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Abstract: In a typical mobile-sensing scenario, multiple autonomous vehicles cooperatively navigate
to maximize the spatial–temporal coverage of the environment. However, as each vehicle can only
make decentralized navigation decisions based on limited local observations, it is still a critical
challenge to coordinate the vehicles for cooperation in an open, dynamic environment. In this
paper, we propose a novel framework that incorporates consensual communication in multi-agent
reinforcement learning for cooperative mobile sensing. At each step, the vehicles first learn to
communicate with each other, and then, based on the received messages from others, navigate.
Through communication, the decentralized vehicles can share information to break through the
dilemma of local observation. Moreover, we utilize mutual information as a regularizer to promote
consensus among the vehicles. The mutual information can enforce positive correlation between
the navigation policy and the communication message, and therefore implicitly coordinate the
decentralized policies. The convergence of this regularized algorithm can be proved theoretically
under certain mild assumptions. In the experiments, we show that our algorithm is scalable and
can converge very fast during training phase. It also outperforms other baselines significantly in the
execution phase. The results validate that consensual communication plays very important role in
coordinating the behaviors of decentralized vehicles.

Keywords: mobile sensing; reinforcement learning; decentralized coordination; communication

1. Introduction

Over the past decade, the ubiquitous adoption of mobile vehicles has greatly enhanced
the flexibility and convenience of environment sensing. When equipped with sensors,
multiple vehicles can autonomously navigate to different locations to collect distributed
environmental data. This paradigm, often referred to as mobile sensing, has attracted
attention from a variety of disciplines, such as air quality sensing [1], traffic monitoring [2],
fire detection [3], etc. For example, in a smart home, multiple devices (e.g., sweeping robots)
can cooperate to sense the environment and perform related tasks [4], such as cleaning
and tidying.

In a typical mobile sensing scenario, multiple events (e.g., fire, traffic jam, and pollution
emission) may occur randomly and dynamically (depicted in Figure 1). Detecting such
events in time is crucial for the mobile sensing application. However, since each vehicle can
only observe the local environment within a limited radius, one central problem emerging is
how to navigate the decentralized vehicles to maximize the spatial–temporal coverage
of the events. As the vehicles need to make sequential navigation decisions, reinforcement
learning (RL), in particular, multi-agent reinforcement learning (MARL) methods, have
become a promising approach. RL methods can be model-free to optimize the navigation
policies through exploration and exploitation. They are, therefore, applicable in different
scenarios, even when the environmental model is not assumed [5,6].
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random event

mobile vehicle

charging station

Figure 1. An illustration of the mobile sensing, where multiple vehicles cooperate to monitor the
random events. The blue dash lines represent the moving trajectory of each vehicle. Events with a
redder color imply higher intensities.

Despite the progress made in recent years, one critical challenge that has been largely
overlooked is the decentralized coordination of the vehicles. As illustrated in Figure 1, the
events are mostly distributed at the left and right sides of the map. It could be better if one
of the right vehicles moves to the left area for sensing. However, without coordination, the
right vehicles may compete to sense nearby events, leading to wasted sensing efforts. One
possible direction to tackle this challenge is to use a centralized controller that manages the
policies of all vehicles. However, centralized approaches may face the problem of “single
point of failure” and low scalability.

To navigate multiple vehicles in an open, dynamic environment, we adopt the MARL
as the basic solution. However, in the execution phase, the vehicles may still have unco-
ordinated behaviors due to the lack of common consensus [7–9]. Inspired by the recent
advances of learning to communicate [10,11], we can also introduce the communication
mechanism in the cooperative navigation. On one hand, the common signal can provide
global information from all the vehicles. On the other hand, the other vehicles’ moving
actions can also be inferred if there is positive correlation with the signal.

Our Method In this paper, we consider the decentralized management of the mobile
vehicles, and introduce a communication-based framework to coordinate the behaviors of
the vehicles. At each step before moving, the vehicles should first broadcast communication
messages to others to share information. Afterwards, when receiving the communication
messages from others, each vehicle can be conditioned on the received messages to take
navigation actions. By adopting this communication framework, the vehicles can share
information with each other to break through the dilemma of local observation. In particular,
the communication message is also learned via reinforcement learning with the aim to
maximize the spatial–temporal coverage of the events. This learning to communicate
framework is flexible, and can be applicable in different dynamic environments.

One major concern in the communication framework is that the vehicles may simply
ignore the communication message and focus only on local observations. To deal with this
problem, in this paper, we try to maximize the mutual information between the received
messages and the vehicles’ navigation policies. By maximizing this term, the mobile
vehicles can correlate their policies with the received messages. Intuitively, a positive
correlation implies that other vehicles’ policies can be inferred based on the received
message. Therefore, the vehicles can achieve consensus implicitly. Theoretical analysis
shows that this regularized algorithm can converge to equilibrium points under certain
mild conditions.

In the experiment part, we implement and evaluate the proposed algorithm in a
simulation environment built from a real-world data set. We first validate the decentralized
algorithm in both the training and execution phases. The results show that the consensual



Sensors 2022, 22, 9584 3 of 21

communication framework can successfully coordinate the behaviors of the decentralized
vehicles. The mutual information term plays an important role in the coordination. Our
method can also adapt to multiple scenarios with different hyper-parameters. In different
settings, our algorithm can consistently outperform other baselines. Our work can be
widely adopted in different fields, such as smart homes, smart city, agriculture, etc.

1.1. Contributions

Our key contributions are listed as follows:

• We model the mobile sensing problem as a decentralized sequential optimization
problem, where the vehicles navigate to maximize the spatial-temporal coverage of
the events in the environment.

• A communication framework is proposed for cooperative navigation. In particular,
the communication protocol is learned by model-free reinforcement learning methods.

• We explicitly correlate the vehicles moving policies with the communication messages
to promote coordination. The regularized algorithm can be proved to converge to
equilibrium points under certain mild assumptions.

• Extensive experiments are conducted to show the effectiveness of our approach.

1.2. Organizations

The rest of the paper is organized as follows. We first introduce the related work in
Section 2. Next, we formulate the system model and the optimization objective in Section 3.
Section 4.1 presents the framework of learning to communicate. We then present how to
enforce positive communication in Section 5. Evaluation is given in Section 6. We conclude
the paper in Section 7.

2. Related Work

In this section, we first introduce the recent advances in reinforcement learning, which
is the main technical solution in this work. Next, we will review the related works of
mobile sensing, with a focus on how to navigate the mobile vehicles in the environment to
maximize the event coverage.

2.1. Reinforcement Learning

Reinforcement learning (RL) has achieved great success in wide areas, such as Game
of Go [12], Atari [13], Starcraft [8], etc. The problem of RL can generally be modeled as
a Markov decision process (MDP) 〈S ,A, T ,R, γ〉, where S is the state space, A is the
action space, and T : S × A → S is the transition model for generating the next state.
R : S × A → R is the reward function. γ ∈ (0, 1] is a discount factor. At each step t,
when an agent observes the state st ∈ S and executes an action at ∈ A, it will then be
transitioned into a new state st+1 and receive an immediate reward rt, with probability
p(st+1, rt | st, at) ∈ T . Let Rt denote the cumulative return at time t. In an infinite horizon
MDP, the cumulative return can be represented as

Rt = lim
h→∞

1
h

h

∑
t′=t

E[rt′ ] (1)

The goal of reinforcement learning is to find the optimal policy µ∗ to maximize the
return: µ∗ = arg maxµ Eµ[R0], where policy µ(at | st) is a function which maps the state st
to a distribution of actions at. MDP has the property of the Bellman equality:

Q(st, at) = rt + γ ∑
st+1

p(st+1 | st, at)v(st+1) (2)

where Q(s, a) = E[Rt | st = s, at = a] is the state-action value function and v(s) = E[Rt |
st = s] is the value function of state s.
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The process of RL can be generally divided into training and execution phases. In
the training phase, the RL agent uses exploration and exploitation in the environment to
optimize the policy. While in the execution phase, the agent will fix the policy parameters in
the environment. In this paper, as the vehicles need to move in a continuous space, we focus
on DDPG [14,15], which can generate continuous actions. In DDPG, there is a critic function
to evaluate the state-action value by following a deterministic policy µ as Qµ(st, at), and an
actor function which maps the state st to a deterministic action, at = µ(st).

Recently, multi-agent reinforcement learning (MARL) has also been a hot research
topic. MARL models the environment as a decentralized partially observable Markov
decision process (Dec-POMDP) [8,9] as a tuple 〈S , T ,A,R,O, I〉, where O is the set of
local observations and I is the set of agents. The agents that make decisions are based on
the observations. Let ot

i ∈ O ⊆ S be the local observation of agent i at step t. Each agent
i can choose an action at

i ∈ A, forming a joint action at ∈ An, and transition to the next
state st+1 ∈ S according to the function p(st+1, rt | st, at) ∈ T , where the reward function
rt ∈ R is shared by all the agents.

To optimize the policies of the agents in MARL, previous works, such as COMA [8],
MADDPG [9], QMIX [7], etc., mainly adopted the “centralized training, decentralized
execution” (CTDE) mechanism: during training, global state information can be used to
train the policy network; and during execution, the agents can only condition on local
observations. In the execution phase, the agents could still change their policies dynamically,
leading to incoordination of the decentralized policies. However, we address that such a
CTDE mechanism may not be applicable in decentralized environments where the agents
can only be trained separately. Recent works are considering methods of learning to
communicate [16–19], where the communication policy is learned via RL. We will also
adopt this mechanism in our work. In comparison to previous works [16,17,19] that
mostly use lazy communication, we propose to enforce positive communication so that
the messages can be utilized more efficiently. Moreover, most of previous works only
used ungrounded, cheap talk for communication [10]. We address that such cheap talk
communication may not be effective in coordination.

2.2. Mobile Sensing

Mobile sensing has been extensively studied with the emergency of autonomous
vehicles. One of the main problem is maximizing the coverage of events in the environment.
Earlier works mostly assumed that the environment model is a prior and proposed combi-
natorial optimization method. For example, Karaliopoulos et al. [20] modeled the problem
as a cover problem and proposed the approximation ratio algorithm. Hu et al. [21] also
proposed mobile sensing methods with spatial–temporal awareness. The paper adopted
a combinatorial pinning zero-determinant (ZD) strategy to find a cost-efficient mobile
sensing strategy. In comparison, our work addresses the dynamics of the environment, and
the coordinated policies of different mobile users are learned via repeated interactions.

As the users make independent decisions, decentralized algorithms based on game
theory were also considered. Rahili et al. [22] designed a rule-based communication proto-
col in which agents can communicate with local neighbors and use their local information
make decisions. Esch et al. [23] depicted a distributed algorithm where the agents can com-
municate with one another wirelessly within a fixed communication radius. Li et al. [24]
modeled the mobile crowdsourcing as a Stackelberge game, and proposed a three-party
evolutionary game model for task allocation. However, most previous methods are hard
to generalize to unseen scenarios. In an open environment, it is critical for the agents to
adapt to dynamic environment events. Data privacy is also important in mobile sensing
and has been a hot research topic very recently [25–29]. In comparison, we focus more on
the navigation of the mobile vehicles instead of the data-collecting process.

When the environment model is unknown, machine learning approaches attract
attention [30,31]. In particular, as the environment is often dynamic [32,33], online learning
or RL-based algorithms are widely considered, which are sequential and model-free. An
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et al. [34] adopted the multi-armed bandits method to select users to improve service
quality. However, bandit algorithms neglect the sequential behavior of agents and may
not be feasible for mobile sensing problems. As RL uses deep learning to extract the
representation of the environment for exploration and exploitation, it can be naturally
applicable in the dynamic environment. For example, Zhang et al. [35] adopted RL
for a coarse-to-fine deep scheme to address the aspect ratio variation in UAV tracking.
Liu et al. [36,37] used deep RL for high quality data collection. The main idea is to employ
multiple mobile vehicles to schedule their paths independently to maximize the coverage
of distributed POIs (point of interests). Zeng et al. [38] divided the problem into four sub-
optimal problems, and used an iterative algorithm solve the optimal problem. Liu et al. [5]
proposed a multi-UAV mobile sensing framework based on multi-agent reinforcement
learning (MARL), and utilized “centralized training decentralized execution” (CTDE) for
cooperation. Wei et al. [6] considered the multi-robot informative path planning problem
and proposed independent learning through credit assignment for cooperative sensing.
Samir et al. [39] leveraged unmanned aerial vehicles (UAVs) for mobile sensing and
proposed an RL approach to maximize the sensing coverage. A major challenge in these
works is to coordinate the policies of different mobile vehicles for cooperation. While most
previous works implicitly learn the cooperation policies for each agent, in our work, we
addressed that coordination is crucial and explicitly proposed policy coordination methods
based on consensual communication.

3. System Model

In this paper, we consider a mobile sensing problem where a set of mobile vehi-
cles I = {1, 2, . . . , N} cooperate to maximize the spatial–temporal sensing coverage
of the events in the environment. Suppose the time horizon is divided into infinite
discrete intervals as {0, 1, 2, . . . , ∞}. At each interval t, each vehicle i ∈ I at position
(xt

i , yt
i) need to decide the moving action at

i , which can be represented as a tuple of speed
νt

i ∈ [0, Smax] and angle φt
i ∈ [0, 2π), i.e., at

i = (νt
i , φt

i ). After moving, the new position will
be (xt

i + νt
i sinφt

i , yt
i + νt

i cosφt
i ). Meanwhile, vehicle i is associated with a battery capacity

bt
i ∈ [0, bmax]. The battery has a consumption rate ∆t

i that is linear with the vehicle speed,
i.e., ∆t

i = βνt
i + ∆0, where β is a coefficient and ∆0 is a constant intrinsic battery consump-

tion. The battery capacity will be updated as bt+1
i = bt

i − ∆t
i each time. To avoid running

out of power, the vehicles should regularly move to the charging station, in which the
battery will be recharged for a fixed number of units b0 at each interval.

In the environment, random events may happen at different positions with time-
varying intensities. Let E be the set of events. We use τt

e , e ∈ E to represent the event
intensity of e at step t. The event e at position (xt

e, yt
e) is sensed/covered by vehicle i if it

is within a limited radius of i. Let 1t
ie be an indicator function to represent if the event is

covered by vehicle i:

1
t
ie =

1, if
√
(xt

i − xt
e)

2 + (yt
i − yt

e)
2 ≤ li,

0, o.w.
(3)

where li is the sensing radius of vehicle i. The benefit will be τt
e if the event e is covered

by at least one of the mobile vehicles. Note that if multiple vehicles cover the same event
e simultaneously, the benefit is still τt

e . Therefore, the vehicles should cooperate to avoid
repeatedly sensing the same event. We use 1t

e as an indicator function that the event e is
covered by at least one vehicle at interval t, i.e., 1t

e = max{1t
1e,1

t
2e, . . . ,1t

Ne}. The problem
can then be formulated as finding the joint moving policies for the vehicles, so that the
cumulative sensing coverage of the events is maximized:

max
∞

∑
t=0

∑
e∈E

τt
e1

t
e

s.t. bt
i ≥ 0, ∀i ∈ I , ∀t ∈ {0, 1, 2, . . . ∞}.

(4)
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The inequality constraint in the objective means that the mobile vehicles could no
longer move or sense when running out of battery. According to the objective, the vehicles
need to make sequential navigation decisions to cover the dynamic events. However, as the
vehicles make decentralized decisions, it could be difficult for the vehicles to acknowledge
others’ observations or intentions. This brings the dilemma of local observation and will be
the main focus of this paper. Table 1 summarizes the key parameters in this paper.

Table 1. Key parameter table of system model.

Notation Definition

I the set of mobile vehicles: I = {1, 2, . . . , N}

E the set of events

t the time step t ∈ {0, 1, . . . , ∞}

(xt
i , yt

i ) the position of vehicle i at step t

(νt
i , φt

i ) moving speed and angle of vehicle i at step t

bt
i battery capacity of vehicle i at step t

∆t
i battery consumption rate of vehicle i at step t

b0 battery charging rate at the charging station

li the sensing radius of vehicle i

τt
e the event intensity of event e ∈ E at step t

c the penalty for running out of battery

rt
i the reward of vehicle i at step t

µi(·) the moving policy function of vehicle i

µm
i (·) the communication policy function of vehicle i

Qi(·) the action–value function of vehicle i

vi(·) the state value function of vehicle i

q(·) proxy for the posterior function

I(·) mutual information function

ρ the weight of the MI reward

4. Learning to Communicate

To break through the dilemma of local observation, in this section, we first formulate
the problem as a Markov game. Then we formally introduce the communication framework,
where the vehicles can share information with each other. Finally, we will show how to
optimize the moving policies of each vehicle under this framework.

4.1. Mobile Sensing as a Markov Game

According to the system model, we can formulate the mobile sensing problem as
a Dec-POMDP with tuples of 〈S ,O,A, T ,R, I〉, where the set of agents I represent the
mobile vehicles. Now we give the definitions of other elements as follows:

• State: In the mobile sensing problem, at each interval t, the system state st ∈ S includes
the global information of the environment.

• Observation: In the environment, each vehicle i can only partially observe the state.
The observation ot

i ∈ O is the subset of the environment state: ot
i ⊆ st. We assume

that each vehicle can observe the environment information within the sensing radius
li, including its own position, last moving action, remaining battery capacity and
sensed events.
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• Action: The action of the mobile vehicle i is a continuous tuple ai = (νt
i , φt

i ) ∈ Ai,
where νt

i is the speed, and φt
i represents the moving angle. At each interval, all the

vehicles will take the moving action to form a joint action at = (at
1, at

2, . . . , at
N).

• Transition: Given the joint actions of the vehicles, the environment will transit to the
next state st+1 according to the transition function:

p(st+1 | st, at) : S ×A1 × · · · × AN → S (5)

Note that this function is not known to be used, and can only be inferred through
repeated interaction with the environment.

• Reward: As the mobile vehicles cooperate to maximize the spatial–temporal coverage
of the environment, we define a global reward as the sensed events intensities:

rt = ∑
e∈E

τt
e1

t
e (6)

However, for each vehicle, it is intricate to infer its contribution to the global reward.
Therefore, we decompose the reward function and define the individual reward for
each vehicle i as

rt
i = ∑

e∈E ,1t
ie=1

τt
e1

t
ie

∑k∈I 1
t
ke

(7)

The reward function indicates that the reward of sensing event e is averaged by the
number of vehicles that cover e at this step. It is obvious to see that rt = ∑i∈I rt

i . To
take the battery capacity into account, we relax the constraint in Equation (4) with
an additional term c when the vehicle runs out of battery power. The vehicles will
receive this penalty when the capacity is below zero, i.e., c(bt

i ) = c if bt
i < 0; otherwise,

c(bt
i ) = 0. The value of c balances the preference between sensing a reward and

penalty of battery loss. The relaxed version of the reward can be formulated as

rt
i = ∑

e∈E ,1t
ie=1

τt
e1

t
ie

∑k∈I 1
t
ke
− c(bt

i ) (8)

4.2. The Communication Framework

As the vehicles only have limited observation, we introduce a communication frame-
work to share information among the vehicles. Figure 2 presents an illustration of the
communication procedure. We now separately describe how to broadcast and receive
the messages.

Communication Broadcasting As presented in Figure 2, at each step t before moving,
each vehicle i first broadcasts a message mt

i to other vehicles. When broadcasting the
message, an intuitive idea is to send the observation ot

i and the intended action at
i to

other vehicles. However, this is not possible since the vehicle will also be conditioned
on the received messages from others to take action at

i . Moreover, the dimensions of the
observation may be large with high overhead. Instead, we introduce the mechanism of
learning to communicate. Suppose vehicle i uses a communication policy network µm

i (o
t
i )

parameterized by θm
i to output the message content mi, which can be a fixed-size continuous

vector. In particular, the communication policy network can be optimized via the RL-based
algorithm, where the goal is the long-term cumulative sensing coverage of the events. By
learning to communicate, the vehicles can encode the observations and intentions into a
compact embedding, which significantly reduces the transmission cost. Moreover, it can be
flexible to deal with different scenarios and environments. More details on how to optimize
the communication policy network will be introduced in Section 4.3.
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Figure 2. An illustration of the procedure. With local observation, the vehicles first exchange their
messages by broadcasting. Afterwards, they make the moving decision based on the received message
and local observation. This figure shows the communication process of the ego vehicle i in a single
step t: The vehicle first obtains the observation ot

i in the environment. The vehicle then broadcasts
a message mt

i to other vehicles based on the observation. The messages (mt
1, . . . , mt

N) from other
vehicles will also be aggregated as part of the observation. Vehicle i will finally make the moving
decision at

i based on the environment observation and the aggregated message.

Communication Receiving After broadcasting, each vehicle can also receive the mes-
sages from other vehicles: mt = (mt

1, mt
2, . . . , mt

N). The messages can be aggregated with
different operators, such as mean, max, or neural networks, such as recurrent neural net-
works (RNN). The aggregated message can be represented as mg = AGG(mt), where
AGG is the aggregator of the received messages. Suppose the moving policy of vehicle
is represented as µi(·). It can be formulated as conditioning on the local observation and
received messages for moving: at

i = µt
i(o

t
i , mg).

4.3. Policy Optimization

With the communication framework, we can now optimize the moving policy net-
works µi(·) and communication policy networks µm

i (·) for each vehicle i ∈ I . As the
moving action of each vehicle is a continuous vector, we use DDPG for policy optimiza-
tion. Let Qi(·) be the action value function (critic) parameterized by θQ

i . (We temporarily
abbreviate the time indicator t. The sign − indicates t− 1 and ′ indicates t + 1.) The policy
functions µm

i (·), µi(·) and the critic function Qi(·) can all be implemented with neural
networks. The parameters θi of the moving policy network µi(·) can be updated according
to the deterministic policy gradient theorem [14]:

∇θi J(µi) = Eoi ,m,ai∼D [∇θi µi(oi, mg)∇ai Qi(oi, ai, mg) |ai=µi(oi ,mg)] (9)

where J(·) is the return of the policy and D is the set of historical data samples. Similarly,
we can also update the parameters of the communication policy network µm

i as

∇θm
i

J(µm
i ) = Eoi ,m,ai∼D [∇θm

i
µm

i (oi)∇mi Qi(oi, ai, mg) |mi=µm
i (oi)

] (10)

where θm
i represents the parameters of the communication policy network. The action

value network can be updated by minimizing the temporal difference (TD) error:

L(θQ
i ) =Eoi ,mg ,ai ,ri ,o′i ,m

′
g
[Qi(oi, ai, mg)−

(ri + γQi(o′i , a′i, m′g) |m′i=µm
i (o′i),a

′
i=µi(o′i ,m

′
g)
]2

(11)

According to the above formulations, we can update the parameters of the policy
networks and action value networks simultaneously. Compared to the CTDE framework,
which requires centralized training, in our framework, the networks can be optimized
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independently based on the local observation and communication messages. Therefore,
this framework can be applicable in decentralized training scenarios.

5. Consensual Communication

By learning to communicate, the mobile vehicles can share local information with each
other. However, previous works have shown that selfish agents do not learn to use this
type of ungrounded, cheap talk communication channel effectively [11]. In this section,
we first try to enforce the mobile vehicles to have consensual communication, i.e., the
communication will indeed influence the vehicles’ behaviors. Next, we show that the
algorithm can converge under the communication framework.

5.1. Mutual Information for Consensual Communication

To enforce positive communication, we maximize the mutual information between
the moving policy µi and the aggregated message from i’s neighbors: mg. Intuitively, by
maximizing the mutual information, the vehicle can correlate its moving policy with the
messages from neighbors. This can also be regarded as reducing the uncertainty of vehicles’
moving policy after receiving the messages. Formally, we augment the reward function
as follows:

r̂i = (1− ρ)ri + ρI(µi; mg) (12)

where ρ ∈ [0, 1] is a hyper-parameter that controls the importance of the mutual information
term I(µi; mg). The mutual information item can be expressed in terms of entropy and
conditional entropy:

I(µi; mg) = H(mg)−H(mg | µi)

= H(µi)−H(µi | mg)
(13)

where H(·) is the entropy function. The mutual information will become zero if the
communication message does not influence the moving policy. In this case,H(mg) equals
H(mg | µi). Maximizing the mutual information indicates that we enforce all the vehicles to
correlate their policies with the message. Thus, the vehicles can infer other neighbors’ behaviors
by acknowledging the broadcast message, which implicitly promotes coordination among
the vehicles. However, directly maximizing the MI is intractable. We instead introduce the
variational distribution q(mg | µi) as a proxy for the posterior over µi. Learning a neural
network to predict the messages based on the policy µi provides a lower bound on MI:

I(µi; mg) = H(mg)−H(mg | µi)

= H(mg) +Emg ,µi [log q(mg | µi)]

−Emg [DKL(p(mg | µi) || q(mg | µi))]

≥ H(mg) +Eµi ,mg [log(q(mg | µi)]

(14)

where DKL is the KL divergence between two probabilities. The establishment of inequality
is because the KL-divergence distance is non-negative. In practice, as the policy µi is a
network, we use historical observation–action trajectories traji to represent the policy.

The network structure of our framework is presented in Figure 3. For each vehicle,
there are four neural networks associated, including one critic network, two actor networks,
and an additional variation network which is used for policy coordination. The output
of the critic network can be used to update the actor networks during training. For the
variation network, even though the gradient cannot be backpropagated to update the
actor–critic networks, the augmented reward function can guide the mobile vehicles to
generate coordinated behaviors. In the network structures, FC means fully connected,
and GRU is gated recurrent unit. GRU is used to extract information from the sequential
observations. More details of the network parameters will be introduced in the experiment
part. As the network parameters for each vehicle can be optimized in a decentralized way,
this framework can be scalable to a large number of mobile vehicles.
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Figure 3. The network structure of policy coordination with consensual communication. FC repre-
sents fully connected layer, and GRU represents gated recurrent unit layer. AGG is the aggregator
operator for the received messages. According to the network structure, each mobile vehicle needs
to maintain 4 networks: moving actor network (the green part), critic network (the blue part),
communication actor network (the orange part) and the variation network (the purple part).

Algorithm Now we formally present the algorithm in Algorithm 1 for an ego vehicle
i. In this algorithm, we first initialize the parameters of the networks for the ego agent
i. At each step, we generate the broadcast message mi based on the current observation
oi. The agent will then receive and aggregate messages from others and execute actions
ai. The tuples will be stored into the replay buffer D. During training, we sample a mini-
batch of tuples from the buffer and perform gradient back propagation to update the critic
network and actor networks. Finally, the variation network is also trained by maximizing
the mutual information.

Algorithm 1: Policy optimization for ego vehicle i

Randomly initialize neural networks Qi, µm
i , µi;

Initialize global replay buffer D = ∅;
Initialize message m← 0, random processes Nm

i and N a
i ;

Receive observations of vehicle i oi;
while not converge do

/* Execute actions */
Broadcast message mi ← µm

i (oi) +Nm
i ;

Receive messages mg = AGG(m);
Execute moving action ai ← µi(oi, mg) +N a

i ;
Get reward ri and next observation o′i ;
Store 〈oi, ai, m, o′i , ri〉 in D;
Set oi = o′i ;
/* Train networks */
Sample K tuples (oi, ai, m, o′i , ri, m′) from D;
Update moving actor µi(·) with Equation (9);
Update critic network Qi(·) with Equation (11);
Update communication actor µm

i (·) with Equation (10);
Update variation network q(·) by maximizing Equation (14);

end

Complexity According to the above algorithm, we give a formal analysis of the time
complexity of the training phase for each ego vehicle. At each step of training, the vehicle
need to sample K tuples and update the networks. The update of the networks takes



Sensors 2022, 22, 9584 11 of 21

O(1) complexity for gradient descent. Suppose the convergence takes C steps. The time
complexity of the algorithm will be O(KC). In the experiments, we will show that when
choosing the batch size K = 256, the algorithm takes about C = 100, 000 steps to converge.
In fact, this algorithm can be computed on a cuda device very quickly. During execution,
the policy can be computed in O(1) time.

5.2. Convergence Analysis

Given the above algorithm, in this section, we formally show that the value functions
Qi, i ∈ I can converge to an equilibrium point under certain assumptions:

Assumption 1. Every state s ∈ S and action ai ∈ A, for i ∈ I , is visited infinitely often.

Assumption 2. The critic learning rates αt for optimizing Equation (11) satisfy ∑∞
αt=0 αt(s, a) =

∞, and ∑∞
αt=0[αt(s, a)]2 < ∞ holds uniformly with probability 1.

Assumption 3. The aggregated message mg is a representation of the global state information s
and action a.

Assumption 4. The stage game at each interval t has a global optimal point. The global points are
selected by our algorithm to update the critic functions with probability 1.

Assumptions 1 and 2 are weak ones that are easy to meet. Assumption 3 is met if (1)
the communication message mg can encode the entire state without information loss; (2)
every other vehicle’s policy can be inferred based on mg. The two conditions are reasonable
according to our communication-based framework. Assumption 4 is a strong assumption.
It may not be easily met. However, our empirical experiments demonstrate that this
assumption is satisfied mostly since the algorithm can converge in different scenarios. The
convergence result mainly originates from the following lemma [40]:

Lemma 1. (Szepesvari and Littman (1999), Corollary 5) Assume ρt satisfies Assumption 2
and the mapping Pt : Q → Q has the following condition: there exists a number 0 < γ < 1
and a sequence λt ≥ 0 converging to zero with probability 1 such that

∥∥PtQ− PtQ∗
∥∥

∞ ≤
γ‖Q−Q∗‖∞ + λt for all Q ∈ Q and Q∗ = E[PtQ∗], then the iteration defined by

Q′ = (1− ρt)Q + ρt[PtQ] (15)

converges to Q∗ with probability 1.

According to Assumption 3, the messages mg is a compact representation of the global
state s and actions a. Therefore, there is Qi(s, a) = Qi(oi, ai, mg). Define the transition
function Pt and the convergence point Q∗ as

Definition 1. Let Pt : Q → Q be a mapping on the complete metric space Q → Q, PtQ =
(PtQ1, PtQ2, . . . , PtQN), where

PtQi(s, a) = ri + γQi(o′i , µi(o′i , ¯m(s′)), ¯m(s′))) (16)

for i ∈ I , where ¯m(·) = (µm
1 , . . . , µm

N).

Definition 2. Q∗ is the convergence point if it satisfies

Q∗i (oi,oi, mg) = ri + γ ∑
s′∈S

p(s′ | s, a)

Q∗i (o
′
i , µi(o′i , ¯m(s′), µm(s′)))

(17)
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With the above definitions, we show that the transition function Pt is a “contraction
mapping” with the fixed point at Q∗.

Lemma 2. The convergence point is a fixed point: E[PtQ∗] = Q∗.

Proof. Since Q∗ is a convergence point in the game, the vehicles will still follow the current
policy µ∗. According to the Bellman equation (Equation (1)), there is

Q∗i (oi, ai, mg)

= ri + γ ∑
s′∈S

p(s′ | s, a)Q∗i (o
′
i , ¯m(s′), µi(o′i , ¯m(s′)))

= ∑
s′∈S

p(s′ | s, a)(γQ∗i (o
′
i , ¯m(s′), µi(o′i , ¯m(s′))) + ri)

= E[PtQ∗i (oi, xi, mg)]

(18)

where the forth line takes the expectation from p(s′ | s, a) and the Bellman equation.

Next, we show that Pt is a “contraction mapping”. According to Assumption 3, there is
µi(oi, mg) = µi(s). Similar to [41], the max-norm of the mapping operator can be defined as∥∥Q− Q̂

∥∥
∞ ≡ max

i
| Qi − Q̂i |

≡ max
i,s
| γQi(s)− γQ̂i(s) |

≡ max
i,s,a

γ | Qi(s, a)− Q̂i(s, a) |

Lemma 3.
∥∥PtQ− PtQ̂

∥∥
∞ ≤ γ

∥∥Q− Q̂
∥∥∞, ∀Q, Q̂ ∈ Q.

Proof. According to the transition function Pt, there is∥∥PtQ− PtQ̂
∥∥

∞

= max
i,s

γ | Qi(s, a)− Q̂i(s, a) |

= max
i,s

γ |
N

∏
j=1

µa
j (s)Qi(s)−

N

∏
j=1

µ̂a
j (s)Q̂i(s) |

≤ max
i,s

γ |
N

∏
j=1

µa
j (s)[Qi(s)− Q̂i(s)] |

≤ max
i,s

γ | Qi(s)− Q̂i(s) |

= γ
∥∥Qi − Q̂i

∥∥
∞

(19)

The fourth line of equality comes from our Assumption 3 that the message mg is a
compact representation of s. The fifth line of inequality is from Assumption 4 that the
vehicles play the best response with respect to the broadcast message mg.

Summarizing the above two lemmas, it is proved that Pt is a “contraction mapping”
with the fixed point at Q∗. Thus, according to Lemma 1, there is the following.

Theorem 1. Under Assumption 1-4, the sequence (Q1, . . . , QN) updated by Algorithm 1 converges
a fixed value Q∗ = (Q∗1 , . . . , Q∗N).

6. Evaluation

In this section, we first introduce the experiment setup, including the description
of the environment, the baselines, and the model parameters. Next, we will show the
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performance of our algorithm with comparisons with other baselines. In particular, the
results validate the importance of the consensual communication framework.

6.1. Experiment Setup

The Environment To validate the effectiveness of our algorithm, we manually con-
struct a mobile sensing simulation environment based on real historical data set. The data
set is collected from a road network from Google Map (Google Map: https://www.google.
com/maps, accessed on 10 March 2022), which has the traffic volume at the road network
across different hours (the data sets generated during the current study are available in
the following https://www.dropbox.com/s/42cl68ns2fud5yk/GOOGLETraffic.zip?dl=0,
accessed on 10 March 2022). We focus on an area of 10 km × 10 km square area centered at
(48.16, 16.33). In this map, we uniformly sample 40× 40 points as the locations of events.
For each position, the traffic volumes are extracted as the event intensities. An illustration
of the event map at a given time is presented in Figure 4. The dots represent the events
happening at different locations. The events have 5 levels of intensities as 0, 1, 2, 3, 4. We
also add random uniform noise (0, 1) to the event intensities for randomness. Dots with
darker colors have higher event intensities. In this map, there assumed to be 5 charging
stations at locations of (8, 32), (32, 8), (8, 8), (32, 32) and (20, 20).

0 5 10 15 20 25 30 35 40
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20

25

30

35

40

Figure 4. A snapshot of the event intensities in the target.

By default, we suppose the max speed of each vehicle is Smax = 2, and the sensing
radius is li = 2. Therefore, each vehicle can cover multiple events at the same time. The
battery capacity of each vehicle is bmax = 40. During moving, the coefficient of battery
consumption is β = 1, ∆0 = 1. The vehicles can regularly navigate to the charging station,
where they will be recharged b0 = 20 units of battery at each time step. The penalty
of running out of power is set as c = 40. We will also try other values to validate the
effectiveness of our algorithm. A small size of the replay buffer is set as 105, since the
vehicles policies may be dynamic.

Baselines We name our algorithm as ConComm (CONsensual COMMunication), and
compare with the following baselines which can generate continuous actions.

https://www.google.com/maps
https://www.google.com/maps
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• ConComm (no MI): In this algorithm, we implement the ConComm algorithm without
the mutual information item. This comparison is to demonstrate the effectiveness of
the mutual information item.

• DDPG [15]: In this algorithm, each mobile vehicle independently learns a policy to
schedule the sensing path. The main drawback is that the multi-agent environment
does not follow the Markov property, which may lead to the failure of this algorithm.

• MADDPG [9]: MADDPG uses the CTDE framework, where there is a global critic
function that has access to the historical samples from all mobile vehicles. However,
the policies of the vehicles are not coordinated explicitly during execution.

• MAPPO [42]: This algorithm is a multi-agent version of PPO. It has achieved state-of-
the-art performance in many scenarios.

Model Parameters For different algorithms, we use similar critic network structures
with an FC layer with 64 hidden units. The FC layer is followed by a ReLU activation layer
for non-linear activation. The output is connected with a GRU layer with 64 hidden units
and then fed into another FC layer to output the critic value. The actor networks have a
similar structure. The only difference is the output of the networks. The communication
actor network outputs a message with size 6 followed by a sigmoid layer to restrict the
message in the range (0, 1). The messages are aggregated with a MEAN operator, i.e.,
mg = 1

N ∑i∈I mi. The moving actor network outputs a vector of size 2, followed by a
sigmoid layer to restrict the range of the speed and angle. Maximum speed and angle
are used to project the outputs into new ranges. For the variation network, the input is
the embedding after the FC layer. It is then fed into two FC layers with 64 hidden units
to predict the aggregate message. Mean squared error is used as the loss function for the
variation network. The weight of the MI item ρ is set as 0.5 so that different parts of the
reward function are comparable.

6.2. Performance Analysis

Convergence of Training In the first experiment, we assume there are N = 12 mobile
vehicles, and examine the convergence of the algorithms during training in Figure 5. The
average step reward is evaluated every 200 steps. We assume different vehicles share the
same network parameters. Nonetheless, the vehicles can still behave differently with local
observations. The y-axis represents the average step reward for each vehicle r = 1

N ∑i∈I ri.
Each of the RL-based algorithms is trained 3 times. The shaded area represents one standard
deviation. As presented, our proposed ConComm achieves the highest performance at
most of the time. The average step reward of ConComm can converge to around 17 after
about only 50,000 steps. The performance then stabilizes around at this level. Moreover, the
variance of ConComm is also more stable compared to others. This is because the vehicles
are more likely to have coordinated behaviors. ConComm (no MI) is the algorithm without
explicit policy coordination. The result can be relatively high due to the communication
among the mobile vehicles. However, the performance is worse than ConComm, which
validates the effectiveness of the MI item. DDPG has the worst performance among the
algorithms. This is mainly due to the fact that the vehicles make decisions independently.
Therefore, there may be lots of repeated sensing efforts among the vehicles. MADDPG
and MAPPO have similar performances that are slightly better than DDPG. The main
reason is that they adopt the “centralized training, decentralized execution” mechanism.
However, in the execution phase, there may still be uncoordinated behaviors with unseen
environment states. Different vehicles may not achieve consensus before making decisions.
The above comparisons show that communication plays an important role in coordinating
the vehicles’ behaviors.
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Figure 5. The performance of different algorithms in the execution phase.

Performance during Execution After training, we fix the network parameters and
compare the performance of different algorithms in the simulation environment without
exploration. The results are shown in Figure 6. In this figure, the height of each bar
represents the sensing reward, where the red part is the battery penalty, and the blue part
is the true average reward, which equals the sensing reward minus the battery penalty. The
algorithm with the highest blue bar has the best performance.
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Figure 6. The performance of different algorithms in the execution phase.

As presented, our proposed ConComm achieves the best performance (the blue
part) among the algorithms. In particular, the sensing reward (the blue+red part) also
outperforms other algorithms significantly. This is because the vehicles in ConComm can
avoid repeated sensing through communication. The ConComm (no MI) can also have
high performance. It achieves lower battery penalty because the vehicles’ behaviors will
not be affected by the communication messages explicitly. DDPG also performs well in
charging since each vehicle only cares about its own reward. However, the global sensing
reward can be quite limited, which may be caused by the lack of coordination. For the
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MADDPG and MAPPO algorithms, as they lack the mechanism of coordination in the
execution phase, they may not perform as well as our ConComm algorithm. In summary,
to achieve high performance, the vehicles should not only try to sense more events with
the limited battery, but they need also coordinate with others to avoid repeated sensing.

We also investigate the trajectories of the vehicles in our ConComm to show the
effectiveness. We collect the vehicles’ trajectory in the execution phase for 1000 steps and
obtain the appearance count in the map. The appearance counts are normalized and plotted
as a heatmap. The result is presented in Figure 7. In the heatmap, areas with a redder
color are visited more often by the mobile vehicles, and the blue areas are visited less
often. Compared with Figure 4, the areas where the event intensities are higher also have
more vehicle appearances. These areas are dispersed since the vehicles can cooperate to
maximize the coverage and reduce repeated sensing. Moreover, the areas near the charging
stations also have redder colors; this is because the vehicles regularly moves to the stations
for charging. Above all, the heatmap validates that the vehicles of ConComm can not
only navigate back for charging, but also properly move to the areas with high event
intensities. This heatmap illustrates that our proposed ConComm can properly coordinate
the navigation of the vehicles.
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Figure 7. The heatmap of the vehicles trajectories of ConComm.

Policy Coordination via Communication The above two experiments have already
shown that explicitly coordinating the policies of different mobile vehicles is crucial for
cooperative sensing. In this part, we investigate the effect of coordination by adjusting the
weight of the MI item. In addition to the default value ρ = 0.5, we change the weight ρ to
different values from 0 and 1 and observe the convergence process during training. Note
that when ρ is 0, the algorithm degrades to the case of ConComm (no MI). When ρ is 1, the
vehicles neglect the sensing reward and battery penalty, and focus only on coordinating
with others.

The results are shown in Table 2. As presented, introducing the policy coordination
can significantly improve the performance when ρ is non-zero. This validates that positive
communication is necessary for coordinating the decentralized vehicles. Meanwhile, when
the coefficient is too large, the performance may decrease since the vehicles care more about
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coordination and less about sensing reward. When the coefficient reaches 1, the vehicles
focus only on the coordination and thus the sensing reward is very poor. The results show
that the vehicles need to balance between coordination and sensing. The performance will
degrade if focusing on only one of them.

Table 2. Different parts of the performance of ConComm. The average step reward can be described
as the difference between the sensing reward and the battery penalty.

ρ Sensing Reward Battery Penalty Average Step Reward

0 17.33 2.14 15.19

0.25 20.83 3.20 17.35

0.5 20.76 3.34 17.42

0.25 19.58 4.20 15.38

1 7.87 37.36 −29.49

Validating the Variation Network In this part, we show that the communication
message indeed influences the vehicles’ moving policy. More concretely, we compute
the cross entropy between the policy µi and the neighbors’ aggregated message mg as
H(µi, mg). The policy µi is represented as the historical trajectories traji. Cross entropy
measures the average number of bits needed to identify an event drawn from the set if
a coding scheme used for the set is optimized for an estimated probability distribution,
rather than the true distribution. It can also be regarded as the distance between the two
probability distributions. A low cross entropy distance indicates that the two probability
distributions could have high correlation.

We present the dynamics of the cross entropy during training in Figure 8. As presented,
the cross entropy is high at the beginning. This is because the vehicles have not learned
to correlate with the communication message. As the training proceeds, the cross entropy
value becomes lower and stabilizes at about 1.0. This validates that the policy µi becomes
more correlated with the communication.
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Figure 8. The cross entropy between the vehicles aggregated message mg and moving policy µi

represented as traji. The value is lower when the message is more correlated with the vehicles’
moving policies.
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Validation the Penalty of Battery Next, we investigate the effect of the hyper-parameter
c in shaping the battery penalty. Generally, with a larger value of c, the vehicles will navi-
gate to the charging station more frequently to avoid running out of battery. In practice, this
parameter can be set freely by the vehicles and our algorithm can adapt to different values
of c. In this experiment, we train the algorithms with different values of c and validate the
performance with the default value c = 40. Figure 9 presents the results.
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Figure 9. The average step reward (orange part), sensing reward (red part) and battery penalty (blue
part) in the execution phase with respect to different values of c.

As presented, when c is 0, the vehicles will not care about the battery penalty and
focus only on sensing events. Therefore, there will be high sensing reward, but the battery
penalty will also be very high, leading to low average step reward. When the value of c
increases, the vehicles will be more conservative to run out of power. They will have low
battery penalty. However, the sensing reward will also decrease. In general, choosing a
proper value of c can balance the preference of sensing and battery. In practice, we can set
the value of c as the cost of reclaiming the vehicles when they run out of power. If this
is unacceptable, we can also enforce the vehicles to navigate back to the charging station
if needed.

Scalability In this last experiment, we validate the scalability of ConComm. We
increase the number of mobile vehicles to 128 and charging stations to 16. The map is
divided into 80× 80 grid space with charging stations randomly and uniformly distributed.
Similar to that above, we assume the mobile agents share the same network parameters. The
algorithms of MADDPG and MAPPO would take too much time, so we only present the
result of ConComm, ConComm (no MI) and DDPG. As shown in Figure 10, the ConComm
algorithm can still achieve better performance. When there are more agents, they may
become more easy to coincide. So the average step reward will be lower than before.
Nonetheless, ConComm can still successfully coordinate the behaviors of the agents and
achieve high performance. In this case, as there is no explicit coordination, the variance of
ConComm (no MI) will be larger. The result of DDPG is also not stable since the vehicles’
policies are mostly dynamic, leading to low efficiency of coordination. Moreover, the
performance of DDPG will even degrade after about 600,000 steps. This may result in the
DDPG agents being not coordinated and falling into local optimal points.
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Figure 10. The scalability.

7. Conclusions

This paper studies the problem of mobile sensing in an open, dynamic environment.
To maximize the long-term spatial–temporal coverage of the events, we propose a decen-
tralized policy coordination framework. The main idea is to introduce a communication
mechanism among the mobile vehicles. On one hand, the vehicles can share local informa-
tion with each other to break through the dilemma of decentralized execution; on the other
hand, the vehicles can have coordinated behavior with enforced positive communication.
In particular, the consensual communication is achieved by maximizing the mutual infor-
mation between the received message and the policy. We conduct extensive experiments
to validate the performance of our algorithm. The results show that our algorithm can
converge very fast in the training phase, and outperforms other baselines significantly in
the execution phase. Moreover, the experiments show that the consensual communication
mechanism plays an important role in coordinating the behaviors.

For future works, we aim to extend the current method from two aspects. First, the
battery constraints in this paper are relaxed as part of the objective, and may lead to
violations. Therefore, we need to devise method with “hard” constraints. Second, we will
improve the interpretability of the communication messages to understand the internal
mechanism that promotes the cooperation among the vehicles.
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