lite, and the improved method using
productionlineData homemade dataset test results show that the improved method is
overall better than YOLOv3, YOLOv5-6.0, YOLOv5-5.0, and YOLOv5-Lite The trained
results and the weights obtained by the improved method take up less memory and are
more convenient for use with development boards in the industry. Figure 11a,b show
representative images taken during the training process. In Figure 11a, it can be seen that
the confidence of the improved method is close to 1 for all the devices in the production
line recognition. Figure 11b shows that in the improved production line, all equipment
have been recognized correctly under the tiny recognition target and complex environment,
and the target detection envelope can tightly surround the recognition target.
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4.2.2. Performance Comparison Using Pascal VOC2007 Public Dataset

The standard dataset of VOC2007 from The PASCAL Visual Object Classes is a bench-
mark to measure the performance of image classification recognition. The dataset contains
training set travel (5011 images), test set test (4952 images), a total of 9963 images, containing
20 categories such as airplane, bicycle, bird, and boat.

In this paper, we used Pascal VOC2007 public dataset to compare the experimental
data of the models trained by YOLOv5-6.0, YOLOv5-5.0, YOLOv5-Lite, and the improved
method, and the results are shown in Table 8. For Pascal VOC2007 public dataset trained
using the improved method, the precision rate reaches 79.2%, the recall rate reaches 59.5%,
mAP@0.5 reaches 66.8%, and mAP@0.5:0.95 reaches 44.1%. Compared with YOLOv5-
Lite, the precision rate improved by 6.5%, and compared with YOLOv5-5.0, mAP@0.5
improved by 1.5%. Figure 12 shows the precision rates of the model weights for YOLOv5-
6.0, YOLOv5-5.0, YOLOv5-Lite, and the improved method.
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Comparing the test results of YOLOv5-6.0, YOLOv5-5.0, YOLOv5-Lite, and the im-
proved method using the Pascal VOC2007 public dataset show that the improved method
generally outperforms the results trained by YOLOv5-6.0, YOLOv5-5.0, and YOLOv5-Lite.
The improved method is faster to train, has fewer parameters and higher accuracy, and is
more convenient to use with development boards in industrial target detection.

4.2.3. Comparison of Simulated Production Line Scene Recognition Test Results

In order to verify the performance of the production line equipment identification
and localization method based on the improved YOLOv5s model, we introduced weights
trained by YOLOv3, YOLOv5-6.0, YOLOv5-5.0, YOLOv5-Lite, and the improved method
into identification tests, and the comparison of the test results are shown in Figures 13–16.
In Figure 13a, it can be seen that the YOLOv5-5.0 model incorrectly identifies the black
shadow part in the lower left corner as RFID, and there is a false detection. In Figure 13b,
the YOLOv5-Lite model weights do not identify the lathe, and there is a missed detection.
In contrast, the improved method identifies all parts correctly without missing detection.
Figure 14a shows that the YOLOv5-6.0 model weights do not identify the AGV smart car.
In Figure 14b, the YOLOv5-6.0 model weights do not identify the lathes, and there is a
leakage situation. In contrast, the improved method identifies all parts correctly without
leakage. A reliable 3D coordinate positions of the equipment is also obtained through the
conversion from pixel coordinate system to camera coordinate system. The model weights
of YOLOv3 and YOLOv5-Lite in Figures 15 and 16a do not identify the AGV smart car. The
model weights of YOLOv5-Lite in Figure 16b do not identify the milling machines and
RFID. In contrast, the improved method identifies all correctly without missing detection.
For all cases, the center coordinates of all equipment can be accurately transmitted back to
the console by the improved method, showing its more reliable performance.
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When using sensors and RFID to monitor production line equipment, firstly, a large
number of sensors need to be arranged, and secondly, data integration is required during
the inspection process, and it is difficult to achieve real-time detection. Traditional manual
monitoring of production line equipment is inefficient, inaccurate, and fails to ensure staff
safety. The working environment using the improved method can intelligently identify the
production line equipment based on the location and category information provided by
the monitoring system, expanding the flexibility of the manufacturing process. It greatly
reduces the cost of manpower and equipment, effectively avoids the subjectivity and in-
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dividual differences in the manual inspection process, and provides higher inspection
efficiency and accuracy. Experiments show that the FPS (Frames Per Second) of the im-
proved method can reach 80.3, meeting the requirements of real-time inspection, as shown
in Figure 17.
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5. Conclusions

This paper proposes an improved YOLOv5s model-based production line equipment
identification and localization method for production line equipment identification and
localization. The method effectively improves the precision rate and other production line
equipment identification indexes by introducing the CA attention module in YOLOv5s
network model architecture, the lightweight convolutional GSConv and the Slim-Neck
method in the Neck layer, and adding Decoupled Head structure to the Detect layer. Using
productionlineData homemade dataset test, the results show that the precision rate of
the improved method reaches 93.6%. The recall rate reached 85.6%, mAP@0.5 reached
91.8%, and mAP@0.5:0.95 reached 58.5%. Compared with YOLOv5-Lite, the precision
rate is improved by 5.5%. The recall rate increased by 8.8% compared to YOLOv3. 8.9%
improvement in mAP@0.5 compared to YOLOv5-5.0. 6.4% improvement in mAP@0.5:0.95
compared to YOLOv3. The improved method achieves 79.2% precision and 59.5% recall in
Pascal VOC2007 public dataset test results, mAP@0.5 reaches 66.8%, and mAP@0.5:0.95
reaches 44.1%. Compared to YOLOv5-Lite, the precision rate improved by 6.5%. Compared
to YOLOv5-5.0, mAP@0.5 improved by 1.5%, and mAP@0.5:0.95 improved by 2.1%. During
the model test, the method could accurately identify and return the center coordinate
positions of all production line devices and obtain the 3D coordinate positions of the
devices by converting the pixel coordinate system to the camera coordinate system. The
method has high real-time and recognition accuracy, with smaller model weight, and hence
is more suitable for industrial production scenarios. The authors acknowledge the potential
limitations in the current model. For instance, some frame screens with small equipment
target missed detection. The complex production line environment could easily disturb the
identification process. Future work will be dedicated to further improving the recognition
and detection capability of the model.

This work provides a potential solution towards low cost, low maintenance, and high
precision production line monitoring system for complex manufacturing environments. It
can enhance the intelligence and automation in the manufacturing industry such as multi-
equipment production lines and can potentially transform the traditional manufacturing
industry into intelligent manufacturing. The method proposed here can also be generalized
to other production scenarios, such as the identification and localization of products
in the production process, and the localization identification and obstacle recognition
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of transportation equipment inside production lines such as AGVs [47] and AMRs [48]
(Autonomous Mobile Robot) in the production process.
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