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Abstract: It is desirable to enable emitter location using frequency difference of arrival (FDoA)
measurements only, since many signals are characterized by coarse range resolution and fine Doppler
resolution. For instance, while using the cross-ambiguity function (CAF) to measure the time
difference of arrival (TDoA) and the FDoA of a narrowband signal, it is difficult to obtain accurate
TDoA measurements because the Doppler resolution is higher than the range resolution. Grid-based
and sample-based algorithms are developed to solve the two-dimensional (2D) emitter location
problem, where the solution space is approximated, respectively, by generating deterministic and
random emitter location candidates. Simulation results corroborate the viability of both non-iterative
algorithms to estimate the emitter location using a single-time snapshot of FDoA measurements only,
without any prior location information or any knowledge about the distribution of measurement
errors. The achieved accuracies are sufficient for early warning purposes, preparing defenses, and
cueing more accurate location sensors by directing additional surveillance resources.

Keywords: emitter location; geolocation; frequency difference of arrival (FDoA); grid-based location
estimation; sample-based location estimation

1. Introduction

Emitter location is desirable or even necessary in both civilian and military applications.
Therefore, emitter (also target or source) location is the focus of considerable research efforts
due to its importance in microphone arrays [1,2], sonar [3], radar [4], and electronic warfare
(EW) [5] applications. In emergencies, it is of paramount importance to be able to determine
the location of the broadcasted distress radio signals to direct rescue as accurately and
quickly as possible. The angle of arrival (AoA) [5]; time difference of arrival (TDoA) [6];
frequency difference of arrival (FDoA) [7–9], also known as differential Doppler (DD);
and differential Doppler rate (DDR) [10] measurements of the emitted signals are typical
parameters for location of noncooperative emitting sources.

The AoA, TDoA, and FDoA location parameters can be utilized in isolation or jointly
by combining two techniques only [11] or by combining two techniques with an additional
method [10] in one approach. The pairing of TDoA and FDoA [12,13] high-precision emitter
location techniques is the most common arrangement discussed in the literature because
both require simple sensors at the receiver stations, whereas the AoA technique requires
more complex receivers at each direction finding (DF) station [14]. DF requires bulky
and expensive directional antennas, and the accuracy is severely impacted by the emitter
motion, as well as the duration of signal emission. TDoA/FDoA techniques are not subject
to these limiting factors [15]. For example, it is difficult to equip an unmanned aircraft
system (UAS) with a directional antenna capable of receiving the very high frequency
(VHF) band due to the size, weight, and power (SWaP) constraints, whereas a smaller
non-directional antenna can be employed instead when using the TDoA/FDoA geolocation
technique [15]. The performance of TDoA/FDoA is dependent on the accuracy of the
timing synchronization [16] of the correlated signals and not the time length of the signal
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emission. Therefore, TDoA/FDoA techniques are not impaired if the duration of the
emitted signals is extremely short. In contrast, DF techniques require a longer duration of
the emitted signals to achieve a comparable performance [15].

Geolocation accuracy is impacted by the signal-to-noise ratio (SNR) level. In general,
the greater the range to the emitter, the lower the SNR and the less accurate the geolocation
performance, and vice versa. The performance of DF techniques degrades linearly with
the range to the emitter, whereas TDoA/FDoA approaches are less dependent on the SNR
level (and hence the range), since the SNR is only part of the overall error contribution from
the Cramér–Rao lower bound (CRLB), due to taking advantage of the measured differences
in time and frequency of arrival [15]. Therefore, the accuracy of TDoA/FDoA approaches
is less impacted by the range to the emitter than DF techniques, provided the SNR level is
adequate for performing measurements.

Emitter location using the above measurement techniques is a nonlinear estimation
problem and, therefore, is a nontrivial task. Although the FDoA technique is well studied
and understood, it is less frequently used as a standalone solution for emitter location
than the TDoA or AoA techniques. FDoA-based emitter location, in particular, is highly
nonlinear and, therefore, the solution estimation problem is ill-conditioned and sensitive to
noise [17]. The FDoA technique also requires that either the emitter or the receiver/sensor
stations (more commonly) be moving to generate the DD needed for the FDoA measure-
ment. Uncertainties in the sensor’s velocity, i.e., magnitude and direction of motion, make
obtaining accurate frequency measurements for FDoA more difficult.

Signals of all kinds, including radar signals, can be represented as a function of time
or frequency, and both expressions are related via the Fourier transform, where repetitive
properties in one domain appear differently in the other [18]. The cross-ambiguity function
(CAF), which conventionally determines the performance of a waveform, represents the
response of sensors/receivers to a point emitting source, as a function of time delay and
Doppler shift. Since many signals are characterized by coarse range, i.e., TDoA, resolution,
and fine Doppler resolution when using the CAF to measure the TDoA and FDoA [19],
it is desirable to enable emitter location using FDoA measurements only in case of, e.g.,
a narrowband signal [17,19], because the Doppler resolution is higher than the range
resolution and, therefore, it is difficult to obtain accurate TDoA measurements. The radar
ambiguity function also confirms the inverse relationship between Doppler and range
resolutions [20]. Thus, operators of radars can control the type of transmitted signals
and, therefore, the development of FDoA-based emitter location algorithms is especially
valuable and beneficial to extend the capabilities of EW systems to process diverse sets
of waveforms [17], since TDoA-based emitter location is well studied [21,22]. Thus, new
methods to measure the FDoA only, instead of the joint TDoA/FDoA, are also motivated
in, e.g., [23]. The focus of this study is on emitter location once FDoA measurements are
obtained. Signal processing techniques used to extract FDoA measurements are beyond
the scope of this study.

Geolocation of a stationary emitter by moving sensors using FDoA measurements only
is a typical application scenario. It was accomplished in [19] by the linear-correction least-
squares estimation approach, which is similar to the method reported in [24]. The problem
was formulated in [17] as a system of polynomials whose solution corresponds to the emit-
ter’s location. Therefore, numerical algebraic geometry methods were utilized to solve the
problem. Further research work has been reported in [25–31]. Another application scenario
considers a moving emitter and stationary sensors, in which the emitter’s velocity is an
unknown parameter in addition to its location. This scenario was addressed in, e.g., [32–41].
The FDoA-based emitter location problem is ill-posed [17]. Thus, it is difficult to distinguish
the correct solution from several possible ones. Therefore, iterative approaches [42–44]
can converge to a wrong solution if the initial guess is not close enough to the true emitter
location, which is difficult to define, making it difficult to obtain a good initial guess in
many practical situations. Moreover, FDoA-based emitter location is sensitive to noise.
Thus, small perturbations can cause highly inaccurate solutions. Both drawbacks are due
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to the high nonlinearity of the problem. Other solution approaches include closed-form
algorithms [29,40,41,45,46], numerical search methods [25–28,33–35,47], and semidefinite
relaxation [29,40,41,48,49].

In this article, the 2D emitter location problem is addressed. Grid-based and sample-
based algorithms are developed to solve the problem, where the solution space is approxi-
mated, respectively, by generating deterministic and random emitter location candidates.
The performance is investigated by varying several parameters and evaluated by the CRLB
benchmarking. Thus, the main contribution is to demonstrate the viability of both non-
iterative algorithms to estimate the emitter location using a single-time snapshot of FDoA
measurements only, without any prior location information or any knowledge about the
distribution of measurement errors.

The remainder of the article is organized as follows: problem formulation and the
performance metric are stated in Section 2. Solution algorithms are developed in Section 3.
Simulation results are presented and discussed in Section 4, and the study is concluded in
Section 5.

2. Problem Statement

Emitting sources are termed targets and emitters in the radar and the electronic
support (ES) communities, respectively. The term tracks, common to the lexicon of both
communities, represent the system’s estimate of emitting sources [50]. FDoA is considered
in combination with TDoA and not in isolation in most formulations available in the
literature, mainly to reduce the number of sensors required and to take advantage of the
often complementary error characteristics. The FDoA technique is less widely adopted
than the TDoA approach due to the additional inherent complexity and issues related to
obtaining sufficiently accurate frequency measurements for emitter location [14].

In the context of FDoA measurements only, each of the moving sensors measures
the emitter’s exact carrier frequency slightly differently due to the Doppler shift, which is
proportional to the relative velocity of the emitter as observed by each sensor. The FDoA of
a sensor pair generates a curve of possible emitter locations. The intersection of two or more
curves resolves the location ambiguity. Figure 1, adopted from [14], illustrates iso-Doppler
contours or lines of constant FDoA in the 2D space. Whereas the possible TDoA-based
emitter location is limited to a hyperbolic curve or the surface of a hyperboloid in the
2D and three-dimensional (3D) spaces, respectively, the geometric interpretation of the
FDoA-based emitter location is not as simple. The emitter’s actual carrier frequency cannot
be directly estimated with FDoA. Nevertheless, the emitter location can be accomplished by
comparing the obtained FDoA measurements [14]. FDoA measurements between each pair
of sensors can be obtained by estimating the emitter’s carrier frequency at each sensor to
get the differences, or by direct comparison of the received signals, which is more accurate,
but requires the transmission of raw sensor data and, therefore, signal compression would
be required to minimize communication burdens [14].

2.1. Formulation

The adopted signal model assumes that the transmitted signal, s(t), propagates at
the speed of light, c, and experiences attenuation, time delay (proportional to the range
between the emitter and receiver), and Doppler shift (proportional to the relative velocity
between the emitter and receiver). Thus, the received signal at the ith sensor, yi(t), is
defined [14]:

yi(t) = αis(t− τi)ej2π fi(t−τi) + ni(t) (1)

where αi is the attenuation factor, τi is the time delay, fi is the Doppler shift, and ni(t) is the
noise term.
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Figure 1. Lines of constant frequency difference of arrival (FDoA) with a stationary emitter and
three sensors moving toward the indicated direction.

The range, Ri(x), from the emitter to the ith sensor and the corresponding range rate,
.
Ri(x, v), i.e., change in range over time, are defined:

Ri(x) = ‖x− xi‖ (2)

.
Ri(x, v) =

(v− vi)
T(x− xi)

Ri(x)
(3)

where x and v are the emitter’s true position and velocity, respectively, and xi and vi are
the ith sensor’s true position and velocity, respectively. The time delay, τi, and Doppler
shift, fi, are, thus, defined as τi =

Ri
c and fi =

f0
c

.
Ri, where f0 is the true center carrier

frequency of the emitted signal, which may be changed intentionally and/or may contain
uncertainties due to, e.g., instability of the electronics [51]. However, f0 is assumed to have
a fixed known value for the sake of simplicity.

The frequency difference between any two sensors, m and n, fm,n(x, v), is given as:

fm,n(x, v) = fm(x, v)− fn(x, v) =
f0

c

[
(vm − v)T(x− xm)

‖x− xm‖
− (vn − v)T(x− xn)

‖x− xn‖

]
(4)

The range rate difference between the mth and nth sensors,
.
Rm,n(x, v), is, thus, computed:

.
Rm,n(x, v) =

c
f0

fm,n(x, v) =

[
(vm − v)T(x− xm)

‖x− xm‖
− (vn − v)T(x− xn)

‖x− xn‖

]
(5)

Assuming a stationary emitter, i.e., v = 0, Equation (5) is rewritten:

.
Rm,n(x) =

[
vT

m(x− xm)

‖x− xm‖
− vT

n (x− xn)

‖x− xn‖

]
(6)

At least two range rate difference measurements, i.e., using three sensors and three
range rate difference measurements, i.e., using four sensors, are required to estimate a
stationary emitter’s location, x, in the 2D and 3D spaces, respectively. If the emitter is not
stationary, the emitter’s velocity, v, then represents an additional unknown variable and,
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therefore, additional sensors or additional measurement types, e.g., TDoA or AoA, would
be required to estimate v in addition to x.

Without loss of generality, the first sensor among N sensors, where N ≥ 3, is consid-
ered as the common reference, i.e., the master, sensor. The vector form of the range rate
differences,

.
r(x), between sensor 1 and sensors 2 through N is written:

.
r(x) =

[ .
R2,1(x),

.
R3,1(x), . . . ,

.
RN,1(x)

]T
(7)

The vector form of the noisy range rate difference measurements,
.
ρ(x), is given as:

.
ρ(x) =

.
r(x) + n (8)

where n is a zero-mean Gaussian distributed random vector with the measurement error
covariance matrix, C .

ρ, and all frequency measurements are assumed as independent. Thus,
the probability density function (PDF), fx

( .
ρ
)
, is written:

fx
( .
ρ
)
= (2π)−

(N−1)
2

∣∣∣C .
ρ

∣∣∣− 1
2 e
− 1

2 (
.
ρ− .

r(x))TC−1.
ρ

(
.
ρ− .

r(x))
(9)

and the log-likelihood function, `
(
x
∣∣ .
ρ
)
, is given as:

`
(
x
∣∣ .
ρ
)
= −1

2
( .
ρ− .

r(x)
)TC−1

.
ρ

( .
ρ− .

r(x)
)

(10)

The problem, thus, is to estimate the location, x, of a stationary emitter given the noisy
range rate difference measurements,

.
ρ(x), and using the known sensors’ positions, xi, and

velocities, vi, i = 1, 2, . . . , N, which, in turn, might contain uncertainties.

2.2. Performance Metric

The CRLB is used as the statistical bound on performance, which provides a lower
bound on the mean-square error (MSE) that can be attained by an unbiased estimator.
Therefore, the CRLB is a lower bound on the elements of the estimation error covariance

matrix, C^
x
, for an unbiased estimate,

^
x, i.e., CRLB ≤ C^

x
. Thus, the square root of the

CRLB is a lower bound on the root-mean-square error (RMSE) or equivalently the standard
deviation, i.e.,

√
CRLB ≤ RMSE. Since the RMSE can be scaled for different confidence

intervals, the CRLB can equivalently be scaled to show the bounds on various confidence
intervals [14]. The CRLB is given by the inverse of the Fisher information matrix (FIM),
F(x), which is computed in the general Gaussian case:

F(x) = J(x)C−1
.
ρ

JT(x) (11)

where J(x) is the Jacobian matrix of
.
r(x), defined:

J(x) =
[
∇x

.
R2,1(x), ∇x

.
R3,1(x), . . . ,∇x

.
RN,1(x)

]
(12)

where∇x
.
RN,1(x) is the gradient of the range rate difference to the emitter between the first

sensor (reference sensor) and sensors 2 through N, and is computed [14]:

∇x
.
RN,1(x) =

(
I− (x−xN)(x−xN)T

‖x−xN 2‖

)
vN

‖xN−x‖ −
(

I− (x−x1)(x−x1)
T

‖x−x1
2‖

)
v1

‖x1−x‖ (13)

Thus, C^
x

is bounded as:

C^
x
≥
[
J(x)C−1

.
ρ

JT(x)
]−1

(14)
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Assuming Gaussian FDoA measurements is convenient to derive the CRLB. However,
it is not strictly accurate because whereas the measurements are Gaussian when projected
onto spatial coordinates, they are non-Gaussian within the observation space [52], since
.
r(x) is nonlinear. Therefore, appropriate estimation requires nonlinear information fusion
of the FDoA measurements by, e.g., a Gaussian measurement mixture algorithm [52]. Nev-
ertheless, the CRLB will be used for benchmarking, despite its acknowledged shortcomings,
due to its ease of derivation.

3. Solution Algorithms

In this section, the solution to the 2D stationary emitter location problem using FDoA
measurements only is developed. Direct evaluation of the highly nonlinear Equation (8)
to estimate the emitter location is difficult. Feasible solutions include grid-based and
sample-based calculations of the probability of the emitter occupying various locations,
where the accuracy is limited by the grid resolution and number of samples, respectively.
Therefore, the grid resolution and number of samples should be properly determined to
reduce the computational burdens without sacrificing accuracy. The suggested solutions
provide implementable algorithms that approximate the solution space, i.e., all possible
emitter locations, by a finite number of emitter location candidates, which are generated
deterministically or randomly by the grid-based and sample-based algorithms, respectively.
A single value, i.e., weight, is assigned to each location candidate to represent the probability
of the emitter occupying that location given the FDoA measurements in addition to the
locations and velocities of the involved sensors.

In the grid-based algorithm, the solution space, S, is approximated at any time instant
by a grid of location/position coordinates over an area corresponding to the reference
sensor coverage (see Figure 2), and is mathematically represented as:

S ≈
{

sj, wj
}

j=1:p (15)

where sj is the jth location candidate; wj is a probability value that determines the weight,
i.e., importance, of sj; and p is the total number of the grid locations, i.e., the set of
location candidates.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 15 
 

 

3. Solution Algorithms 
In this section, the solution to the 2D stationary emitter location problem using FDoA 

measurements only is developed. Direct evaluation of the highly nonlinear Equation (8) 
to estimate the emitter location is difficult. Feasible solutions include grid-based and sam-
ple-based calculations of the probability of the emitter occupying various locations, where 
the accuracy is limited by the grid resolution and number of samples, respectively. There-
fore, the grid resolution and number of samples should be properly determined to reduce 
the computational burdens without sacrificing accuracy. The suggested solutions provide 
implementable algorithms that approximate the solution space, i.e., all possible emitter 
locations, by a finite number of emitter location candidates, which are generated deter-
ministically or randomly by the grid-based and sample-based algorithms, respectively. A 
single value, i.e., weight, is assigned to each location candidate to represent the probability 
of the emitter occupying that location given the FDoA measurements in addition to the 
locations and velocities of the involved sensors. 

In the grid-based algorithm, the solution space, 𝐒, is approximated at any time in-
stant by a grid of location/position coordinates over an area corresponding to the reference 
sensor coverage (see Figure 2), and is mathematically represented as: 𝐒 ≈ {𝒔, 𝑤}ୀଵ:, (15) 

where 𝒔  is the jth location candidate; 𝑤  is a probability value that determines the 
weight, i.e., importance, of 𝒔; and 𝑝 is the total number of the grid locations, i.e., the set 
of location candidates. 

 
Figure 2. The solution space is approximated by a grid of emitter location candidates corresponding 
to the reference sensor coverage. 

The grid-based algorithm calculates the probability that the emitter lies in each grid 
location given the FDoA measurements in addition to the known locations and velocities 
of the involved sensors, which represents the discrete conditional PDF of the emitter lo-
cation. The weight, 𝑤, is computed: 𝑤 = 1/ฮ𝛒ሶ (𝐱) − 𝐪ሶ (𝒔)ฮଶ, (16) 

where 𝐪ሶ (𝒔) is the set of range rate differences at the location candidate, 𝒔, and is given 
as: 𝐪ሶ (𝒔) = ൣ𝑅ሶଶ,ଵ൫𝒔൯, 𝑅ሶଷ,ଵ൫𝒔൯, … , 𝑅ሶே,ଵ൫𝒔൯൧். (17) 

Figure 2. The solution space is approximated by a grid of emitter location candidates corresponding
to the reference sensor coverage.



Sensors 2022, 22, 9642 7 of 15

The grid-based algorithm calculates the probability that the emitter lies in each grid
location given the FDoA measurements in addition to the known locations and velocities of
the involved sensors, which represents the discrete conditional PDF of the emitter location.
The weight, wj, is computed:

wj = 1/‖ .
ρ(x)− .

q(sj)‖
2 (16)

where
.
q
(
sj
)

is the set of range rate differences at the location candidate, sj, and is given as:

.
q
(
sj
)
=
[ .

R2,1
(
sj
)
,

.
R3,1

(
sj
)
, . . . ,

.
RN,1

(
sj
)]T

(17)

The range rate difference between the reference sensor, i.e., sensor 1, and any of the
remaining sensors, i.e., sensors 2 through N, is written:

.
RN,1

(
sj
)
=

[
vT

N
(
sj − xN

)
‖sj − xN‖

−
vT

1
(
sj − x1

)
‖sj − x1‖

]
(18)

Thus, the weight, wj, of each emitter location candidate, sj, is inversely proportional
to the similarity metric used, which is the squared distance between

.
ρ(x) and

.
q
(
sj
)
. The

value of wj, in Equation (16), is normalized to make the sum of all weights equal unity,
i.e., ∑

p
j=1 wj = 1, so that S represents a valid probability distribution. The emitter loca-

tion estimate,
^
x, is, thus, the location candidate with the highest assigned weight, and

is expressed:
^
x = argmaxsj

{
sj, wj

}
j=1:p (19)

Therefore, normalization of the weights is not a crucial issue for practical algorithm
implementation.

The sample-based algorithm generates a set of p uniformly distributed random emitter
location candidates, i.e., samples, over the area corresponding to the reference sensor
coverage (see Figure 3) to approximate the solution space, S, in Equation (15) at any time
instant according to:

sj ∼ U (x1 − d, x1 + d) (20)

where x1 = [x1, y1]
T is the 2D location of the first sensor, i.e., reference sensor, and

d =
[
dx, dy

]T represents the coverage of the reference sensor in the x and y directions.
In this work, it is assumed that dx = dy = 50 km. Then, the sample-based algorithm
continues to execute the procedures given in Equations (16)–(19), i.e., the only difference to
the grid-based algorithm is the process of location candidate generation.

The results given by the proposed algorithms may be similar to the results one would
expect from other prior art algorithms. However, the proposed algorithms have fewer
requirements in terms of prior information about the distribution of measurement errors
and the initial guess of emitter location. FDoA measurements of a radio frequency (RF)
signal are assumed in the simulations. However, the developed algorithms are equally
applicable to FDoA measurements of diverse signals.

Geographical information may also be included in the probability determination. For
example, the probability would be equal to zero, i.e., impossible, for all emitter location
candidates on the land mass if it is known that the emitter signal is sea-based. In certain
circumstances, it would even be desired to adjust the grid resolution or the number of
samples to allow faster or more accurate emitter location estimation. A coarse grid size or a
low number of samples may be used for a rough emitter location estimation. Regions of
higher probability may then be subdivided using a finer grid size, or a higher number of
samples for a more accurate emitter location estimation. The operator, thus, can define the
solution space and grid resolution or the number of samples according to the available re-
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sources and information (including own knowledge, experience, and judgment) to facilitate
emitter location at the desired level of accuracy and speed of computation. The selected
grid resolution or number of samples does not need to be much finer than the achievable
accuracy as predicted by the CRLB. Trade-offs between computation time and memory
storage size are commonly conducted during system definition and development phases.
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Any PDF may be used as the measurement error model for a sensor pair. Gaussian
measurement error models are assumed in this study, by way of example only, because they
are the most common models adopted in practical applications, and to facilitate the CRLB
benchmarking. Gaussian error models are developed by proper calibration of the sensor
systems and, thus, are sufficient for geolocation. However, measurement error models
need not be uniform for each sensor over the entire solution space. Therefore, the error
model for a given sensor may be a set of different PDFs (or even bias values) applicable in
different regions of the solution space or at different times/weather conditions.

4. Simulation Results

Computer simulations were conducted to corroborate the viability of the developed
emitter location solutions and to gain insight into the working of the proposed algorithms.
The selected simulation parameters are only notional examples for performance evaluation
purposes and do not outline specific tasks or missions. However, the results may be useful
for an operational context on use cases and requirements. Performance analysis relies on
Monte Carlo simulations and on the CRLB, which is the most popular statistical perfor-
mance bound by far. The FDoA measurements are converted into range rate difference
measurements, which are generated according to Equation (8). The standard deviation of
FDoA measurement noise or error is denoted σm.

Long-haul voice links can be found across ultra-high frequency (UHF) bands
(300 MHz–1 GHz). Digital communications via datalink are spread across the low gi-
gahertz spectrum, e.g., Link-16 occupies the L band (1–2 GHz). Accordingly, the emitter
was assumed to be stationary, transmitting at a known fixed frequency of 1 GHz, and
located on the surface of a flat area. Emitter location is accomplished using FDoA mea-
surements from a single instant or single-time snapshot, i.e., the sensors can intercept the
emitter frequency only once. Multiple-instant FDoA observations improve performance,
since the sensors can collect more FDoA measurements over some time.
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In the first set of simulations, 1000 independent stationary emitter locations have been
generated by a uniform distribution within an area of 100 km× 100 km at various measure-
ment error conditions (σm = 1, 5, and 10 Hz), sensor velocities (v = 50, 100, and 150 m/s),
and baselines (b = 10, 15, and 20 km), where the baseline, b, is the equal spacing from
reference sensor to the remaining sensors (see Figure 4). Four sensors on flying platforms
(which could be manned or unmanned) collect single-time FDoA measurements from a
radiating emitter. At the instant of measurements, the sensors are located at (0, 0), (0, b),(
b cos

(
−30

◦)
, b sin

(
−30

◦))
, and (b cos

(
210

◦)
, b sin

(
210

◦)
), as illustrated in Figure 4, and all

fly with a constant velocity of vi = (0, v). At each random emitter location, the grid-based
and sample-based solution accuracies have been computed, with various grid resolutions
(1000, 500, 200, and 100 m, which correspond to 10,201; 40,401; 251,001; and 1,002,001
location candidates, respectively) and a various number of samples (103, 104, 105, and 106),
along with the corresponding CRLB. The performance is measured by averaging the results
of the 1000 independent ensample runs and is given in terms of the circular error probable
(CEP) computed from the MSE and CRLB. Thus, the set of these simulations averages the
impact of the various sensors-emitter geometries on accuracy. However, the simulations
reveal the general accuracy trends and impact on accuracy caused by varying the values of
the investigated parameters.
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For brevity, Figure 5 depicts only the accuracy of the grid-based solution with a grid
resolution of 100 m and the corresponding CRLB. Emitter location accuracy increases with
higher velocities and longer baselines. The accuracy is sensitive to the level of measurement
noise. Therefore, the performance worsens significantly at the higher measurement noise
levels of 5 and 10 Hz. At more favorable conditions, i.e., a measurement noise level of 1 Hz
and baselines of 15 and 20 km, the grid-based solution accuracy reaches beyond the less
optimistic CRLB predictions because in such situations, the CRLB is non-strict due to the
high nonlinearity of the problem.
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Table 1 lists the accuracy of the grid-based and sample-based solutions consider-
ing a baseline of 20 km with various grid resolutions and a varied number of samples,
respectively, at various sensor velocities and measurement noise levels, and the CRLB
corresponding to each case. We can see that at less favorable conditions, i.e., measure-
ment noise levels of 5 and 10 Hz and CRLB > 2 km, the performance of the grid-based
solutions is generally similar because the achievable accuracy as predicted by the CRLB
is much larger than the largest considered grid size of 1000 m. At more favorable condi-
tions, i.e., CRLB < 2 km, the grid-based solutions remain generally similar and, in many
situations, outperform the CRLB predictions because the CRLB is non-strict, as mentioned.
The same observations apply to the sample-based solutions except with 103 samples at
the more favorable conditions. When the CRLB predicts an accuracy of less than 2 km, it
would not be possible to use only 103 samples to randomly generate an adequate number
of samples close enough to the true emitter location to fully exploit the favorable situation.
Results with baselines of 10 and 15 km showed similar trends and relative performances
and, therefore, were omitted for brevity.
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Table 1. Solution accuracies and corresponding Cramér–Rao lower bound (CRLB) with a baseline of
20 km.

Grid-Based Accuracy (km) Sample-Based Accuracy (km)
CRLB
(km)

Grid Resolution (m) Number of Samples
1000 500 200 100 103 104 105 106

σm = 1 Hz
v= 50 m/s 0.869 0.812 0.765 0.764 1.568 0.923 0.773 0.763 1.031
v= 100 m/s 0.554 0.461 0.430 0.417 1.392 0.632 0.449 0.417 0.51
v= 150 m/s 0.438 0.330 0.286 0.275 1.434 0.534 0.311 0.278 0.353

σm = 5 Hz
v= 50 m/s 7.279 7.384 7.354 7.296 7.049 7.226 7.431 7.369 5.52
v= 100 m/s 2.836 2.897 2.914 2.924 3.320 2.810 2.872 2.923 2.55
v= 150 m/s 1.356 1.301 1.277 1.275 1.953 1.374 1.294 1.281 1.687

σm = 10 Hz
v= 50 m/s 13.712 13.692 13.759 13.761 13.662 13.557 13.752 13.756 10.234
v= 100 m/s 6.804 6.829 6.750 6.771 6.624 7.046 6.786 6.772 5.029
v= 150 m/s 3.728 3.832 3.787 3.789 4.426 3.767 3.731 3.726 3.342

In the second set of simulations, the sensors’ locations are kept unchanged, and four
emitter locations are selected within the same area of 100 km× 100 km to investigate the im-
pact of sensors-emitter geometries on accuracy by various baselines (b = 10, 15, and 20 km)
(see Figure 6). Table 2 lists the achieved accuracy of the grid-based and sample-based so-
lutions with a grid resolution of 100 m and 106 samples, respectively, in addition to the
corresponding CRLB, where the measurement noise σm = 1 Hz and all sensors fly with a
constant velocity of vi = (0, 150) m/s. We can see that both solutions achieve similar accu-
racies and reach beyond the non-strict CRLB predictions. The only exception is at emitter
location 4 with baseline b = 20 km, where the performance degraded significantly, despite
the optimistic prediction of the CRLB because the emitter, third sensor, and fourth sensor
are quasi-collinear, as depicted in Figure 6c. Moreover, the CRLB computations depend
on the Gaussian measurement errors assumption, whereas the high nonlinearity of the
problem and the complex interdependences make the impact of measurement errors on the
emitter location accuracy non-Gaussian and, thus, renders the CRLB predictions inaccurate.
The results when applying various measurement error conditions, sensor velocities, grid
resolutions, and a varied number of samples, as in the previous set of simulations, showed
similar trends and, therefore, were omitted for brevity.

Table 2. Accuracy of grid-based (a grid resolution of 100 m) and sample-based (106 samples) solutions
vs. the CRLB at the selected four emitter locations with measurement noise of 1 Hz and sensor
constant velocity of 150 m/s.

b = 10 km b = 15 km b = 20 km

Location 1
Grid-Based Accuracy (km) 1.976 1.286 0.817

Sample-Based Accuracy (km) 1.975 1.284 0.818
CRLB (km) 2.612 1.671 1.088

Location 2
Grid-Based Accuracy (km) 1.712 0.659 0.339

Sample-Based Accuracy (km) 1.709 0.663 0.341
CRLB (km) 2.166 0.765 0.393

Location 3
Grid-Based Accuracy (km) 0.351 0.272 0.261

Sample-Based Accuracy (km) 0.351 0.275 0.261
CRLB (km) 0.474 0.355 0.305

Location 4
Grid-Based Accuracy (km) 0.329 0.259 13.213

Sample-Based Accuracy (km) 0.329 0.259 13.281
CRLB (km) 0.472 0.33 0.275
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5. Conclusions

The radar uncertainty principle confirms that range and Doppler resolutions are
inversely related. The evaluation of the CAF may be broad in the range or frequency
direction, dependent on the type of received signal, making it difficult to accurately find
the maximum (peak) of the cross-ambiguity surface corresponding to the TDoA or FDoA
measurement. Thus, different signals will be more accurate in the TDoA or the FDoA
measurements. Therefore, it is useful to investigate methods for emitter location using
TDoA or FDoA measurements only.

This work developed algorithms and provided proof of concept for the emitter location
problem using single-time FDoA measurements only, since it is less widely studied in
the literature. Computer simulations were conducted to corroborate the viability of the
developed algorithms/approach. The achieved accuracies are sufficient for early warning
purposes, preparing defenses, and cueing more accurate location sensors by directing
additional surveillance resources.

Since the FDoA-based emitter location problem is highly nonlinear, the solution is
often ill-conditioned and sensitive to noise. Therefore, more investigations and tools
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are needed to better understand the complicated relationships between emitter-sensors
geometries, velocities, and FDoA measurements.

The developed algorithms assumed a single emitter in isolation radiating a signal
with a known constant carrier center frequency, perfect knowledge of the sensors’ locations
and velocities, and uncorrelated measurement noise. Therefore, many extensions to more
general problems can be applied to account for an unknown or erroneous carrier center
frequency of the emitter’s signal, the presence of sensor location and velocity errors,
correlated noise, moving emitter, multiple emitters, and the availability of successive-time
FDoA measurements to develop tracking or target motion analysis (TMA) algorithms and
to improve location accuracy.
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Abbreviations

2D Two-dimensional
3D Three-dimensional
AoA Angle of arrival
CAF Cross-ambiguity function
CEP Circular error probable
CRLB Cramér–Rao lower bound
DD Differential Doppler
DDR Differential Doppler rate
DF Direction finding
ES Electronic support
EW Electronic warfare
FDoA Frequency difference of arrival
FIM Fisher information matrix
MSE Mean-square error
PDF Probability density function
RF Radio frequency
RMSE Root-mean-square error
SNR Signal-to-noise ratio
SWaP Size, weight, and power
TDoA Time difference of arrival
TMA Target motion analysis
UAS Unmanned aircraft system
UHF Ultra-high frequency
VHF Very-high frequency

References
1. Mungamuru, B.; Aarabi, P. Enhanced sound localization. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2004, 34, 1526–1540.

[CrossRef]
2. Alameda-Pineda, X.; Horaud, R. A geometric approach to sound source localization from time-delay estimates. IEEE/ACM Trans.

Audio Speech Lang. Process. 2014, 22, 1082–1095. [CrossRef]
3. Cater, G.C. Time delay estimation for passive sonar signal processing. IEEE Trans. Acoust. Speech Signal Process 1981, 29, 462–470.
4. Weinstein, E. Optimal source localization and tracking from passive array measurements. IEEE Trans. Acoust. Speech Signal Process

1982, 30, 69–76. [CrossRef]

http://doi.org/10.1109/TSMCB.2004.826398
http://doi.org/10.1109/TASLP.2014.2317989
http://doi.org/10.1109/TASSP.1982.1163855


Sensors 2022, 22, 9642 14 of 15

5. Khalaf-Allah, M. Emitter Location with Azimuth and Elevation Measurements Using a Single Aerial Platform for Electronic
Support Missions. Sensors 2021, 21, 3946. [CrossRef]

6. Chan, Y.T.; Ho, K.C. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 1994, 42, 1905–1915.
[CrossRef]

7. Ho, K.C.; Xu, W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Trans.
Signal Process. 2004, 52, 2453–2463. [CrossRef]

8. Wei, H.W.; Peng, R. Multidimensional scaling analysis for passive moving target localization with TDOA and FDOA measure-
ments. IEEE Trans. Signal Process. 2010, 58, 1677–1688.

9. Guo, F.C.; Ho, K.C. A quadratic constraint solution method for TDOA and FDOA localization. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011;
pp. 2588–2591.

10. Liu, Z.; Wang, R.; Zhao, Y. Noise-Resistant Estimation Algorithm for TDOA, FDOA and Differential Doppler Rate in Passive
Sensing. Circuits Syst. Signal Process. 2020, 39, 4155–4173. [CrossRef]

11. Kaune, R. Performance analysis of passive emitter tracking using TDOA, AOA and FDOA measurements. In Proceedings of the
GI Jahrestagung, Leipzig, Germany, 27 September–1 October 2010; pp. 838–843.

12. Takabayashi, Y.; Matsuzaki, T.; Kameda, H.; Ito, M. Target tracking using TDOA/FDOA measurements in the distributed sensor
network. In Proceedings of the SICE Annual Conference, Tokyo, Japan, 20–22 August 2008; pp. 3441–3446.

13. Mušicki, D.; Kaune, R.; Koch, W. Mobile emitter geolocation and tracking using TDOA and FDOA measurements. IEEE Trans.
Signal Process. 2010, 58, 1863–1874. [CrossRef]

14. O’Donoughue, N.A. Emitter Detection and Geolocation for Electronic Warfare; Artech House: Norwood, MA, USA, 2020.
15. Hale, K.N. Expanding the Use of Time/Frequency Difference of Arrival Geolocation in the Department of Defense. Ph.D.

Dissertation, Pardee RAND Graduate School, Santa Monica, CA, USA, September 2012.
16. Seute, H.; Grandin, J.; Enderli, C.; Khenchaf, A.; Cexus, J. Why synchronization is a key issue in modern electronic support

measures. In Proceedings of the 16th International Radar Symposium (IRS 2015), Dresden, Germany, 24–26 June 2015; pp. 794–799.
17. Cameron, K.J. FDOA-Based Passive Source Localization: A Geometric Perspective. Ph.D. Dissertation, Colorado State University,

Fort Collins, CO, USA, 2018.
18. Griffiths, H.; Baker, C. An Introduction to Passive Radar; Artech House: Norwood, MA, USA, 2017.
19. Li, J.; Guo, F.; Jiang, W. A linear-correction least-squares approach for geolocation using fdoa measurements only. Chin. J. Aeronaut.

2012, 25, 709–714. [CrossRef]
20. Cheney, M.; Borden, B. Fundamentals of Radar Imaging; Society for Industrial and Applied Mathematics: Philadelphia, PA,

USA, 2009.
21. Compagnoni, M.; Canclini, A.; Bestagini, P.; Antonacci, F.; Sarti, A.; Tubaro, S. Source localization and denoising: A perspective

from the TDOA space. Multidimens. Syst. Signal Process 2017, 28, 1283–1308. [CrossRef]
22. Khalaf-Allah, M. Particle Filtering for Three-Dimensional TDoA-Based Positioning Using Four Anchor Nodes. Sensors 2020,

20, 4516. [CrossRef]
23. Jiang, H.; Hu, D.; Zhao, Y.; Zhao, Y.; Liu, Z.; Gao, X. A Computationally Efficient FDOA Estimation Method for Radar Pulse Train.

In Proceedings of the IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China,
11–13 December 2019; pp. 1–5.

24. Huang, Y.; Benesty, J. Real-time passive source localization: A practical linear-correction least-squares approach. IEEE Trans.
Speech Audio Process. 2001, 9, 943–956. [CrossRef]

25. Lee, B.H.; Chan, Y.T.; Chan, F.; Du, H.; Dilkes, F.A. Doppler frequency geolocation of uncooperative radars. In Proceedings of the
IEEE Military Communications Conference (MILCOM), Orlando, FL, USA, 29–31 October 2007; pp. 1–6.

26. Amar, A.; Weiss, A.J. Localization of narrowband radio emitters based on Doppler frequency shifts. IEEE Trans. Signal Process.
2008, 56, 5500–5508. [CrossRef]

27. Bar-Shalom, O.; Weiss, A.J. Emitter geolocation using single moving receiver. Signal Process. 2014, 105, 70–83. [CrossRef]
28. Tirer, T.; Weiss, A.J. High resolution localization of narrowband radio emitters based on Doppler frequency shifts. Signal Process.

2017, 141, 288–298. [CrossRef]
29. Deng, L.; Wei, P.; Zhang, Z.; Zhang, H. Doppler frequency shift based source localization in presence of sensor location errors.

IEEE Access 2018, 6, 59752–59760. [CrossRef]
30. Nguyen, N.H.; Doançay, K. Closed-form algebraic solutions for 3-D Doppler-only source localization. IEEE Trans. Wirel. Commun.

2018, 17, 6822–6836. [CrossRef]
31. Gong, Z.; Li, C.; Jiang, F.; Zheng, J. AUV-aided localization of underwater acoustic devices based on Doppler shift measurements.

IEEE Trans. Wirel. Commun. 2020, 19, 2226–2239. [CrossRef]
32. Shensa, M.J. On the uniqueness of Doppler tracking. J. Acoust. Soc. Am. 1981, 70, 1062–1064. [CrossRef]
33. Chan, Y.T.; Jardine, F.L. Target localization and tracking from Doppler-shift measurements. IEEE J. Ocean. Eng. 1990, 15, 251–257.

[CrossRef]
34. Chan, Y.T.; Towers, J.J. Passive localization from Doppler-shifted frequency measurements. IEEE Trans. Signal Process. 1992, 40,

2594–2598. [CrossRef]
35. Chan, Y.T. A 1-D search solution for localization from frequency measurements. IEEE J. Ocean. Eng. 1994, 19, 431–437. [CrossRef]

http://doi.org/10.3390/s21123946
http://doi.org/10.1109/78.301830
http://doi.org/10.1109/TSP.2004.831921
http://doi.org/10.1007/s00034-020-01364-3
http://doi.org/10.1109/TSP.2009.2037075
http://doi.org/10.1016/S1000-9361(11)60437-8
http://doi.org/10.1007/s11045-016-0400-9
http://doi.org/10.3390/s20164516
http://doi.org/10.1109/89.966097
http://doi.org/10.1109/TSP.2008.929655
http://doi.org/10.1016/j.sigpro.2014.05.006
http://doi.org/10.1016/j.sigpro.2017.06.019
http://doi.org/10.1109/ACCESS.2018.2872807
http://doi.org/10.1109/TWC.2018.2864680
http://doi.org/10.1109/TWC.2019.2963296
http://doi.org/10.1121/1.386550
http://doi.org/10.1109/48.107154
http://doi.org/10.1109/78.157301
http://doi.org/10.1109/48.312919


Sensors 2022, 22, 9642 15 of 15

36. Torney, D.C. Localization and observability of aircraft via Doppler shifts. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1163–1168.
[CrossRef]

37. Kalkan, Y.; Baykal, B. Target localization methods for frequency-only MIMO radar. In Proceedings of the European Radar
Conference (EuRAD), Paris, France, 30 September–1 October 2010; pp. 396–399.

38. Xiao, Y.; Wei, P.; Yuan, T. Observability and performance analysis of Bi/multi-static Doppler-only radar. IEEE Trans. Aerosp.
Electron. Syst. 2010, 46, 1654–1667. [CrossRef]

39. Shames, I.; Bishop, A.N.; Smith, M.; Anderson, B.D.O. Doppler shift target localization. IEEE Trans. Aerosp. Electron. Syst. 2013,
49, 266–276. [CrossRef]

40. Ahmed, M.M.; Ho, K.C.; Wang, G. Localization of a Moving Source by Frequency Measurements. IEEE Trans. Signal Process. 2020,
68, 4839–4854. [CrossRef]

41. Ahmed, M.M.; Ho, K.C.; Wang, G. 3-D Target Localization and Motion Analysis Based on Doppler Shifted Frequencies. IEEE
Trans. Aerosp. Electron. Syst. 2022, 58, 815–833. [CrossRef]

42. Foy, W.H. Position-location solutions by taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst. 1976, 12, 187–194. [CrossRef]
43. Chan, Y.T.; Hang, H.Y.C.; Ching, P.C. Exact and approximate maximum likelihood localization algorithms. IEEE Trans. Veh.

Technol. 2006, 55, 10–16. [CrossRef]
44. Wang, Y.; Ho, K.C. TDOA positioning irrespective of source range. IEEE Trans. Signal Process. 2017, 65, 1447–1460. [CrossRef]
45. Rui, L.; Ho, K.C. Efficient closed-form estimators for multistatic sonar localization. IEEE Trans. Aerosp. Electron. Syst. 2015, 51,

600–614. [CrossRef]
46. Khalaf-Allah, M. Performance Comparison of Closed-Form Least Squares Algorithms for Hyperbolic 3-D Positioning. J. Sens.

Actuator Netw. 2020, 9, 2. [CrossRef]
47. Xie, Y.; Wang, Y.; Zhu, P.; You, X. Grid-search-based hybrid TOA/AOA location techniques for NLOS environments. IEEE

Commun. Lett. 2009, 13, 254–256. [CrossRef]
48. Lui, K.W.K.; Chan, F.K.W.; So, H.C. Semidefinite programming approach for range-difference based source localization. IEEE

Trans. Signal Process. 2009, 57, 1630–1633. [CrossRef]
49. Wang, G.; So, A.M.; Li, Y. Robust convex approximation methods for TDOA-based localization under NLOS conditions. IEEE

Trans. Signal Process. 2016, 64, 3281–3296. [CrossRef]
50. Kuzdeba, S.; Radlbeck, A.; Anderson, M. Performance Metrics for Cognitive Electronic Warfare—Electronic Support Measures. In

Proceedings of the IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018; pp. 1–9.
51. Kalantari, A.; Maleki, S.; Chatzinotas, S.; Ottersten, B. Frequency of arrival-based interference localization using a single

satellite. In Proceedings of the 8th Advanced Satellite Multimedia Systems Conference and the 14th Signal Processing for Space
Communications Workshop (ASMS/SPSC), Palma de Mallorca, Spain, 5–7 September 2016; pp. 1–6.

52. Mušicki, D.; Koch, W. Geolocation using TDOA and FDOA measurements. In Proceedings of the 11th International Conference
on Information Fusion, Cologne, Germany, 30 June–3 July 2008; pp. 1–8.

http://doi.org/10.1109/TAES.2007.4383606
http://doi.org/10.1109/TAES.2010.5595585
http://doi.org/10.1109/TAES.2013.6404102
http://doi.org/10.1109/TSP.2020.3016133
http://doi.org/10.1109/TAES.2021.3122737
http://doi.org/10.1109/TAES.1976.308294
http://doi.org/10.1109/TVT.2005.861162
http://doi.org/10.1109/TSP.2016.2630030
http://doi.org/10.1109/TAES.2014.140482
http://doi.org/10.3390/jsan9010002
http://doi.org/10.1109/LCOMM.2009.082218
http://doi.org/10.1109/TSP.2008.2010599
http://doi.org/10.1109/TSP.2016.2539139

	Introduction 
	Problem Statement 
	Formulation 
	Performance Metric 

	Solution Algorithms 
	Simulation Results 
	Conclusions 
	References

