Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
Abstract
:1. Introduction
- This approach provides a systematic framework for implementing a semi-supervised prognosis method based upon an autoencoder deep learning method;
- This approach implements a framework designed for application in the industrial scenario since it considers the system’s restrictions such as data management, the physical behavior of degradation processes, and business specifications;
- This approach enables the detection of different kinds of faults by evaluating each sensor channel (i.e., variable) individually;
- This approach proposes a set of metrics to evaluate the accuracy and effectiveness of the fault detection and prognosis models.
2. The Proposed Framework
2.1. Step 1: Data Preparation
2.2. Step 2: Fault Detection
2.3. Step 3: Fault Prognosis
Algorithm 1 Estimation of the RUL for an experimental fault event with the made assumption that the real remaining life is known for study purposes. | |||||
1: | |||||
2: | fordo | ||||
3: | for do | ||||
4: | if and then | ||||
5: | |||||
6: | |||||
7: | for do | ||||
8: | |||||
9: | |||||
10: | |||||
11: | end for | ||||
12: | |||||
13: | |||||
14: | |||||
15: | |||||
16: | end if | ||||
17: | end for | ||||
18: | |||||
19: | end for |
2.4. Step 4: Performance Assessment
3. Results
3.1. Application Example in CMAPSS Dataset
3.2. Results from Application Example
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Autoencoder | Unit | RMSE | RMSEL1 | RMSEL2 | RMSEL3 | tfpt | ns | CRA | HT(5) | HT(20) |
---|---|---|---|---|---|---|---|---|---|---|
Conv-1d | 2 | 28.174 | 12.882 | 14.076 | 8.793 | 61.333 | 0.402 | −0.052 | 4 | 9.333 |
5 | 39.661 | 9.798 | 7.56 | 1.299 | 64.045 | 0.403 | 0.408 | 12.36 | 33.708 | |
10 | 11.883 | 8.405 | 8.76 | 2.491 | 57.317 | 0.405 | 0.5 | 9.756 | 42.683 | |
11 | 42.548 | 5.922 | 5.427 | 6.443 | 59.322 | 0.402 | 0.095 | 1.695 | 30.508 | |
14 | 91.845 | 91.845 | 35.161 | 48.548 | 97.368 | 0.407 | −31.796 | 0 | 0 | |
15 | 70.579 | 37.695 | 21.768 | 14.243 | 52.239 | 0.404 | −0.791 | 0 | 19.403 | |
16 | 82.639 | 83.927 | 6.662 | 3.703 | 47.619 | 0.404 | −0.417 | 11.111 | 23.81 | |
18 | 58.992 | 10.021 | 5.521 | 2.912 | 30.985 | 0.4 | 0.26 | 32.394 | 32.394 | |
20 | 24.333 | 16.163 | 8.475 | 3.301 | 31.818 | 0.398 | 0.43 | 15.152 | 51.515 | |
MLP | 2 | 28.174 | 12.882 | 14.076 | 8.793 | 61.333 | 0.402 | −0.052 | 4 | 9.333 |
5 | 39.661 | 9.798 | 7.56 | 1.299 | 64.045 | 0.403 | 0.408 | 12.36 | 33.708 | |
10 | 11.883 | 8.405 | 8.76 | 2.491 | 57.317 | 0.405 | 0.5 | 9.756 | 42.683 | |
11 | 42.548 | 6.922 | 5.427 | 6.443 | 59.322 | 0.402 | 0.095 | 1.695 | 30.508 | |
14 | 91.845 | 91.845 | 35.161 | 48.548 | 97.368 | 0.407 | −31.796 | 0 | 0 | |
15 | 70.579 | 37.695 | 21.768 | 14.243 | 52.239 | 0.404 | −0.791 | 0 | 19.403 | |
16 | 82.639 | 83.927 | 6.662 | 3.703 | 47.619 | 0.404 | −0.417 | 11.111 | 23.81 | |
18 | 58.992 | 10.021 | 5.521 | 2.912 | 30.986 | 0.4 | 0.26 | 32.394 | 32.394 | |
20 | 24.333 | 16.163 | 8.475 | 3.301 | 31.818 | 0.398 | 0.43 | 15.152 | 51.515 | |
LSTM | 2 | 28.174 | 12.882 | 14.076 | 8.793 | 61.333 | 0.402 | −0.052 | 4 | 9.333 |
5 | 39.661 | 9.798 | 7.56 | 1.299 | 64.045 | 0.403 | 0.408 | 12.36 | 33.708 | |
10 | 11.883 | 8.405 | 8.76 | 2.491 | 57.317 | 0.405 | 0.5 | 9.756 | 42.683 | |
11 | 42.548 | 6.922 | 5.427 | 6.443 | 59.322 | 0.402 | 0.095 | 1.695 | 30.508 | |
14 | 91.845 | 91.845 | 35.161 | 48.548 | 97.368 | 0.407 | −31.796 | 0 | 0 | |
15 | 70.579 | 37.695 | 21.768 | 14.243 | 52.239 | 0.404 | −0.791 | 0 | 19.403 | |
16 | 82.639 | 83.927 | 6.662 | 3.703 | 47.619 | 0.404 | −0.417 | 11.111 | 23.81 | |
18 | 58.992 | 10.021 | 5.521 | 2.912 | 30.986 | 0.4 | 0.26 | 32.394 | 32.394 | |
20 | 24.333 | 16.163 | 8.475 | 3.301 | 31.818 | 0.398 | 0.43 | 15.152 | 51.515 | |
Baseline | 2 | 28.174 | 12.882 | 14.076 | 8.793 | 61.333 | 0.402 | −0.052 | 4 | 9.333 |
5 | 39.661 | 9.798 | 7.56 | 1.299 | 64.045 | 0.403 | 0.408 | 12.36 | 33.708 | |
10 | 11.883 | 8.405 | 8.76 | 2.491 | 57.317 | 0.405 | 0.5 | 9.756 | 42.683 | |
11 | 42.548 | 6.922 | 5.427 | 6.443 | 59.322 | 0.402 | 0.095 | 1.695 | 30.508 | |
14 | 91.845 | 91.845 | 35.161 | 48.548 | 97.368 | 0.407 | −31.796 | 0 | 0 | |
15 | 70.579 | 37.695 | 21.768 | 14.243 | 52.239 | 0.404 | −0.791 | 0 | 19.403 | |
16 | 82.639 | 83.927 | 6.662 | 3.703 | 47.619 | 0.404 | −0.417 | 11.111 | 23.81 | |
18 | 58.992 | 10.021 | 5.521 | 2.912 | 30.986 | 0.4 | 0.26 | 32.394 | 32.394 | |
20 | 24.333 | 16.163 | 8.475 | 3.301 | 31.818 | 0.398 | 0.43 | 15.152 | 51.515 |
References
- Melani, A.H.A.; Murad, C.A.; Caminada Netto, A.; de Souza, G.F.M.; Nabeta, S.I. Criticality-Based Maintenance of a Coal-Fired Power Plant. Energy 2018, 147, 767–781. [Google Scholar] [CrossRef]
- Melani, A.H.D.A.; Michalski, M.A.D.C.; da Silva, R.F.; de Souza, G.F.M. A Framework to Automate Fault Detection and Diagnosis Based on Moving Window Principal Component Analysis and Bayesian Network. Reliab. Eng. Syst. Saf. 2021, 215, 107837. [Google Scholar] [CrossRef]
- Jardine, A.K.S.; Lin, D.; Banjevic, D. A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance. Mech. Syst. Signal Process. 2006, 20, 1483–1510. [Google Scholar] [CrossRef]
- Ahmad, R.; Kamaruddin, S. An Overview of Time-Based and Condition-Based Maintenance in Industrial Application. Comput. Ind. Eng. 2012, 63, 135–149. [Google Scholar] [CrossRef]
- ISO 13381-1:2015; Condition Monitoring and Diagnostics of Machines—Prognostics—Part 1: General Guidelines. International Organization for Standardization: Geneva, Switzerland, 2015.
- Fink, O.; Wang, Q.; Svensén, M.; Dersin, P.; Lee, W.J.; Ducoffe, M. Potential, Challenges and Future Directions for Deep Learning in Prognostics and Health Management Applications. Eng. Appl. Artif. Intell. 2020, 92, 103678. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Tao, J.; Liu, Y.; Yang, D. Bearing Fault Diagnosis Based on Deep Belief Network and Multisensor Information Fusion. Shock. Vib. 2016, 2016, 9306205. [Google Scholar] [CrossRef] [Green Version]
- Babu, G.S.; Zhao, P.; Li, X.L. Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life. In Lecture Notes in Computer Science (Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2016; Volume 9642. [Google Scholar]
- Malhotra, P.; TV, V.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. Multi-Sensor Prognostics Using an Unsupervised Health Index Based on LSTM Encoder-Decoder. arXiv 2016, arXiv:1608.06154. [Google Scholar]
- Wu, X.; Zhang, Y.; Cheng, C.; Peng, Z. A Hybrid Classification Autoencoder for Semi-Supervised Fault Diagnosis in Rotating Machinery. Mech. Syst. Signal Process. 2021, 149, 107327. [Google Scholar] [CrossRef]
- Vachtsevanos, G.; Lewis, F.; Roemer, M.; Hess, A.; Wu, B. Intelligent Fault Diagnosis and Prognosis for Engineering Systems; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery Health Prognostics: A Systematic Review from Data Acquisition to RUL Prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [Google Scholar] [CrossRef]
- Kolokas, N.; Vafeiadis, T.; Ioannidis, D.; Tzovaras, D. A Generic Fault Prognostics Algorithm for Manufacturing Industries Using Unsupervised Machine Learning Classifiers. Simul. Model. Pract. Theory 2020, 103, 102109. [Google Scholar] [CrossRef]
- Sikorska, J.Z.; Hodkiewicz, M.; Ma, L. Prognostic Modelling Options for Remaining Useful Life Estimation by Industry. Mech. Syst. Signal Process. 2011, 25, 1803–1836. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, C.; Wu, J.; Zhu, H.; Lee, C.K.M. Multi-Dimensional Recurrent Neural Network for Remaining Useful Life Prediction under Variable Operating Conditions and Multiple Fault Modes. Appl. Soft Comput. 2022, 118, 108507. [Google Scholar] [CrossRef]
- Fan, Y.; Nowaczyk, S.; Rögnvaldsson, T. Transfer Learning for Remaining Useful Life Prediction Based on Consensus Self-Organizing Models. Reliab. Eng. Syst. Saf. 2020, 203, 107098. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, T.; Zhao, Z.; Sun, C.; Chen, X.; Yan, R.; Jia, J. Time-Varying Trajectory Modeling via Dynamic Governing Network for Remaining Useful Life Prediction. Mech. Syst. Signal Process. 2023, 182, 109610. [Google Scholar] [CrossRef]
- Wang, L.; Cao, H.; Xu, H.; Liu, H. A Gated Graph Convolutional Network with Multi-Sensor Signals for Remaining Useful Life Prediction. Knowl. Based Syst. 2022, 252, 109340. [Google Scholar] [CrossRef]
- Song, T.; Liu, C.; Wu, R.; Jin, Y.; Jiang, D. A Hierarchical Scheme for Remaining Useful Life Prediction with Long Short-Term Memory Networks. Neurocomputing 2022, 487, 22–33. [Google Scholar] [CrossRef]
- Xu, D.; Xiao, X.; Liu, J.; Sui, S. Spatio-Temporal Degradation Modeling and Remaining Useful Life Prediction under Multiple Operating Conditions Based on Attention Mechanism and Deep Learning. Reliab. Eng. Syst. Saf. 2023, 229, 108886. [Google Scholar] [CrossRef]
- de Pater, I.; Mitici, M. Developing Health Indicators and RUL Prognostics for Systems with Few Failure Instances and Varying Operating Conditions Using a LSTM Autoencoder. Eng. Appl. Artif. Intell. 2023, 117, 105582. [Google Scholar] [CrossRef]
- da Rosa, T.G.; de Andrade Melani, A.H.; Kashiwagi, F.N.; de Carvalho Michalski, M.A.; de Souza, G.F.M.; de Oliveira Salles, G.M.; Rigoni, E. Data Driven Fault Detection in Hydroelectric Power Plants Based on Deep Neural Networks. In Proceedings of the 32nd European Safety and Reliability Conference, Dublin, Ireland, 28 August–1 September 2022; Leva, M.C., Patelli, E., Podofillini, L., Wilson, S., Eds.; Research Publishing: Singapore, 2022; p. 8. [Google Scholar]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for Hyper-Parameter Optimization. In Advances in Neural Information Processing Systems; Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2011; Volume 24. [Google Scholar]
- Rogalewicz, M. Some Notes on Multivariate Statistical Process Control. Manag. Prod. Eng. Rev. 2012, 3, 80–86. [Google Scholar] [CrossRef]
- Liu, S.; Fan, L. An Adaptive Prediction Approach for Rolling Bearing Remaining Useful Life Based on Multistage Model with Three-Source Variability. Reliab. Eng. Syst. Saf. 2022, 218, 108182. [Google Scholar] [CrossRef]
- Saxena, A.; Celaya, J.; Saha, B.; Saha, S.; Goebel, K. Metrics for Offline Evaluation of Prognostic Performance. Int. J. Progn. Health Manag. 2010, 1, 4–23. [Google Scholar] [CrossRef]
- Saxena, A.; Celaya, J.; Saha, B.; Saha, S.; Goebel, K. Evaluating Prognostics Performance for Algorithms Incorporating Uncertainty Estimates. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2010. [Google Scholar]
- Chao, M.A.; Kulkarni, C.; Goebel, K.; Fink, O. Fusing Physics-Based and Deep Learning Models for Prognostics. Reliab. Eng. Syst. Saf. 2022, 217, 107961. [Google Scholar] [CrossRef]
- Javed, K.; Gouriveau, R.; Zerhouni, N.; Nectoux, P. Enabling Health Monitoring Approach Based on Vibration Data for Accurate Prognostics. IEEE Trans. Ind. Electron. 2015, 62, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Frederick, D.K.; Decastro, J.A.; Litt, J.S. User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS); NASA: Washington, WA, USA, 2007.
- Chao, M.A.; Kulkarni, C.; Goebel, K.; Fink, O. Aircraft Engine Run-to-Failure Dataset under Real Flight Conditions for Prognostics and Diagnostics. Data 2021, 6, 5. [Google Scholar] [CrossRef]
Autoencoder | Hyperparameter | Value/Definition |
---|---|---|
Conv-1d, LSTM and MLP * | Number of layers—Encoder only | 2 |
Dropout rate | 0.3 | |
Loss Function | MSE | |
Optimization Technique | Adam | |
Subsequences Size | 200 | |
Validation data fraction | 10% | |
Conv-1d | Strides | 2 |
Learning Rate | 0.001 | |
Number of filter units | (32, 16) | |
Kernel Size | (15, 10) | |
Padding | same | |
Activation Function | LeakyReLU | |
Epochs | 70 | |
LSTM | Activation Function | tanh |
Number of LSTM units | (64, 32) | |
Epochs | 70 | |
MLP | Activation Function | LeakyReLU |
Neurons | (32, 16) | |
Epochs | 100 |
Behavior | |
---|---|
1 | |
2 | |
3 | |
4 |
Dataset Fraction | Unit (u) | Rows (104) | * (Cycles) | teol (Cycles) | Failure Mode |
---|---|---|---|---|---|
Training | 2 | 8.5 | 17 | 75 | HPT |
5 | 10.3 | 17 | 89 | HPT | |
10 | 9.5 | 17 | 82 | HPT | |
16 | 7.7 | 16 | 63 | HPT + LPT | |
18 | 8.9 | 17 | 71 | HPT + LPT | |
20 | 7.7 | 17 | 66 | HPT + LPT | |
Test | 11 | 6.6 | 19 | 59 | HPT + LPT |
14 | 1.6 | 36 | 76 | HPT + LPT | |
15 | 4.3 | 24 | 67 | HPT + LPT |
Performance Metrics | Conv-1d | MLP | LSTM | Conv-1d, MLP, and LSTM Overall | Baseline | |||||
---|---|---|---|---|---|---|---|---|---|---|
µ | σ | µ | σ | µ | σ | µ | σ | µ | σ | |
RMSE | 49.702 | 23.942 | 44.116 | 30.256 | 42.505 | 36.587 | 45.441 | 6.322 | 14.702 | 12.102 |
RMSEL1 | 122.926 | 81.626 | 44.815 | 5.514 | 49.569 | 17.053 | 72.437 | 41.020 | 52.499 | 0.000 * |
RMSEL2 | 35.958 | 15.820 | 63.927 | 52.562 | 52.505 | 66.543 | 50.797 | 26.198 | 20.968 | 15.921 |
RMSEL3 | 8.668 | 7.929 | 9.312 | 9.856 | 18.267 | 27.008 | 12.082 | 10.503 | 7.964 | 5.549 |
tfpt | 57.627 | 11.532 | 65.039 | 15.695 | 62.454 | 19.762 | 61.707 | 4.115 | 75.633 | 19.729 |
ns | 0.403 | 0.002 | 0.402 | 0.002 | 0.400 | 0.002 | 0.402 | 0.000 | 0.400 | 0.002 |
CRA | −0.311 | 0.912 | −0.488 | 0.708 | −0.482 | 0.785 | −0.427 | 0.103 | 0.006 | 0.633 |
HT(5) | 11.767 | 6.123 | 8.205 | 7.847 | 4.169 | 4.690 | 8.047 | 1.581 | 4.724 | 2.984 |
HT(20) | 20.694 | 5.336 | 14.735 | 4.750 | 12.072 | 8.399 | 15.834 | 1.959 | 6.643 | 4.270 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, T.G.d.; Melani, A.H.d.A.; Pereira, F.H.; Kashiwagi, F.N.; Souza, G.F.M.d.; Salles, G.M.D.O. Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis. Sensors 2022, 22, 9738. https://doi.org/10.3390/s22249738
Rosa TGd, Melani AHdA, Pereira FH, Kashiwagi FN, Souza GFMd, Salles GMDO. Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis. Sensors. 2022; 22(24):9738. https://doi.org/10.3390/s22249738
Chicago/Turabian StyleRosa, Tiago Gaspar da, Arthur Henrique de Andrade Melani, Fabio Henrique Pereira, Fabio Norikazu Kashiwagi, Gilberto Francisco Martha de Souza, and Gisele Maria De Oliveira Salles. 2022. "Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis" Sensors 22, no. 24: 9738. https://doi.org/10.3390/s22249738
APA StyleRosa, T. G. d., Melani, A. H. d. A., Pereira, F. H., Kashiwagi, F. N., Souza, G. F. M. d., & Salles, G. M. D. O. (2022). Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis. Sensors, 22(24), 9738. https://doi.org/10.3390/s22249738