
Citation: Liu, Y.; Zhang, Y.; Lin, Z.;

Wang, Z.; Wang, X. Simulation

Method for Blockchain Systems with

a Public Chain. Sensors 2022, 22, 9750.

https://doi.org/10.3390/s22249750

Academic Editor: Rongxing Lu

Received: 1 November 2022

Accepted: 10 December 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Simulation Method for Blockchain Systems with a Public Chain
Yang Liu 1,2,* , Yuxi Zhang 1, Zhiyuan Lin 1, Zhaoguo Wang 1 and Xuan Wang 1,3

1 School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
2 Research Center for Cyberspace Security, Peng Cheng Laboratory, Shenzhen 518055, China
3 Key Laboratory of Novel Security Intelligence Technologies, Shenzhen 518055, China
* Correspondence: liu.yang@hit.edu.cn

Abstract: The potential security problems of blockchain technology are constantly restricting the
development process of related industrial applications. The cost of deploying a blockchain system in
a real environment to conduct research on security issues is relatively high, and the related security
analysis and verification are also destructive and irreproducible. Therefore, based on the idea of
layered design, this paper proposes a blockchain system simulation platform. The blockchain system
is divided into four layers in the simulation platform: the consensus layer, network layer, contract
layer, and storage layer. In the consensus layer, the problem of computing resource waste is solved.
In the network layer, a peer-to-peer network topology simulation is implemented. In the storage
layer, the problem of redundant storage is solved. In the contract layer, the contract replay speed is
accelerated. Finally, a prototype of an efficient blockchain simulation system is implemented based
on the above methods.

Keywords: blockchain; simulation platform; public chain; smart contract

1. Introduction

Blockchain is a special data structure that maintains block states and transaction
records. Each block contains multiple transactions, so a blockchain can be viewed as
a log of ordered transactions. A blockchain is essentially a distributed ledger that is
maintained by a series of nodes that are not fully trusted by each other [1]. All nodes in the
blockchain network maintain the same block sequence and reach a consensus by jointly
following the agreed rules. Transactions are recorded in the blockchain, where the content
is shared by other nodes in the network and cannot be tampered with. This special data
structure and operation mechanism cause blockchain technology to have the characteristics
of decentralization, anonymity, tamper-proof, security, and stability [2].

With its unique trust-building mechanism, blockchain technology is changing the
application scenarios and operating rules of many industries [3]. With the continuous
application of blockchain technology in all walks of life, its technical limitations and
security problems, such as its consensus mechanism, private key management, and smart
contracts, have become become increasingly prominent, and application security events
based on blockchain platforms are also endlessly emerging.

The blockchain system itself faces a variety of potential security risks, such as eclipse
attacks [4], witch attacks, and DDoS attacks [5,6]. Smart contracts themselves can also be
subject to re-entrance attacks [7] due to code flaws. There are similar Ponzi schemes [8],
blockchain network data analyses [9], and other ways to threaten the security of ordinary
users. For example, on 10 August 2021, Poly Network, a cross-chain interoperability
protocol, was hacked to steal 610 million dollars worth of tokens.

The security problems of blockchain technology have seriously restricted the devel-
opment process of relevant industrial applications [10]. Therefore, more and more people
have carried out research in such fields as transaction record analysis [11], smart contract
vulnerability detection [12], smart contract virtual machine security enhancement [13],

Sensors 2022, 22, 9750. https://doi.org/10.3390/s22249750 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22249750
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2486-5765
https://doi.org/10.3390/s22249750
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22249750?type=check_update&version=1

Sensors 2022, 22, 9750 2 of 23

consensus algorithm improvement [14,15], and so on. However, due to the complexity of
the blockchain system and the particularity of some security issues, the cost of deploying
the blockchain system in a real environment to carry out the above security research is rela-
tively high. In addition, the relevant security analysis and verification are also destructive
and unrepeatable, which leads to the difficulty of centralized collection and analysis of
relevant analysis and verification data.

All of these constraints in reality hinder the research on relevant safety protection
technology [16]. Therefore, in order to deal with the various security risks of the current
blockchain system and meet the urgent need for security verification of various algorithms,
it is necessary to implement a high-fidelity blockchain simulation system.

The building of a blockchain simulation platform can be used to test the performance
characteristics of a variety of different algorithms, evaluate the data processing capabilities
and overall performance of different blockchain platforms, and solve the problem of unified
evaluation of algorithms due to differences in algorithms’ principles and application
scenarios. This plays a key role in in-depth research on key blockchain technologies,
helping developers analyze bottlenecks, understand limitations, make efficient decisions,
and optimize private blockchain platforms.

At present, according to the openness of the blockchain system and different applica-
tion scenarios, blockchains can be divided into public chains, alliance chains, and private
chains. Although various blockchain systems are different in their specific implementations,
their overall architectures have some commonalities. The simulation method designed in
this paper will be carried out according to the commonalities of various blockchain systems.
On the one hand, a typical blockchain system is simulated to highly reproduce the real
blockchain operating environment, meet the needs of relevant security analyses, provide
important support for the verification of specific security technologies, and ensure the
authenticity of the simulation environment. On the other hand, a variety of performance
optimization schemes will be designed and implemented for the specific application sce-
nario of a blockchain simulation to meet the throughput requirements in the simulation
scenario and ensure the high efficiency of the simulation environment. Based on the direct
simulation method, this paper studies relevant simulation technologies in the consensus
layer, network layer, storage layer, and contract layer. The main contributions of this paper
are as follows:

1. For the consensus layer, we propose a proof-of-work mechanism simulation technol-
ogy based on a probability density function. This method can simulate the running
state of a blockchain network under any difficulty and any hash rate and realize the
high-fidelity simulation of the block generation time of the proof-of-work algorithm.

2. We implement a network layer simulation. In the network layer, we simulate the
network protocol and communication link. In the network protocol simulation, this
paper implements a node discovery protocol and data communication protocol. The
simulation of the underlying communication link is realized with a pipe technology.

3. For the storage layer, we propose a storage optimization mechanism based on shared
storage and sequential reading and writing. This method can improve the query
performance and solve the problem of redundant data storage.

4. For the contract layer, we propose a parallel replay technology of smart contracts in a
simulation environment. This method can solve the problem of wasting computing
resources caused by repeated replays of historical blocks, and it can also make full
use of the processor performance to speed up block replays.

Section 2 introduces the related work. Section 3 introduces the system architecture
of the simulation platform, including the logical level used by the simulation platform, as
well as the relationship between the simulation network, simulation node, and blockchain
protocol. Section 4 describes the consensus layer to introduce the proof-of-work simulation
technology based on the probability density function. Section 5 describes the network layer
to introduce the peer-to-peer network topology simulation based on a pipe technology.
Section 6 describes the storage layer to introduce the storage optimization mechanism based

Sensors 2022, 22, 9750 3 of 23

on shared storage and sequential reading and writing. Section 7 describes the contract layer
to introduce the smart contract parallel replay technology.

2. Related Work

The ideas of the simulation of blockchain systems can be divided into two categories:
direct simulation and model simulation. Direct simulation refers to running all of the operat-
ing steps of a blockchain system, which naturally has authenticity and scalability. However,
because a large number of nodes occupy system resources, such as computing and storage
resources, the efficiency of this method is low. Model simulation refers to establishing the
event model of blockchain operation and calculating the simulation results according to the
event model. This method is naturally efficient. However, since a blockchain protocol is
not really running, the simulation’s effect cannot be guaranteed. Moreover, new blockchain
protocols need new simulation models to be established, resulting in poor scalability.

At present, there are some simulation tools for simulating blockchain systems. These
simulators generally serve specific experimental objectives and are only applicable to
specific scenarios. They will be analyzed in the following.

Pongnumkul, S. et al. [17] built a single-node blockchain simulation environment
based on the direct simulation method. Its design goal was to test the impacts of different
numbers of transactions on the performance of a blockchain platform. Since only a single
node existed in the implemented simulation environment, this meant that the simulation
environment could not analyze the impact of the underlying peer-to-peer network on
the blockchain data transmission process, nor could it judge the role of the consensus
mechanism in the process of new block generation.

BLOCKBENCH [18] is a blockchain performance test platform based on direct simula-
tion. It can simulate some important components of blockchain systems, such as consensus
mechanisms and smart contracts. By using the direct simulation method, the authenticity
of the platform is effectively guaranteed. It can perform small-scale simulations on different
types of blockchain systems well. However, the clients of various blockchain systems run
on a single local node by default. They are not optimized for the simultaneous operation
of a large number of local nodes, making it difficult for this simulation tool to conduct
large-scale network simulations.

VIBES [16] is a model-based simulation tool. It mainly models the network layer
of a blockchain system and can conduct simulation experiments related to the network
layer. This simulation tool can simulate large-scale blockchain networks and can be used
to analyze the evolution process of the underlying peer-to-peer network topology of a
blockchain system. However, the communication process between the internal simulation
nodes is modeled as an abstract behavior. Simulation nodes do not run real blockchain
network protocols, which means that it is impossible to verify the internal security risks of
existing blockchain network protocols.

SimBlock [19] and BlockSim [20] are simulation tools that are implemented by using
event models. Both establish an event model in a blockchain system, which is based on the
generation of new events to drive the simulation environment to run. SimBlock models
the block generation and network propagation processes; in particular, it analyzes the
impact of the routing algorithm of a blockchain node and the network relay structure on
the block propagation process. BlockSim implements an incentive layer, connector layer,
and system layer; it especially models the consensus mechanism, and it can simulate the
state transition process brought about by the generation of new blocks. Both of these can
effectively simulate a blockchain system within the scope of the design goal, but neither of
them supports manual transaction initiation in the simulation process, nor the simulation of
smart contracts. The correctness of the simulation results also depends on the assumptions
of the parties involved in the network—for example, miners could include transactions
that offer the highest fees. The simulation of other special cases that do not meet the
assumptions cannot be realized.

Sensors 2022, 22, 9750 4 of 23

In general, the direct simulation method has bottlenecks in consensus computing,
network management, data storage, and contract execution. The main problems of the
model simulation method are the lack of blockchain functions, limited application fields,
weak scalability, and need for verification of the authenticity.

In order to facilitate the analysis of different simulators, we divide the functions
supported by simulators into two categories: parameters and metrics. Parameters refer
to the configuration options that can be changed, and metrics refer to the statistical data
obtained with simulation experiments. The parameters and metrics supported by the
simulation platforms are shown in Table 1. The parameters and metrics in the table are
classified according to the network layer, storage layer, consensus layer, and contract layer,
where P represents parameters and M represents metrics.

Table 1. Parameters and metrics supported by the simulation platforms.

Layer P/M Definition

network
layer

(P1)Block Delay Average delay of block propagation
on the simulation link

(P2)Transaction Delay Average delay of transaction
propagation on the simulation link

(P3)Link Bandwidth Maximum transmission bandwidth
of the simulation link

(P4)Link Latency Average transmission delay of
the simulation link

(M1)Nodes Number of nodes running in the
simulation network

(M2)Connections Total number of network connections
between all nodes

(M3)Block Time Average time for block propagation
in the simulation network

(M4)Transaction Time Average time for transaction propagation
in the simulation network

storage
layer

(P5)Transaction Speed Speed of generating random transactions
in simulation networks

(P6)Max Transaction Size Maximum transaction size configured in
the simulation environment

(P7)Max Block Size Maximum block size configured in the
simulation environment

(M5)Block Size Average block size generated by
the simulation network

(M6)Result Chain Blockchain for exporting
simulation results

(M7)Security Integration Simulation network operation data can
be obtained for security analysis

consensus
layer

(P8)Node Hashrate The hash rate owned by each node
in the simulation network

(P9)PoW Algorithm Whether proof-of-work mechanisms are
supported in the simulation environment

(P10)Other Consensus Algorithm Whether other consensus algorithms are
supported in the simulation environment

(P11)Miner Reward Calculation method for the block reward
used when generating new blocks

(M8)Reward Statistics Total amount of currently generated
block reward

(M9)Average Block Interval The average generation time of each new
block in the simulation network

(M10)Average Transaction Fee Average transaction fees for all transactions
in the simulation network

contract
layer

(P12)Contract Validation Whether contract validation is enabled
in the current simulation network

(M11)Contract Execution Time Average execution time of a smart contract
in the simulation network

(M12)Throughput Average transaction throughput in the
current simulation network

Sensors 2022, 22, 9750 5 of 23

Different simulators support different parameters and metrics. The results of com-
paring the parameters and metrics listed in Table 1 with other simulators are shown in
Tables 2 and 3.

Table 2. Comparison of the parameters of typical simulators.

Name P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 Total

VIBES # # # # 8
SimBlock # # # # # 7
BlockSim # # # # # # # 5
BlockBench # # # # 8

Table 3. Comparison of the metrics of typical simulators.

Name M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Total

VIBES # # # # 8
SimBlock # # # # # 7
BlockSim # # # # # 7
BlockBench # # # # # # 6

3. System Architecture

This section introduces the overall operation logic and level division of the blockchain
system simulation platform. This section first explains the logical relationships among the
simulation network, simulation node, and blockchain protocol in the simulation environ-
ment, and it then introduces the overall running process of the simulation environment.
Finally, it introduces the design objectives and specific connotations of the consensus layer,
network layer, storage layer, and contract layer from the perspective of implementation.

3.1. Overall Operation Logic

On the logical level, the blockchain simulation platform is implemented based on a
three-tier architecture. The logical relationships among the simulation network, simulation
node, and blockchain protocol are shown in Figure 1. There are several simulation nodes in
a simulation network, and each simulation node specifies a specific blockchain protocol
when it is generated. After starting the simulation node, the protocol is executed cyclically
according to the predefined rules.

Figure 1. Logical relations among the components in the simulation system.

Creating a simulation network consists of three steps. The first step is to create a
simulation network and specify the type of simulated blockchain. The second step is to
specify the genesis block’s information and generate simulation nodes. The third step is to
establish connections between all nodes and operate each node through the RPC interface.

The running process of the simulation network is shown in Figure 2. Each simulation
node runs independently, executes its own consensus algorithm, and exposes the RPC

Sensors 2022, 22, 9750 6 of 23

interface to the outside. Each node in the simulation network maintains the blockchain’s
content independently, runs the consensus algorithm independently, communicates with
the others based on the simulation network links, and accurately reproduces the operation
process of a real blockchain system. External users can initiate transactions or call smart
contracts through the RPC interface provided by the simulation node. According to the
operation type, the simulation node can directly return results or broadcast data to the
internal simulation network.

Figure 2. Flowchart of the blockchain simulation system’s overall operation.

From a lower-level perspective, the blockchain simulation system is a finite-state
automaton corresponding to each block one by one [21]. The block structure generated
by the blockchain simulation system is shown in Figure 3. Each simulation block mainly
includes two parts: the block header and block body. The block body includes two parts:
ordinary data and metadata. The block header mainly records the height of the current
block, the hash of the current block, and the hash of the parent block, which are used to
establish the basic chain structure. Metadata record the markup information required by the
consensus algorithm. Finally, the data part uses a Merkel tree to save all transaction data.

3.2. Layered Design Idea

Through a functional analysis and module decomposition of various real blockchain
systems, we were able to deduce commonalities, such as the contracts, consensus, basic
components, and infrastructure. These commonalities can be grouped into four layers: the
consensus layer, network layer, storage layer, and contract layer. The consensus layer is the
core component of various blockchain systems, and it refers to various common consensus
mechanisms, such as proof-of-work mechanisms and proof-of-stake mechanisms. The net-
work layer includes a peer-to-peer network composed of all nodes and the communication
protocol used between nodes to achieve the reliable synchronization of blockchain data.
The storage layer is the underlying support. It encapsulates various blockchain-specific
data models and combines data integrity verification mechanisms to ensure data security.
The contract layer refers to a complete set of operating environments for smart contracts,
which expand the application field of the blockchain. The core of this layer is the smart
contract virtual machine. The specific contents of the four layers are shown in Figure 4.

Sensors 2022, 22, 9750 7 of 23

父区块哈希

区块哈希

区块高度：01

区
块
头

交易A信息
（梅克尔树树根）

数
据

签名信息

区块索引

额外标记

元
数
据

父区块哈希

区块哈希

区块高度：02

交易B信息
（梅克尔树树根）

签名信息

区块索引

额外标记

父区块哈希

区块哈希

区块高度：03

交易C信息
（梅克尔树树根）

签名信息

区块索引

额外标记

parent block hash

block hash

block height: 01

block head

transaction A
(Meckel tree root)

signature

block index

extra information

parent block hash

block hash

block height: 02

signature

block index

extra information

parent block hash

block hash

block height: 03

signature

block index

extra information

data

metadata

transaction B
(Meckel tree root)

transaction C
(Meckel tree root)

Figure 3. Diagram of the block structure of a simulated blockchain.

Figure 4. Typical hierarchical division in the blockchain simulation system.

Through a study of the features of all kinds of real blockchain systems, we obtained
the common content of all blockchain systems. Based on that common content, we ab-
stracted the consensus layer, network layer, storage layer, and contract layer . The specific
connotations and design objectives of these four layers are as follows.

1. Consensus layer: The confirmation of each transaction in the blockchain needs to
be supported by a consensus mechanism, and consensus algorithms are the key to
ensuring the decentralized nature of a blockchain. For most consensus algorithms,
direct execution can be used in simulations. A proof-of-work mechanism used in a
direct simulation will cause great resource consumption; thus, it is not suitable for use
in a simulated environment. Due to the extensive use of proof-of-work mechanisms,
consensus layer simulations must be able to simulate them on the premise of achieving
the unity of efficiency and authenticity.

2. Network layer: On the whole, any blockchain can be abstracted as network communi-
cation between distributed nodes from an underlying level. The network layer needs
to include simulation of the protocol at the simulation node level and the simulation

Sensors 2022, 22, 9750 8 of 23

of propagation at the simulation network level. In order to meet the design objectives
of a network layer simulation, it needs to start from two points: simulation network
protocols and simulation communication links.

3. Storage layer: All of the generated blockchain data are eventually collected into the
storage layer. The characteristics of blockchain require all nodes to store a complete
copy of the data separately. Only in this way can the data be guaranteed against
tampering on the basis of allowing all simulation nodes to read and write blockchain
data normally. The simulation of the storage layer needs to improve the overall
system’s reading and writing performance as much as possible and reduce the disk
space occupied by data generation in the simulation process.

4. Contract layer: The environment supporting the operation of smart contracts consists
of the contract layer, which mainly includes a virtual machine and virtual machine
instruction set. Simulation of the contract layer needs to provide an operating environ-
ment that is exactly consistent with the real scene for the operation of smart contracts.
On the premise of realizing real and reliable simulation results, the simulation of the
contract layer also needs to meet the actual requirements of the simulation system,
including the fast replay of historical block data and fast creation of new nodes.

As long as the same running results can be obtained from the perspective of an external
observer, the simulation can be considered complete. Therefore, it only needs to realize all
of the functions of these four levels and connect the simulation nodes in a specific way to
achieve the simulation.

4. Proof-of-Work Simulation Technology Based on the Probability Density Function

This section introduces the simulation method for the consensus layer and explains
the reason for why the proof-of-work mechanism cannot be directly simulated. A proof-of-
work simulation technology based on the probability density function is proposed, and the
authenticity of this method is verified with theoretical and real scenarios.

4.1. Simulation Design Objective and Expected Effect of the Consensus Layer

In the simulation work of all four levels, the simulation of the consensus algorithm is
the core content of the whole work of simulation. From the level of the simulation nodes,
the existing consensus algorithms can be classified according to the selection method for the
block generation node. This method can divide consensus algorithms into four categories:
competition, election, random, and others. The execution processes for the above four
consensus algorithms can be divided into three types of processes: generating blocks,
verifying blocks, and submitting blocks. In a simulation environment, it is only necessary
to implement the above three processes to realize the direct simulation of various consensus
algorithms. In other words, a consensus algorithm implements three operations: generation,
verification, and sealing, and these can be supported in a simulation environment. However,
for proof-of-work algorithms in the competition category, the direct simulation method
will cause all simulation nodes to repeatedly perform hash computations, which will cause
a great waste of resources. Therefore, it is necessary to carry out specific research on the
simulation of proof-of-work mechanisms to avoid these problems.

Most of the mainstream public chain systems that are currently in operation are
based on a proof-of-work mechanism, such as SHA256 [22], which is used by Bitcoin, and
Ethash [21], which is used by Ethereum. For proof-of-work algorithms such as SHA256 and
Ethash, the simulation environment needs to test the security of the blockchain network
under arbitrary hash rate scenarios. Specifically, it needs to be able to dynamically adjust
the hash rate of a node and simulate the required block generation time under any hash
rate level.

However, in the simulation environment, it is impossible to run all kinds of proof-
of-work algorithms because of the limitation of single-machine performance and the sim-
ulation requirements of a large number of nodes. In this section, we will prove that all
proof-of-work consensus algorithms conform to a probability density function with a nor-

Sensors 2022, 22, 9750 9 of 23

mal distribution. Therefore, based on the probabilistic characteristics of the proof-of-work
mechanism and the characteristics of the simulation environment, this paper explores a
general algorithm that is suitable for the simulation environment of a blockchain system.
This algorithm derives the probability density function of each node’s block generation
according to the corresponding hash rate of each node and a difficulty calculation function
designed by the blockchain system.

4.2. Mathematical Principle and Algorithm Implementation

The process by which a single node computes a hash value and determines whether
the block difficulty is met can be regarded as a discrete random variable. Assuming that the
output results of the current hash algorithm are uniformly distributed, the probability of
blocks in each computation process is equal, so the computation process for a single node
satisfies the binomial distribution. We treat a calculation process carried out n times as a
random variable X1, X2, . . . , Xn, which is independent and identically distributed and has
finite mathematical expectation and variance: E(Xi) = µ, D(xi) = δ2(i = 1, 2 . . .). Then, its
distribution function satisfies the mathematical expectation in Equation (1):

Fn(x) = P{∑i=1
n Xi − nµ

δ
√

n
≤ x} (1)

where n represents the total number of calculations, x represents the number of times
needed to meet the difficulty requirements, µ represents the mathematical expectation, and
δ represents the variance.

Because of the huge number of calculations, the above formula satisfies Equation (2)
according to the central limit theorem:

lim
n→∞

Fn(x) = lim
n→∞

P
{

∑n
i=1 Xi − nµ√

nδ
≤ x

}
=

1√
2π

∫ x

−∞
e−

t2
2 dt (2)

Equation (3) states that when n is large, the random variable Yn approximately follows
the standard normal distribution n(0,1). Therefore, Equation (4) indicates that the block
behavior approximately follows the normal distribution N(nµ, nδ2). Let the block difficulty
be D, let the node hash rate be C, and let the block generation time be T; then, we have
µ = 1

d , δ2 = 1
d(1− 1

d)
, n = ct. Finally, the block generation behavior and block generation

time of a single node meet the normal distribution N(ct
d , cd−1)

d2). Using this conclusion, the
distribution of the number of blocks out of each node in a fixed time can be calculated.

Yn =
∑n

i=1 Xi − nµ√
nδ

(3)

n

∑
i=1

Xi =
√

nδYn + nµ (4)

In particular, the number of computations required for the generation of the next
block can be calculated by using a Pascal distribution. Equation (5) is a Pascal distribution
formula, and the in the simulation environment, k = 1 and p = 1

d . Based on the above
parameters, the probability density function of the number of block generations required
by the simulation node is obtained, and the calculation times can be obtained by sampling
from it. Then, the calculation times are divided by the simulated hash rate of the node to
obtain the simulation block generation time.

f (k; r, p) ≡ Pr(X = k) =
(

k + r− 1
r− 1

)
(1− p)k pr (5)

Sensors 2022, 22, 9750 10 of 23

In summary, as shown in Algorithm 1, the block generation time of a single node
can be calculated by using the block difficulty, the simulated hash rate of the node, and a
probability density function with a Pascal distribution.

Algorithm 1: Algorithm for simulating the roof-of-work mechanism.
Input: The difficulty of block d; the hash rate of nodes c1, c2, ...cn
Output: Node index k; block generation time t

1 // Initializing variables
2 t← ∞
3 k← 0
4 // Calculate the minimum block generation time
5 for i← 0 to n do
6 // Calculate the number of simulation calculations of the current node
7 counts← negative_binomial(1, 1

d) + 1
8 // Calculate the simulated block generation time of the current node
9 ti ← ci

counts
10 // Update the minimum block generation time
11 if ti < t then
12 k = i
13 t = ti
14 end
15 end
16 return k,t

4.3. The Validation of the Simulation Results of the Proof-of-Work Algorithm

In order to verify if the calculation result of the algorithm matches the theoretical value, an
experiment was designed to calculate the difference between the simulated block generation
time and the theoretical value. In the experiment, the difficulty of the fixed block was 109, and
the final result is shown in Figure 5. The two curves in this figure represent the theoretical
block generation time and the simulated block generation time. Subfigures (a), (b) and (c)
show the results of 100, 1000 and 10,000 calculation times. The experimental results show that
the average value of the simulated block generation time gradually approached the theoretical
value with the increase in the number of experimental repetitions.

25 50 75 100
Hashrate (MH/s)

10

20

30

40

50

Bl
oc

k
ou

t t
im

e
(S

)

(a) Repeat 100 times
Theory
Simulation

25 50 75 100
Hashrate (MH/s)

10

20

30

40

50
(b) Repeat 1000 times

Theory
Simulation

25 50 75 100
Hashrate (MH/s)

10

20

30

40

50
(c) Repeat 10000 times

Theory
Simulation

Figure 5. The simulated block generation time and a comparison with the theoretical value.

In order to verify the degree of fit between the above simulation methods and the real
environment, the hash rate level and average daily block generation time of the Bitcoin
network and Ethereum network in the last year were obtained, and simulation experiments
were conducted for the SHA256 and Ethash proof-of-work algorithms.

In the two simulation experiments, the daily hash rate level was used as the input
parameter to calculate the block generation time, and the calculated results were compared

Sensors 2022, 22, 9750 11 of 23

with the block generation time in a real environment. The final experimental results are
shown in Figure 6. subfigures (a) and (c) on the left show the hash rate of the whole of
the Bitcoin network and the Ethereum network in the last year, and subfigures (b) and
(d) on the right, respectively, draw the real daily block generation time and the simulated
block generation time of the corresponding network. By comparing the changes displayed
by the data on the two broken lines, it is not difficult to find that the trend of the block
generation time in the simulation environment was basically consistent with that in the real
environment, and the variance of the block generation time in the simulation conformed to
the theoretical expectation.

Based on the above experimental results, it is concluded that the current probabilistic
algorithm can simulate the running state of a blockchain network under any difficulty
and any hash rate, and it can be used to realize the high-fidelity simulation of the block
generation time of the proof-of-work algorithm.

100EH/s

150EH/s

200EH/s

250EH/s
(a) Bitcoin hashrate

0s

200s

400s

600s

800s

1000s
(b) Bitcoin block generation rate

real
simulation

2021-07-30

2021-09-28

2021-11-27

2022-01-26

2022-03-27
500TH/s

600TH/s

700TH/s

800TH/s

900TH/s

1000TH/s

1100TH/s
(c) Ethereum hashrate

2021-07-31

2021-09-29

2021-11-28

2022-01-27

2022-03-28
12.0s

12.5s

13.0s

13.5s

14.0s

14.5s

15.0s
(d) Ethereum block generation rate

real
simulation

Figure 6. Comparison of the block generation times.

5. Peer-to-Peer Network Topology Simulation Based on a Pipe Technology

This section studies the simulation method for the network layer. In order to realize
the simulation of the underlying peer-to-peer network, this section is divided into two parts:
the network protocol simulation and communication link simulation. First, the network
protocols of various blockchain systems with different network types are summarized in
two steps: node discovery and data communication. Then, the pipe technology is used to
simulate the underlying physical links.

5.1. Design Objective and Expected Effect of the Network Layer Simulation

The design goal of the network layer simulation was to realize various blockchain
network layer protocols, select efficient simulated communication methods, and, finally,
realize a real and efficient simulation network.

Any blockchain can be abstracted as network communication between distributed
nodes from the bottom layer. From the perspective of an external observer, as long as the
same network traffic data can be obtained, a simulation can be considered complete. The

Sensors 2022, 22, 9750 12 of 23

bottom layer of blockchain technology depends on the establishment of a peer-to-peer
network. One of the goals of the simulation environment is to realize the simulation of a
peer-to-peer network architecture, so it is necessary to realize a simulation framework of a
peer-to-peer network layer that is suitable for a blockchain system.

The design goal of the network layer simulation framework is to standardize the
communication between blockchain nodes and the network simulation framework without
repeatedly developing similar underlying simulation frameworks for various blockchain
systems. Based on the network layer framework, a variety of security analysis tools can be
quickly integrated, and a user-customized blockchain system can be implemented with
minimal changes.

5.2. Specific Content of the Network Layer

This section will introduce the technical scheme of the network layer simulation from
four perspectives: the communication protocol, coding scheme, link simulation, and a
comparative experiment. The following will first introduce the communication protocols
that need to be run in the network layer of a typical blockchain system, then introduce the
encoding scheme for communication data selection in the simulation environment, explain
the unique advantages of the pipe technology as the underlying communication link, and,
finally, verify the final effect through experiments.

5.2.1. Working Principles of the Peer-to-Peer Network

Each node in a blockchain system can operate normally and participate in the whole
network depending on the efficient operation of the underlying peer-to-peer network.
The process of initializing a node to join a peer-to-peer network can be divided into two
processes—node discovery and data communication—as shown in Figure 7.

启动节点
仿
真
节
点

仿真区块链网络

节点数据库
节点发现

区块数据库
数据通信

节点发现

Start node

Simulat ion node

Simulation blockchain network

Node database

2.Node discovery

Block database
3.Data communicat ion

1.Node discovery

BootNode Neighbors

Bucket1

Bucket2

Bucket3

Local Node

Blockchain
Network

Node records

Block data

全局调度器

节点1

节点2

节点3

概率仿真算法

仿真网络
派发参数

调度各节点出块

返回出块时间

Figure 7. A node’s interaction with a peer-to-peer network.

Specifically, the node discovery process can be divided into three steps. First, a series
of seed nodes for the local node are specified, and they are saved in the local node database.
Then, the local node executes the node discovery algorithm on the seed node to obtain
the node record information of other nodes. Finally, the local node saves the obtained
records to the node database and uses the routing algorithm to select a specific node from
the database to continue the query, thus repeating the cycle.

The process of data communication can be divided into two steps. First, a specific
algorithm, such as the Kademlia algorithm, is used to select peer nodes with a short distance
from the local node database. Then, encrypted handshakes and sub-protocol handshakes
are carried out with peer nodes. After verification, an encrypted communication link can

Sensors 2022, 22, 9750 13 of 23

be successfully established for block data exchange. The following uses the Ethereum
network as an example to detail the protocols involved in the node discovery and data
communication processes.

There are two main protocols running on the peer-to-peer network of Ethereum,
namely, a node discovery protocol based on UDP and an RLPx protocol based on TCP [23].
Local nodes need to obtain the basic information of other nodes through the node discovery
protocol at the beginning, and then they establish encrypted data communication links
with each other through the RLPx protocol after selecting the corresponding nodes. The
node discovery protocol consists of three steps: 1. Communicating Ping and Pong packets;
2. Communicating ENRRequest and ENRResponse packets; 3. Communicating FindNode
and Neighbors packets. The operation process of RLPx mainly includes three steps: 1. En-
cryption handshake stage; 2. Protocol handshake stage; 3. Starting and running application
layer protocols.

5.2.2. Node Discovery Protocol

In the node discovery protocol, nodes probe each other to discover other nodes in
the network. In order to join a blockchain network and start block synchronization, an
Ethereum client will designate a set of seed nodes to discover other active nodes and save
their information in the corresponding bucket. In order to communicate node records
between nodes as quickly as possible, the Ethereum node discovery protocol uses UDP as
the transport layer protocol. There are six message types in the v4 version of the protocol:
Ping, Pong, FindNode, Neighbors, ENRRequest, and ENRResponse. The Ping and Pong
packets are used to check if a remote node is alive. The Neighbors packet returns 16 entries
to the nearest node in the FindNode packet each time.

The process of running the node discovery protocol and adding node records to the
node database is shown in Figure 8. Within the first RTT, the FindNode packet is sent
locally, the Neighbors packet returned by the remote node is received, and the 16 node
records saved in the packet are saved to the node database. During the second RTT, the
local node sends a Ping packet to the remote node to try to activate the remote node. After
receiving a Pong packet, it indicates that the peer party is alive. After that, the above
operations are repeated for the remaining nodes.

Figure 8. Sending and receiving processes of the node discovery protocol packets.

5.2.3. Node Security Communication Protocol

The next step after node discovery is to exchange data with the newly discovered
node. This process needs to implement a reliable transmission protocol that can achieve
encrypted communication, and a typical one is the RLPx protocol. The RLPx protocol is
used to establish a secure TCP connection between two nodes. The process of establishing
a connection can be divided into two steps: the encryption handshake stage and the
subprotocol handshake stage.

Sensors 2022, 22, 9750 14 of 23

1. Encryption handshake stage: Symmetric encryption keys are constructed based on
ECIES for subsequent communication [24].

2. Subprotocol handshake stage: The two parties communicate with each other about
the name and version of the subprotocol and select an appropriate protocol for data
transmission. The two communication parties first send a HELLO message to each
other, which contains their node ID, DEVp2p protocol version, client name, supported
application layer protocol, and local listening port number (default 30303) [25].

5.3. Node Life Cycle and Pipe Technology

In traditional simulation technologies, in order to simulate an environment similar
to that of real blockchain node communication, it is necessary to use the local loopback
address and occupy the local port to realize the simulation of a peer-to-peer network [26].
As a result, the network communication between nodes depends on the network interface
of the operating system, and the number of node simulations is limited by the locally
available ports.

In the simulation platform, various types of blockchain systems will share the same
peer-to-peer network layer design. According to the characteristics of the simulation
environment, we explore the use of a pipe technology to directly simulate the synchronous
and full-duplex network connections in memory to avoid the limitations of traditional local
socket communication.

A node in the simulation network is a collection that manages a set of system resources
and registers network layer services. The life cycle of the simulation node includes three
states: INITIALIZING, RUNNING, and CLOSED. The relationships between the three
states are shown in Figure 9.

Figure 9. State transition relationships of nodes in the simulation network.

INITIALIZING: Creating a node in the initial state involves allocating the required
resources and registering the network protocol. The resources allocated by each node
include the data folder on which the node is allowed to operate, the RPC service, which
is registered externally, and the key-value database, which can be read and written. Once
the resource allocation is complete, the next step is to define the network layer protocols
that the new node can run, such as the node discovery protocol and data communication
protocol that were described above.

RUNNING: After resources are allocated and network protocols are registered, the new
node is ready and can be started at any time. After the node is started, the node continues

Sensors 2022, 22, 9750 15 of 23

to implement the specified network layer protocol until the protocol runs successfully. A
running node cannot register any network layer protocols.

CLOSED: A node in the closed state will release all resources that it occupies. The
release of resources depends on the status of the node before it is shut down. When a node
in the initial state is shut down, all allocated system resources are released. When a node
in the running state is shut down, in addition to releasing system resources, all network
connections and running RPC services are shut down.

The implementation of the network layer protocol is based on four core operations:
Connect, Send, Read, and Close. In any blockchain system, the network layer protocol
can be implemented with the above four methods, so it can be used as the underlying
communication link by simulating the above operations through the memory pipe.

According to the prototype system, this technology can be used to simulate any
number of nodes within the allowable memory range, and it prevents losses caused by
unnecessary packet packaging in the network layer and transport layer. In addition, using
a pipe to simulate network communication avoids the influence of the operating system
on network packet sending, and the simulation of flow control, packet loss rate, and delay
jitter of connections between nodes can be more accurately realized.

5.4. Communication Performance Comparison Test of the Simulation Environment

In order to verify the actual effects of different simulation links, the communication
performance of different underlying links was compared and experimentally tested; these
links included a memory pipe (PIPE), a named pipe (FIFO), a Unix domain socket (UDS), a
network socket (TCP), and shared memory (SHM). This experiment tested the average time
taken for connection creation and disconnection, the memory usage of a single link, and
the upper limit of the communication bandwidth for the five methods described above,
and the final results are shown in Figure 10. It can be seen in subfigure (a) that the Unix
domain socket scheme and TCP scheme took a long time to create and close connections.
It can be seen in subfigure (b) that the shared memory scheme had a slightly higher
memory consumption. It can be seen from subfigure (c) that, except for the shared memory
scheme, there was little difference in the upper bandwidth limits of various schemes. The
experiment was run in the environment of an Intel(R) Xeon(R) Gold 5220 CPU at 2.20 GHz
*72 CPU with 128 G RAM and 2 TB SSD, and 100 nodes were configured to establish a
complete graph network.

pipe fifo uds tcp shm
Connection methods

0 s

1 s

2 s

3 s

4 s

5 s

Ti
m

e
co

ns
um

in
g

(a) Create and close time
create
close

pipe fifo uds tcp shm
Connection methods

0

1

2

3

4

5

m
em

or
y

us
ag

e
(K

B)

(b) Memory usage of different methods

128 256 512 1024 2048 4096
Packet size (byte/packet)

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

d(
GB

/s
)

(c) Bandwidth of different methods
pipe
uds
tcp
shm

Figure 10. Performance comparison of various simulation link implementation methods.

The Unix domain socket scheme requires the creation of local IPC files for each node,
so it can take a long time to create connections. Local TCP communication requires frequent
requests for and release of local ports. As a result, it takes much longer to create and
destroy connections than with other schemes. In addition, the number of connections
is limited due to the port numbers. Although the shared memory method takes a very
short time to create and close because it does not need to establish a connection, it is not
advantageous in terms of memory occupation and communication bandwidth. In addition,

Sensors 2022, 22, 9750 16 of 23

shared memory requires a fixed memory area for each link, so it occupies a large amount
of memory. Moreover, an additional locking mechanism may be used to significantly
reduce the bandwidth and increase the implementation complexity in order to achieve
synchronous communication between the two sides.

After a comprehensive analysis of the above experimental results, it is not difficult to
find that the memory pipe scheme has obvious advantages in terms of connection creation
efficiency and memory space occupation, and it does not have obvious disadvantages in
communication bandwidth. Therefore, it can be concluded that using the memory pipe
technology as the underlying link support for the peer-to-peer network can meet the needs
of the simulation environment.

6. Storage Optimization Mechanism Based on Shared Storage and Sequential Reading
and Writing

To improve the query performance and solve the problem of redundant data storage,
this section focuses on the simulation of the storage layer. In order to improve the query
performance, this section first introduces the underlying storage format of a flat dataset.
To solve the problem of redundant data storage in the simulation environment, a shared
storage scheme is proposed.

6.1. Design Objective and Expected Effect of the Storage Layer Simulation

In the consensus stage of the simulation environment, after a block is successfully
connected to the chain, the blocks that have reached consensus on the blockchain all contain
the same data, and it will cause great waste for all simulation nodes to repeatedly store this part
of the data. In addition, LevelDB’s performance deteriorates due to the random distribution of
hash values and the growth of the data. As a result, the disk reading and writing performance
continuously deteriorates. Storage optimization can be divided into two directions: reducing
storage overhead and improving reading and writing performance. Therefore, in order to
solve the above two problems, this paper proposes a storage optimization mechanism based
on shared storage and sequential reading and writing.

In this method, a shared storage mechanism of nodes is used to uniformly save the
confirmed data to reduce the occupation of disk space. The essence of this method is the
storage of the blockchain’s data in a hierarchical manner. The first level is an in-memory
database for storing pending transactions and newly generated blocks. The second level is the
LevelDB database, which holds new data. The third level is used to save the fully confirmed
data, and it is a flat dataset that will not be changed. The data in the flat dataset are linear
data that are stored in one dimension, and the storage location is directly located according to
the block height without using a hash value for the index. Therefore, when a large number of
traversal queries are executed, the sequential reading and writing performance of disks can
be fully utilized to significantly improve the sequential query speed.

The simulation data are divided into shared data and new data, which greatly reduces
the storage space required by the simulation environment. At the low-level database
reading and writing level, all simulation nodes will use the same shared data according to
the progress of the consensus algorithm in constantly carrying out the transformation of
new data and shared data.

6.2. Flat Dataset

Data in the shared storage area are managed through a storage format called a flat
dataset. The underlying storage can be divided into index files and data files according to
the file types. The data file saves the data generated during the operation of the blockchain,
while the index file records the offset of the real data in the data file.

The index file consists of several index entries with a length of 6 bytes. The first 6
bytes of the index file are the index offset, which is used to record the starting position of
the real data in the data file. Each index entry can be used to locate the location of a piece

Sensors 2022, 22, 9750 17 of 23

of data. The first two bytes store the data file number, and the last four bytes store the end
position of the real data in the data file. The specific formal definition is as follows:

1. <index-file>→ <index-offset> <index-entry>+
2. <index-offset>→ 0x00 0x00 <uint32>
3. <index-entry>→ <uint16> <uint32>

Let the size of the index file be t bytes; then, the formula for calculating the total
number of saved data is: t

6 − 1. Let the data to be queried be item K; then, the byte position
in the index file is: 6k.

The data file holds only pure binary data and does not contain any other information
internally. By using this design, the data of adjacent blocks are continuously stored, which
can improve the efficiency when sequentially reading a large number of block data.

Querying complete data from a flat dataset consists of two processes: obtaining index
information and locating the real data. Firstly, the index entry of the queried data is
obtained from the index file, from which the data file number and the corresponding data
file byte position are resolved. The next step is to use the index information above to read
all of the real data from the data file. Algorithm 2 shows the algorithmic process of locating
data in a flat dataset.

Algorithm 2: Data location algorithm for a flat dataset.
Input: table name tab; data index i
Output: binary data res

1 // Reading index files
2 entry-index← i*(6+1) // Calculate the byte position of the index entry
3 index-file← open(tab +”.idx”) // Open the index file of the corresponding table
4 index-file.seek(entry-index)
5 // Parsing index entries
6 datafile-num← index-file.read(2) // Read the data file number
7 datafile-index-begin← index-file.read(4) // Read the start position of the real data
8 index-file.read(2) // Read the data file number
9 datafile-index-end← index-file.read(4) // Read the end position of the real data

10 // Read real data from a data file
11 data-file← open(tab + datafile-num + ”.dat”) // Open the data file
12 index-file.seek(datafile-index-begin)
13 res← data-file.read(datafile-index-end - datafile-index-begin) // Read result
14 return res

6.3. Verification of the Storage Optimization Effect

In order to verify the optimization effect of the shared storage scheme on space
occupation, 10 nodes were created in the simulation environment, and the contents of the
first 100,000 blocks of Ethereum were replayed. Figure 11 shows the disk space usage
before and after the optimization when the threshold was set to 30,000.

As can be seen from the data in Figure 11, since the first 30,000 blocks did not reach
the threshold, LevelDB was completely used as the underlying storage in both cases, with
no difference in the space occupied. When the threshold was exceeded, the two curves
bifurcated. With the increase in the block height, the content of the block was moved to the
shared storage, and the space occupation gap between the two curves gradually widened.

In order to verify the query performance of the flat dataset, the average query times
of the in-memory database, flat dataset, and LevelDB with millions, tens of millions,
and hundreds of millions of data items were calculated. In order to approach the query
characteristics of a real blockchain scenario, all of the queried data were randomly generated
32-byte hash values, and the experimental results are shown in Figure 12. The figure shows
the sequential and random query times for the three storage media, each of which was

Sensors 2022, 22, 9750 18 of 23

tested with three different orders of magnitude of data. Subfigures (a), (b) and (c) are the
experimental results of memory database, plat file and LevelDB respectively.

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
Number of blocks

100

200

300

400

500

Oc
cu
pi
ed
 s
pa
ce
 (
MB
)

Normal

Shared

Figure 11. Comparison of the space occupation between shared storage and common storage.

106 107 108

Number of data entries

0 ns

200 ns

400 ns

600 ns

800 ns

1000 ns

Ti
m

e
co

ns
um

in
g

(a) Memory database
Sequence
Random

106 107 108

Number of data entries

0 s

5 s

10 s

15 s

20 s
(b) Plat file

Sequence
Random

106 107 108

Number of data entries

0 s

20 s

40 s

60 s

80 s

100 s

(c) LevelDB
Sequence
Random

Figure 12. Comparison of the reading times of different data storage schemes.

In subfigure (a), the memory database was used as the test benchmark to calibrate
the upper limit of the query performance. subfigure (c) shows that LevelDB’s random
reading performance deteriorated significantly when the number of saved data entries
was increased. It can be seen in subfigure (b) that the performance of sequential and
random querying on the flat dataset was relatively stable, and the time consumption was
significantly less than that of the LevelDB data before the performance deterioration.

Based on the above experimental results, it can be concluded that the shared storage
scheme can effectively reduce the repeated storage of redundant data in the simulation envi-
ronment without affecting the simulation’s effect. The design of the flat dataset can achieve
fast querying of confirmed data, thus effectively avoiding the performance degradation of
LevelDB due to the increase in data entries.

7. Smart Contract Parallel Replay Technology

This section focuses on the contract layer simulation. From the perspective of the
contract layer simulation, in order to realize the fast replay of transactions, fast import
of blocks, and fast creation of nodes, this section proposes smart contract parallel replay
technology. This technology solves the problem of the waste of computing resources caused
by the repeated replay of historical blocks, and it can also make full use of the processor
performance to speed up the block replay.

Sensors 2022, 22, 9750 19 of 23

7.1. Design Objective and Expected Effect of the Contract Layer Simulation

The design goal of the contract layer simulation is to realize the rapid replay of massive
transactions and, finally, achieve the fast creation of new nodes and fast import of historical blocks.

With the continuous operation of the simulation network, the block height continu-
ously increases, and every new node needs to synchronize all of the historical blocks. When
importing the original simulation network, all simulation nodes are required to replay all
historical blocks. In both cases, the simulation nodes need to replay the calling process for
massive smart contracts.

However, due to the characteristics of smart contracts, the states of the front and back
blocks depend on each other. The execution of contract codes in the latter blocks depends
on the execution results of the previous blocks. Therefore, the current smart contract virtual
machine can only replay all historical blocks linearly and cannot take advantage of the
multi-core performance of mainstream processors. At present, it takes more than 13 days
to replay all blocks for the Ethereum archive mode [27].

Based on these reasons, using the existing smart contract virtual machine directly will
make the time-consuming processes of new node creation and block import unacceptable.
In order to solve the above problems, the smart contract state cache and parallel replay
technology are proposed for the contract layer. The experimental results show that the use
of this technology can significantly reduce the new node creation time and greatly speed
up the import of historical block records.

7.2. Smart Contract State Cache Implementation Scheme

In the process of creating a new node, all of the historical blocks that need to be
replayed by the new node have been verified by the execution of the rest of the simulation
nodes. Continuing to repeatedly execute the contract code on the new node will not
improve the authenticity of the simulation system. Therefore, the execution state of the
smart contract can be cached in the simulation environment, and the new node can be
quickly restored to the cache position when it is created so as to solve the problem of the
new node creation process taking a long time.

In addition to the creation of new nodes, the smart contract running state is also cached
in order to implement the parallel replay of the smart contract. Due to the dependency
between the previous and subsequent blocks on the blockchain, each execution of the
contract code will cause a change in the node’s world state. Each execution of the contract
code may cause changes in the account balance, changes in the status of other contracts, and
changes in contract variables. These changes in the state of the world occur sequentially
as the height of the block increases. In order to achieve the parallel replay of the contract
code, it is necessary to eliminate the inter-block dependencies. One solution is to cache the
on-chain smart contract state of each block.

The essence of caching smart contract execution results is saving the real-time states
of all nodes in the network. Each node can be regarded as a finite-state automaton. Each
block generated is equivalent to executing the automaton’s state transition function [21].
The real-time state of each node can be represented by a world state tree. By solidifying
the world state tree of the current position of the node, a smart contract state cache with a
specified block height can be obtained. To build a smart contract state cache, the transaction
data stored in all historical blocks should be replayed sequentially. Then, when the height
of the block to be cached is reached, the world state of the blockchain is obtained. Finally,
the cache data are saved to LevelDB through the storage layer.

7.3. Smart Contract Parallel Replay Implementation Scheme

The smart contract state cache solves part of the problem of replaying the contract
code by waiting until the contract code has been replayed at the remaining simulation
nodes. To improve the overall execution efficiency of smart contracts in the simulation
environment, it is fundamentally necessary to implement the parallel replay technology for
the contract code and make full use of the multi-core performance of current processors.

Sensors 2022, 22, 9750 20 of 23

The smart contract parallel replay process first reads the state cache of the specified
block height from LevelDB, and then starts the contract code replay from multiple starting
points at the same time. The detailed execution process is as follows:

1. First, the initial configuration of parameters is set, including the start block, end block,
block packet size, and upper limit of parallel processing.

2. The blocks within the starting and ending range are divided into several block groups
according to the block packet size, and these block groups are used as the execution
units of parallel processing tasks.

3. The saved smart contract state cache is read from LevelDB, and then the block con-
tents corresponding to the block height are read. A smart contract virtual machine
environment is created, and each transaction from this block is replayed.

4. When the replay of a block group is completed, the state of the end position is saved
for final verification.

5. Steps 3 and 4 are repeated until the number of concurrent threads reaches the upper
limit for parallel processing or all blocks have been replayed.

Algorithm 3 shows the execution process for parallel replays. The execution process
of the entire algorithm is divided into two parts, which are replay and verification. First,
the block data within the required range are replayed in parallel, and then it is verified if
the replay state is consistent with the saved state.

Algorithm 3: Block parallel replay algorithm.
Input: Start block height start; end block height end; block packet size packSize;

parallel processing upper limit p
Output: Final world state s

1 // Save the world state at the end of each group
2 states← []
3 // Parallel replay block
4 for i← start to end do
5 roundEnd←min(i+packSize,end)
6 // Non-blocking when the parallel upper limit is not reached
7 ReplayBlock(i,roundEnd,p,states)
8 i = i + roundEnd
9 end

10 // Wait for all groups to complete the replay
11 WaitReplay(states)
12 // Verify the world state
13 height← start
14 for s in states do
15 height = height + min(i+packSize,end)
16 // Error returned due to state mismatch after the replay
17 if ReadState(height) != s then
18 throw ReplayError
19 end
20 end
21 finalState← states[−1]
22 return finalState

7.4. Efficiency Comparison Test for the Parallel Replay

In order to verify the optimization effect of the parallel replay, the first 1,000,000 blocks
of the main Ethereum network were collected for a replay test. During the experiment, the
performance of a single thread and of parallel numbers of 2, 4, and 8 was assessed. The
experiment was conducted in the environment of an Intel(R) Xeon(R) Gold 5220 CPU at
2.20 GHz *72 CPU with 128G RAM and 2TB SSD.

Sensors 2022, 22, 9750 21 of 23

Figure 13 shows the time curve for replaying the first 1,000,000 blocks of Ethereum
by using a normal smart contract virtual machine in a single thread. In the first half of the
graph, the slope of the curve is relatively fixed because there are fewer block transactions
on the main network. In the second half of the figure, as the block height increases, the
number of transactions in each block increases, so the playback time per block increases.

1 2 3 4 5 6 7 8 9 10

Number of blocks (105)

200

400

600

800

1000

1200

Re
pl

ay
 t

im
e

us
ag

e
(S

)

Normal

Figure 13. The time taken to replay the first million blocks in a single thread.

Figure 14 shows a comparison of the time taken to replay the specified number
of blocks while using different parallel numbers. It can be seen in the figure that with
the increase in the number of parallels, the playback time of the specified block data
decreased significantly.

In the case of a fixed number of parallels, the time taken to complete the replay
depended on the packet that took the longest time. In Figure 14, when replaying 1,000,000
blocks, the time consumption of parallel number 2 was obviously more than half of that of
a single thread. This was due to the increased volume of transactions in the second half of
the block; the overall replay completion time depends on the second half of the replay time.

2 4 6 8 10

Number of blocks (105)

0

200

400

600

800

1000

1200

Re
pl
ay
 t
im
e
us

ag
e
(S
)

Thread=1

Thread=2

Thread=4

Thread=8

Figure 14. Comparison of the playback times for different threads.

The above experimental results show that the efficiency of replaying a large number
of blocks can be effectively improved by using the smart contract state cache and parallel
replay technology and by setting relevant parameters reasonably. Based on the above
methods, the simulation environment can dynamically create new nodes, and the time
consumption of the history state import process is significantly reduced.

Sensors 2022, 22, 9750 22 of 23

8. Conclusions

With the widespread application of blockchain technology, various security issues are
also becoming increasingly prominent. However, due to the complexity of the blockchain
system and the particularities of some security issues, the cost of the deployment of blockchain
systems in real environments is high. In addition, the related security analysis and verification
also have a certain destructiveness. In response to the above issues, this paper proposes the
design and implementation method of a blockchain system simulation platform.

This paper studies a layered design method for the simulation of typical blockchain sys-
tems. On the logical level, the blockchain system simulation platform is implemented based
on a three-layer architecture of a simulation network, simulation node, and blockchain
protocol. At the realization level, this paper divides the main existing components of a
blockchain into four layers, namely, the consensus layer, network layer, storage layer, and
contract layer, through induction and decomposition.

Aiming at these four layers, the paper proposes a proof-of-work simulation technology
based on a probability density function, a peer-to-peer network topology simulation based
on a pipe technology, a storage optimization mechanism based on shared storage and
sequential reading and writing, and a smart contract parallel replay technology. By means
of these techniques, problems such as the waste of computing resources, low communi-
cation efficiency, and redundant storage in the simulation environment are solved. By
comprehensively including all of the above levels of content, a real and efficient blockchain
simulation prototype system was finally realized to provide security support for related
technological research in the field of blockchain.

In future work, we will realize the combination of different components to facilitate
the analysis of the performance of a variety of different types of blockchain systems. The
next step will be to enhance the applicability of the above simulation methods to more and
different types of blockchain systems so that they will not be limited to the public chain
domain, thus helping to simplify security research in more areas.

Author Contributions: Conceptualization, Y.L., Y.Z. and Z.L.; Formal analysis, Y.L., Y.Z. and Z.L.;
Funding acquisition, Y.L., Z.W. and X.W.; Software, Y.Z. and Z.L.; Supervision, Y.L., Z.W. and X.W.;
Writing—review and editing, Y.L., Y.Z. and Z.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of China
(No. 2020YFB1005805), Peng Cheng Laboratory Project (Grant No. PCL2021A02), Guangdong Provincial
Key Laboratory of Novel Security Intelligence Technologies (2022B1212010005), and Shenzhen Stable
Supporting Program (General Project) (No. GXWD20201230155427003-20200821160539001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data included in this study are available upon request by contact
with the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Halpin, H.; Piekarska, M. Introduction to Security and Privacy on the Blockchain. In Proceedings of the 2017 IEEE European

Symposium on Security and Privacy Workshops (EuroS&PW), IEEE, Paris, France, 26–28 April 2017; pp. 1–3.
2. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018,

14, 352–375. [CrossRef]
3. Wang, S.; Yuan, Y.; Wang, X.; Li, J.; Qin, R.; Wang, F.Y. An overview of smart contract: Architecture, applications, and future

trends. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), IEEE, Suzhou, China, 26–30 June 2018; pp. 108–113.
4. Marcus, Y.; Heilman, E.; Goldberg, S. Low-resource eclipse attacks on ethereum’s peer-to-peer network. Cryptol. Eprint Arch.

2018, Preprint.
5. Kumar, P.; Kumar, R.; Gupta, G.P.; Tripathi, R. A Distributed framework for detecting DDoS attacks in smart contract-based

Blockchain-IoT Systems by leveraging Fog computing. Trans. Emerg. Telecommun. Technol. 2021, 32, e4112. [CrossRef]

http://doi.org/10.1504/IJWGS.2018.095647
http://dx.doi.org/10.1002/ett.4112

Sensors 2022, 22, 9750 23 of 23

6. Johnson, B.; Laszka, A.; Grossklags, J.; Vasek, M.; Moore, T. Game-theoretic analysis of DDoS attacks against Bitcoin mining
pools. In Proceedings of the International Conference on Financial Cryptography and Data Security, Bridgetown, Barbados, 3–7
March 2014; pp. 72–86.

7. Sayeed, S.; Marco-Gisbert, H.; Caira, T. Smart contract: Attacks and protections. IEEE Access 2020, 8, 24416–24427. [CrossRef]
8. Chen, W.; Zheng, Z.; Cui, J.; Ngai, E.; Zheng, P.; Zhou, Y. Detecting ponzi schemes on ethereum: Towards healthier blockchain

technology. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 1409–1418.
9. Lee, X.T.; Khan, A.; Sen Gupta, S.; Ong, Y.H.; Liu, X. Measurements, analyses, and insights on the entire ethereum blockchain

network. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 155–166.
10. Wang, Z.; Jin, H.; Dai, W.; Choo, K.K.R.; Zou, D. Ethereum smart contract security research: Survey and future research

opportunities. Front. Comput. Sci. 2021, 15, 1–18. [CrossRef]
11. Lin, D.; Chen, J.; Wu, J.; Zheng, Z. Evolution of ethereum transaction relationships: Toward understanding global driving factors

from microscopic patterns. IEEE Trans. Comput. Soc. Syst. 2021, 9, 559–570. [CrossRef]
12. Huang, Y.; Bian, Y.; Li, R.; Zhao, J.L.; Shi, P. Smart contract security: A software lifecycle perspective. IEEE Access 2019,

7, 150184–150202. [CrossRef]
13. Ma, F.; Ren, M.; Fu, Y.; Wang, M.; Li, H.; Song, H.; Jiang, Y. Security reinforcement for Ethereum virtual machine. Inf. Process.

Manag. 2021, 58, 102565. [CrossRef]
14. Bhutta, M.N.M.; Khwaja, A.A.; Nadeem, A.; Ahmad, H.F.; Khan, M.K.; Hanif, M.A.; Song, H.; Alshamari, M.; Cao, Y. A survey on

blockchain technology: Evolution, architecture and security. IEEE Access 2021, 9, 61048–61073. [CrossRef]
15. Ferdous, M.S.; Chowdhury, M.J.M.; Hoque, M.A. A survey of consensus algorithms in public blockchain systems for crypto-

currencies. J. Netw. Comput. Appl. 2021, 182, 103035. [CrossRef]
16. Stoykov, L.; Zhang, K.; Jacobsen, H.A. Vibes: Fast blockchain simulations for large-scale peer-to-peer networks. In Proceedings of the

18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos, Las Vegas, NV, USA, 11–15 December 2017; pp. 19–20.
17. Pongnumkul, S.; Siripanpornchana, C.; Thajchayapong, S. Performance analysis of private blockchain platforms in varying

workloads. In Proceedings of the 26th International Conference on Computer Communication and Networks (ICCCN), IEEE,
Honolulu, HI, USA, 3–6 August 2017; pp. 1–6.

18. Dinh, T.T.A.; Wang, J.; Chen, G.; Liu, R.; Ooi, B.C.; Tan, K.L. Blockbench: A framework for analyzing private blockchains. In Proceedings
of the 2017 ACM International Conference on Management of Data, Chicago, IL, USA, 14–18 May 2017; pp. 1085–1100.

19. Aoki, Y.; Otsuki, K.; Kaneko, T.; Banno, R.; Shudo, K. Simblock: A Blockchain Network Simulator. In Proceedings of the IEEE
INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), IEEE, Paris, France, 29
April–2 May 2019; pp. 325–329.

20. Alharby, M.; Van Moorsel, A. Blocksim: A simulation framework for blockchain systems. Acm Sigmetrics Perform. Eval. Rev. 2019,
46, 135–138. [CrossRef]

21. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
22. Appel, A.W. Verification of a cryptographic primitive: SHA-256. ACM Trans. Program. Lang. Syst. (TOPLAS) 2015, 37, 1–31. [CrossRef]
23. Hu, X.; Zhu, C.; Tong, Z.; Gao, W.; Cheng, G.; Li, R.; Wu, H.; Gong, J. Identifying Ethereum traffic based on an active node library

and DEVp2p features. Future Gener. Comput. Syst. 2022, 132, 162–177. [CrossRef]
24. Ethereum. Ethereum RLPx Transport Protocol Specifications. Available online: https://github.com/ethereum/devp2p/blob/

master/rlpx.md (accessed on 31 October 2022).
25. Ethereum. Ethereum Peer-to-Peer Network Protocols Specifications. Available online: https://github.com/ethereum/devp2p

(accessed on 31 October 2022).
26. Ethereum. Go-Ethereum Source Code. Available online: https://github.com/ethereum/go-ethereum/blob/master/p2p/server.

go (accessed on 31 October 2022).
27. Ethereum. Geth v.1.9.0. Available online: https://blog.ethereum.org/2019/07/10/geth-v1-9-0 (accessed on 31 October 2022).

http://dx.doi.org/10.1109/ACCESS.2020.2970495
http://dx.doi.org/10.1007/s11704-020-9284-9
http://dx.doi.org/10.1109/TCSS.2021.3093384
http://dx.doi.org/10.1109/ACCESS.2019.2946988
http://dx.doi.org/10.1016/j.ipm.2021.102565
http://dx.doi.org/10.1109/ACCESS.2021.3072849
http://dx.doi.org/10.1016/j.jnca.2021.103035
http://dx.doi.org/10.1145/3308897.3308956
http://dx.doi.org/10.1145/2701415
http://dx.doi.org/10.1016/j.future.2022.02.012
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p/blob/master/rlpx.md
https://github.com/ethereum/devp2p
https://github.com/ethereum/go-ethereum/blob/master/p2p/server.go
https://github.com/ethereum/go-ethereum/blob/master/p2p/server.go
https://blog.ethereum.org/2019/07/10/geth-v1-9-0

	Introduction
	Related Work
	System Architecture
	Overall Operation Logic
	Layered Design Idea

	Proof-of-Work Simulation Technology Based on the Probability Density Function
	Simulation Design Objective and Expected Effect of the Consensus Layer
	Mathematical Principle and Algorithm Implementation
	The Validation of the Simulation Results of the Proof-of-Work Algorithm

	Peer-to-Peer Network Topology Simulation Based on a Pipe Technology
	Design Objective and Expected Effect of the Network Layer Simulation
	Specific Content of the Network Layer
	Working Principles of the Peer-to-Peer Network
	Node Discovery Protocol
	Node Security Communication Protocol

	Node Life Cycle and Pipe Technology
	Communication Performance Comparison Test of the Simulation Environment

	Storage Optimization Mechanism Based on Shared Storage and Sequential Reading and Writing
	Design Objective and Expected Effect of the Storage Layer Simulation
	Flat Dataset
	Verification of the Storage Optimization Effect

	Smart Contract Parallel Replay Technology
	Design Objective and Expected Effect of the Contract Layer Simulation
	Smart Contract State Cache Implementation Scheme
	Smart Contract Parallel Replay Implementation Scheme
	Efficiency Comparison Test for the Parallel Replay

	Conclusions
	References

