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Abstract: Product assembly is often one of the last steps in the production process. Product assembly
is often carried out by workers (assemblers) rather than robots, as it is generally challenging to adapt
automation to any product. When assembling complex products, it can take a long time before the
assembler masters all the steps and can assemble the product independently. Training time has no
added value; therefore, it should be reduced as much as possible. This paper presents a custom-
developed system that enables the guided assembly of complex and diverse products using modern
technologies. The system is based on pick-to-light (PTL) modules, used primarily in logistics as an
additional aid in the order picking process, and Computer Vision technology. The designed system
includes a personal computer (PC), several custom-developed PTL modules and a USB camera. The
PC with a touchscreen visualizes the assembly process and allows the assembler to interact with the
system. The developed PC application guides the operator through the assembly process by showing
all the necessary assembly steps and parts. Two-step verification is used to ensure that the correct
part is picked out of the bin, first by checking that the correct pushbutton on the PTL module has been
pressed and second by using a camera with a Computer Vision algorithm. The paper is supported by
a use case demonstrating that the proposed system reduces the assembly time of the used product.
The presented solution is scalable and flexible as it can be easily adapted to show the assembly steps
of another product.

Keywords: product assembly; pick-to-light (PTL); computer vision; LabVIEW; performance analysis

1. Introduction

The Industry 4.0 (I4.0) concept is taking over classical paradigms that once fuelled the
advancements in manufacturing processes. Industry 4.0 was coined to describe the immedi-
ate need for economic, sociological, and political changes. Those necessities stem from end-
users, who are the drivers of the industry, as short product development periods, individual-
ization on demand, flexibility, decentralization and resource efficiency are sought after [1].

The I4.0 concept includes mainly enabling technologies, such as Cyber-Physical Sys-
tems (CPS), Internet of Things (IoT) and cloud computing [2]. The first one describes the
ability to intertwine the physical properties of a system coupled with advanced computa-
tional algorithms. A well-known example is the field of Predictive Maintenance [3], which
informs the user of an impending service. The IoT relates to the interconnection of various
devices that rely on sensory, communication, networking, and information processing
technologies [2]. Sensor networks can gather data regarding the manufacturing process
and then later use that data to optimize the process. Cloud computing refers to sharing doc-
uments, servitization, collaboration, distributed production and resource optimization [4].
The main advantage of cloud computing is the scalability of resources, which means that
extra computing power is ensured if additional demand arises [5].
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Simultaneously with the requirements that drive the I4.0 concept, a need for more
advanced logistics systems has arisen to cope with the rising trends of E-commerce [6]
and the concerning trends of workforce deficiency and ageing [7]. Those challenges can
be overcome by introducing more advanced warehousing systems and methods along
with (robot) assisted Order-Picking (OP) systems. Hence, the Logistics 4.0 (L4.0) term
has been coined based on the Industry 4.0 term [8,9]. Logistics 4.0 describes advanced
usage of various technological advancements such as those in Industry 4.0, such as smart
devices, wearables, IoT and other CPS, which aim to reorganize some of the basic concepts
of Logistics [9].

While both the I4.0 and L4.0 concepts aim toward reducing physical work and in-
creasing automation, that is not always possible. In industrial environments, as in logistics
processes, manual labour remains ever-present. This holds especially true for processes
that cannot be fully automated for various reasons, e.g., over-complexity or costs of the
automated solution, items that require a lot of customization, custom-crafted (hand-made)
products, etc. In this case, the quality of products or services is directly dependent on
assembly workers or order-pickers. Therefore, there is a need to create a multi-skilled
workforce capable of performing multiple tasks, or invest in worker-assisted systems [10].
By investing in enabling technologies, not only does worker productivity and product
quality rise, but ergonomics can also be improved significantly [11]. Assembly workers and
order-pickers are exposed daily to the dangers of work-related musculoskeletal disorders
(MSD) and back health problems [12].

Cohen et al. [13] noted that considerable efficiency improvements could be achieved
by introducing I4.0 concepts into manual assembly stations. In their work, they have
implemented an Assembly System 4.0 framework based on I4.0 concepts on a multi-model
batch production flow line for industrial refrigerator manufacturers. They follow four
main I4.0 principles: connectivity, information, knowledge and smartness. They note that
the Self-Adapting Smart System (SASS), adapting using acquired information during the
operation coupled with continuous support to the operators, will increase flexibility, agility,
scalability, and productivity significantly.

A systematic literature review on the topic of worker assistance systems in manu-
facturing has been presented by Mark et al. [14]. The authors define worker assistance
systems as “technical systems that support the worker during manufacturing or assembly
tasks without replacing him, without overruling him and without posing any danger to
the worker”. They divide the existing literature on assistance systems into three categories:
(1) Sensorial, which extends the sensing capabilities; (2) Physical, which extends physical
capabilities; and (3) Cognitive, which extends cognitive capabilities such as “orient” or
“decide”. In the sense of aiding assembly processes in manual assembly workstations, the
most used systems are various head-mounted devices (augmented and mixed reality [15]),
tablets [16], various projection systems [17] and motion sensing devices [18]. The informa-
tion regarding assembly processes can be displayed in the form of animation, graphic notes,
speech, etc. In addition, exoskeletons [19] and robotic co-workers [20] can be introduced to
reduce the workload on workers; however, this exceeds the scope of this paper.

The scientific community is studying augmented reality applications in aiding assembly
workers thoroughly, as they are proving very prominent in the area [21]. Moghaddam et al. [22]
showed that AR has recently been adopted as a novel experimental training technology for
faster training and upskilling manufacturing workers, potentially reducing new hire training
time by 50%. Furthermore, they note that error reduction by using the AR is also sustained
after the AR support is removed. However, by introducing highly technological assistance sys-
tems into workplaces, one cannot expect an instant rise of productivity and error reduction, as
user acceptance is crucial for the diffusion of new technologies and working environments [23].
Furthermore, presenting information through AR plays an important role, as Wang et al. [24]
noted that by unintuitive expression of information, the guided assembly efficiency may be low,
and the rate of operation error may be high. In a survey by Minow et al. [25], which included
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25 young people, who are not trained assembly workers, they found that the pick-to-light
(PTL) system proved to be more helpful than an AR-aided solution.

Additionally, to improve workplace ergonomics and reduce the cognitive load, the
effects of using AR on the eyes are usually neglected, along with the fact, that AR glasses
are less or not appropriate for people who are already wearing prescription glasses.
Marklin et al. [26] noted that the decreased eye blink rate by using AR could lead to eye
strain if used for prolonged periods without rest. Furthermore, wearing additional head
devices for prolonged periods may cause neck fatigue. In that case, alternatives should be
considered that do not require wearing additional hardware, such as PTL systems.

In intralogistics, and especially order-picking, there has been much effort to guide or
automate the order-picking process, as it represents the most labour and time-intensive
process in warehousing [26]. An order-picker travels around the warehouse, collecting
(picking) the items specified in the order. Interestingly, an order-picking process is similar
to the assembly process, where both the order-picker and assembler must follow instruc-
tions to complete an order or a product. Furthermore, both processes suffer from similar
problems—ergonomics, questions regarding productivity, error prevention and detection.

Winkelhaus et al. [27] prepared a systematic review of existing order-picking tech-
niques, comparing them by the level of automation for support and by the level of automa-
tion for substitution. Based on the I4.0 requirements, they conceptualized an Order-Picking
4.0 concept, which according to their definition, is a sociotechnical order picking system
in which individual and heterogeneous customer orders are compiled efficiently and sus-
tainably in small batch sizes from a large variety of goods in a warehouse. Thereby, Order
Picking 4.0 considers high levels of automation of supportive and substitutive technologies,
as well as human factor objectives. Based on that premise, Setayesh et al. [28] studied
human order-picker factors extensively, since OP is still mainly a manual process. They
identified distinct failure modes that may contribute to picking errors, such as vision,
hearing, complexity, skills, memory demand, mental fatigue, physical fatigue, physical
workload, motivation, supervision, and communication.

Since the earliest orders for order-pickers were paper printed, the OP relied solely on
his previous experience and memory of the warehouse layout. Today, various paperless
technologies are implemented to reduce cognitive load and assist the order-picker, such
as a barcode/RFID scanner, voice-control, pick-to-light (pick-by-light), augmented reality
(AR), head-mounted displays (HMD), projection, etc. A paperless order picking system
consists of devices designed to facilitate the work of operators, mainly in terms of getting
information on the product to be picked and its storage location [29]. Fager et al. [30]
compared the impact of four different picking information systems (pick-by-paper, pick-
by-light, pick-by-voice and pick-by-HUD) for kit preparation and concluded that in a
single-kit preparation, a PTL system was associated with the highest time efficiency of the
four studied systems.

In a PTL system, operators are guided by the lights installed on the warehouse shelves.
For each micro-location, a light turns on, corresponding to the order picker’s order list.
A button must be pressed to complete a single pick, and, in some cases, the barcode
must be scanned. The system is also capable of handling multiple order-pickers using
different coloured lights. A traditional PTL system can be upgraded with RFID, where
the button no longer must be pressed, but instead, the RFID tag must be read with the
RFID scanner. According to Allesandro et al. [31], the RFID reader can be mounted on the
order picker’s glove, which means that both hands are free for picking. A PTL system is
not necessarily stationary, as Su et al. [32] presented a robotic-based PTL system, which is
operated based on the mutual behaviour analysis of human and mobile robots. Their PTL
system is mounted on KIVA inventory pods, which are storage racks that can be moved
around using KIVA mobile robots. According to Battini et al. [33], the main advantage of
the PTL order-picking system is that only two types of technical errors can occur, compared
to four in handheld barcode and RFID order-picking: (E1) Wrong item picked, but correct
item confirmed error, and (E2) Wrong quantity picked error. In the RFID enhanced PTL
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application, (E2) can also occur, yet (E1) cannot, but an (E3) Wrong item picked, and the
wrong item confirmed error can occur.

AR is also gaining the attention in OP applications, where its task is to convert logical
information into visual guidance for an order-picker [34]. The order-picker must wear
specialized glasses, which leaves both hands free for order-picking. Despite its time
efficiency picking accuracy and low chance of error, AR order picking is prone to tracking
lost in the industrial scene, where there are no distinctive landmarks for orientation.

All those support systems cannot automate the order-picking or assembly processes yet
help substantially, as they provide more information on the micro-location of the product to
be picked or provide information for the product to be assembled. Furthermore, the initial
training period can be reduced significantly, as the OP process is guided independently of
the pre-knowledge of the system. The proposed paper attempts to combine PTL technology
used in order-picking with a manual assembly workstation to increase worker productivity
and reduce the possibility of errors.

Inspired by the PTL method in the order-picking process, a prototype of an assembly
assistance system based on PTL modules is presented in this paper. The proposed system
guides the operator through the assembly process using a PC application and several
PTL modules. A single PTL module is used for each assembly part. The PTL module
consists of a microcontroller with an integrated Wi-Fi interface, a liquid crystal display
(LCD) for displaying the current assembly component micro-location and quantity, and
a pushbutton for acknowledging the picked object. The application on the PC guides the
operator through the assembly process by showing all the necessary assembly steps and
parts. Two-step verification is used to ensure that the correct part is picked out of the bin,
first by checking that the correct pushbutton on the PTL module has been pressed and
second by using a camera with a computer vision algorithm. The presented solution is
adaptable in terms of needing multiple PTL modules for assembly operations that require
a higher or lower number of assembly parts.

This paper is organized as follows. Related works are presented and analysed in
Section 2. Section 3 presents the software and hardware setup of the proposed PTL-based
assembly assistance system. Section 4 demonstrates the use of the system by giving an
example of the assembly process of the Gillux-Puzzle mind game and some experimental
results obtained using volunteer assemblers. Some pointers to future work are provided in
the conclusion.

2. Related Works

The following section presents and analyses the closest related works from advanced
manual assembly stations coupled with various assistive systems.

Bortolini et al. [35] proposed a Self-Adaptive Smart Assembly System (SASAS) capable
of improving worker ergonomics by using two motion axes to position an easy-access
fast-picking area for the fast-moving parts and a third axis for the reconfiguration of the
working area height. The system has been tested in a full-scale assembly of an industrial
chiller, showing that the SASAS prototype reduced the assembly cycle time and operator
movements during the assembly process. This led to an increase in productivity by up to
70%. Even though the user still relies on his/her own assembly knowledge, the SASAS
shows that considerable improvements can be made by reorganizing the assembly station’s
layout. In [36], the authors further enhanced the original SASAS prototype and proposed a
general framework guiding toward A3s (adaptive automation assembly systems) effective
design and validation. The enhanced SASAS enables real-time reconfiguration based on
the current assembly process. This is performed by using servosystems operated with
a MATLAB-based GUI. Additionally, a motion analysis system has been employed to
evaluate user ergonomics. In their second study, up to 38.6% reduction of assembly cycle
time has been achieved with an improvement in the ergonomic work condition (REBA index
reduction) of up to 15%. Turk et al. [10] presented a self-configurable assembly workstation
using I4.0 technologies. The workstation is controlled by a smart algorithm that controls
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the smart workstation, enabling technologies and digital instructions for assembly tasks.
Their smart assembly station is self-configurable and answers to the needs of individual
ergonomic worker requirements, according to gender and body height (constitution). The
assembly instructions are displayed via LPM software and pick-by-light technology (laser
pointer), showing the correct section of the bin where the current part is stored. The
workbench’s height, lighting and grab bins with parts and rotation of the assembly nest
are controlled using a smart algorithm. Due to the simple usage of the system, thorough
training pre-operation is not necessary. In a laboratory experiment, they compared the
traditional assembly workstation and their smart manual assembly workstation for two
different sample products made from LEGOs and evaluated the ergonomics of both systems.
They concluded that the number of errors has been reduced by 72%, and while the overall
assembly time in SAW was lower than in traditional WS, they have shown that the SMAW
instruction program issued instruction slower than the worker’s skills permitted. The
ergonomics score was much higher than those in TWS, since the smart algorithm optimizes
the layout of the worktable. Yin et al. [37] presented an interaction-free assembly assistance
tool (SARAMS) that monitors an operators’ hand activity and process completeness, to
recognize the assembly state and provide the operator with instructions accordingly. Users
are only issued with the augmented contents when they get stuck or go wrong in an
assembly process. An assembly process completeness inspection is based on image feature
matching. A prototype system requires only a head-worn device, freeing both hands
for the assembly. The system has been evaluated on a 15-part product. The authors
concluded that the proposed system had realized all its desired properties, including
automatic monitoring, adaptive assistance, higher interaction efficiency and integrated
hardware setup. Lai et al. [38] proposed a smart instruction system with the support of
AR and deep learning-based tool detection, which is intended to improve the worker’s
performance through assistive instructions (texts, videos, 3D animations). The developed
system consists of multi-modal AR instructions and a tool detector. The hardware portion
of the system comprises two cameras, used to capture the worktable surface from two
perspectives to prevent a mix-up of tools and parts in addition to AR glasses worn by the
assembly worker. The tool detector was developed using a Faster R-CNN model trained
on a CAD-based synthetic tool dataset, which detects real physical tools with an average
precision of 84.7%. It is used to prevent misusing assembly tools. The proposed system
performance is evaluated on a CNC carving machine assembly by comparing the manual
assembly instructions to the instructions issued by the AR. The manual and the proposed
solution are compared in terms of completion time and assembly errors, which show a 33.2%
and 32.4% reduction, respectively. Wang et al. [39] proposed a novel platform for remote
collaboration based on AR, designed to assist industrial assembly tasks remotely. A remote
expert sees the AR replica of the worktable plane, whilst the worker is presented with
visual clues from the remote expert. They compare two methods of presenting the helpful
information to the assembly worker: sharing AR annotations and Gaze Control (GC). The
first refers to drawing shapes around the object that requires interaction, while the second
refers to sharing a remote expert’s head pointer. The experiments showed that the GC is a
superior guidance option since users are pointed to a certain point more clearly than by AR
annotations. Ojer et al. [40] have developed a projection-based AR assistance system for
manual Printed Circuit Board (PCB) assembly, which consist of an illumination system, a 2D
high-resolution image acquisition setup a screen and a projector. No AR glasses are needed,
which reduces worker eye strain, yet the illumination of the worktable area must ensure
that the light from the projector remains predominant. Their system supports dynamic
projection of the instructions, updated in real-time, as well as performing the verification
of the operator’s current operation. Since the instructions are simple, they are presented
in the form of rectangle bounds around the components to be assembled in the next step.
The system showed that compared to the original PCB assembly procedure, less errors
occurred, especially when workers are faced with a new PCB type. Sorostinean et al. [41]
presented an extensive assembly assistance system, which consists of several assistive



Sensors 2022, 22, 9769 6 of 24

technologies, such as an object and hand movement sensor, eye tracking and GSR biosensor,
a posture and facial expression sensor and a large touchscreen embedded in the tabletop.
The AAS tabletop is divided into an assembly area, a components storage area and a video
instruction display area. Additionally, the user is presented with voice instructions and user
interaction buttons, which allow the user to play/repeat instructions or go to the previous
or next instruction. In this work, they extend their previous contributions with a system
state predictor based on decision trees with ensemble learning that can provide support via
adaptive instruction considering the current assembly progress. The prediction is based on
past assembly processes of a certain product, where a model is used to determine the most
likely next assembly step, given the current assembly stage. The goal of a state predictor
is to support inexperienced workers in their pre-operation stage without a human trainer
and assist experienced workers in the manufacturing process. Their results have shown
that ensemble learning with decision tree components is best suited for adaptive assembly
support systems.

3. Materials and Methods
3.1. The Architecture of a PTL-Based Assembly Assistance System

The developed system includes (Figure 1): (1) A PC with a touch screen monitor, (2) A
USB camera, (3) PTL modules, (4) Bins for assembly parts, (5) A router, and (6) A power
supply unit (PSU) for PTL modules. A touchscreen monitor (1920 × 1080, 21.5 inches) is
used for interaction between the assembler and the assembly system. The touchscreen
provides the assembler with a quick selection of the buttons available in the Graphical User
Interface (GUI). The camera, used for part detection, is connected to the PC using a USB
serial bus.
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The router creates a local wireless network to which all used PTL modules connect
at startup. Above each PTL module is a plastic bin for assembly parts. Each PTL module
includes a liquid crystal display (LCD) and a user button. The PTL modules are connected
to a 5 V power supply voltage.

The main application, which runs on a PC, guides the assembler through the as-
sembly process. The program shows the individual steps of the assembly process in a
Graphical User Interface and handles the communication with the PTL modules. The
communication is realized using the TCP/IP protocol. The main application has the role
of master, while all PTL modules operate as slaves. The master program establishes the
TCP/IP communication with the selected PTL module, sends a message to it and waits
for the response. The main application can set a new value on the PTL module’s LCD or
check the currently displayed value.
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When the new assembly step is displayed on the touchscreen monitor, the operator
must take one or more elements from the corresponding bin. The number of parts needed
in the assembly step is displayed on the LCD of the PTL module. The operator must
confirm each element taken out of the plastic bin by pressing a button on the corresponding
PTL module.

3.2. Hardware
3.2.1. The Workbench

The workbench (Figure 2) is made of 40 mm × 40 mm aluminium profiles and is
placed on wheels to make it easier to move around the room. The work surface of the
table measures 1000 mm × 600 mm and is covered by an ESD (Electrostatic discharge) pad.
Above the working surface are two shelves on which the plastic bins and PTL modules are
placed. The shelves are angled, to make it easier for the operator to reach the components
placed in the bins. At the front of the shelves is a DIN rail used to attach the PTL modules.
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3.2.2. Pick-To-Light Modules

PTL modules are based on an ESP-32 microcontroller with an integrated Wi-Fi interface
(Table 1). The PTL also include an LCD, a user button and an enclosure (Figure 3). The
modules can be powered using a USB or 5 V external power supply, and, in normal
operation, consumes approximately 270 mA to 280 mA. The LCD has a diagonal of 56 mm
and is connected to the ESP-32 controller using an I2C serial bus. The LCD screen is high
contrast so that the information displayed on the screen is clearly visible.

The enclosure of the PTL modules is made of a PLA (Polylactic acid) compound using
a 3D printer (Figure 4). The external dimensions are 115 mm × 53 mm × 40 mm. The
enclosure is small and compact and consists of two parts fixed together with screws. The
enclosure has holes for the LCD and a pushbutton on the front side. Inside there are fittings
that enable the attachment of a microcontroller with an LCD. On the rear side is a hole for
the power cord and holes for mounting the adapters for the DIN rail mounting.
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Table 1. ESP-32 specifications.

Specification Value

MCU Xtensa Dual-Core 32 bit LX6, 600 SMIPS
Typical frequency 160 MHz

GPIO 36
ADC 12 bit

SPI/I2C/I2S/UART 4/2/2/2
Flash 16 MB

SRAM 512 kB
Wi-Fi integrated, 2.4 GHz
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The modules are powered by a 220 V/5 V power supply unit. In the current set-up,
16 PTL modules are used, so the total power consumption is approximately 22.4 W. The
PTL modules are connected to the power supply in parallel. Wiring is done inside the DIN
rail (behind the PTL modules) using special connectors.

3.3. Software
3.3.1. Main Application

The main application guides the operator through the assembly process of the selected
product. The program allows assembly product selection, the graphical display of the
assembly steps, communication with the PTL modules and the object detection system,
etc. The program has been designed using event structures and the state machine in the
LabVIEW development environment. Events are related to the change of state of input
objects (keys, selection objects, etc.) in the Graphical user Interface. The user interface
(Figure 5) contains image display objects (Assembly, Part), user buttons (Home, Skip
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detection, Previous, Next), options objects (Pick To Light, Part detection) and various
indicators (Pick 2 Light progress, Part detection progress, Current step, All steps).
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When the program is started, the local and global variables are initialized (State 0,
Figure 6), and then all PTL modules are checked for presence and operation (State 1). The
program then enters an idle state (State 3), where it waits for a user interface event. When the
Next (Previous) button is pressed, the next (previous) assembly step is displayed (State 4).
If the Home button is selected, the system returns to the initial assembly step (State 8).

In each assembly step, the main application shows the assembler the part currently
needed for the assembly (Part object) and a picture showing where and how to place
the component (Assembly object). The system allows enabling/disabling the use of the
PTL modules (“Pick To Light” option) and object detection (“Part detection” option). If
the first option (“Pick To Light”) is activated, the software provides the corresponding
PTL module with information on how many parts the assembler has to take out of the
associated bin (State 5). The PTL module displays the received value on the LCD, giving
the assembler a visual indication of which bin contains the required components and how
many are needed. The assembler must confirm each removal of a component from the
bin by pressing a user button on the PTL module, which decreases the displayed value by
one. In the meantime, the main application checks the state of the PTL module periodically
(State 6). The algorithm enters the part detection state when the value equals 0, and the
Part detection option is selected (“Part detection”, PD = 1). In this state, the assembler
has to place the part within the camera field of view, and the part detection algorithm is
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triggered automatically. When the algorithm identifies the correct component or if the user
skips object detection (“Part detection”, PD = 0), the algorithm returns to State 3 (Idle). The
process is repeated until the assembler reaches the last assembly step (All steps).
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The main application is designed to be universal. In the case of another product
assembly, the application does not need to be modified. In this case, it is necessary to
create a new folder with: (1) images of the individual parts, (2) a folder with images of the
individual steps, and (3) an Excel document indicating which and how many components
are needed in each assembly step. This Excel document contains three columns (Step
number, PTL module number and Number of parts), and as many rows as the Number of
assembly steps (Table 2).

Table 2. Example of the content of an Excel file.

Step Number PTL Module Number Number of Parts

0 0 0
1 3 1
2 7 1
3 6 1



Sensors 2022, 22, 9769 11 of 24

3.3.2. Communication Protocol

The implemented communication protocol is simple and currently allows two com-
mands: (1) Setting the value on the LCD and (2) Checking the value displayed on the LCD.
Each message contains three parts: (1) Command, (2) Data and (3) Message termination
characters. Each message consists of 5 Bytes. The first one represents the command, the sec-
ond and third contain the value, while the fourth and fifth represent termination characters
(\r\n). When the PTL module receives a message, it parses the message and, depending
on the command, performs the appropriate action (setting the value or checking the LCD
value), then creates a return message and transmits it to the main application.

3.3.3. Pick-To-Light Firmware

At PTL module startup, the local and global variables are initialized (Figure 7). Then,
the PTL module login into the selected Wi-Fi network with a preconfigured username and
password. Since a large number of modules try to connect to the network at the same time,
the connection may fail. In this case, the module is reset programmatically and tries to
re-connect to the Wi-Fi network. The different initialization phases are shown in different
colours on the LCD, to make it easier to identify a malfunctioning module. When the PTL
module logs into the selected Wi-Fi network successfully, an IP address is assigned to the
module. Since the IP address reservation is implemented on the router (according to the
MAC address of the PTL module), the same IP address is assigned to the PTL module every
time it starts up.

The algorithm then enters into an endless loop. An algorithm checks periodically if:
(1) a new message has been received from the main application, (2) a key has been pressed
on the PTL module, and (3) a request for a firmware upgrade has been received using
OTA (Over-The-Air) technology. When a new command is received, the module parses
the command, performs the requested action, generates a feedback message, and transmits
the message back to the main application. In the case of a set message, it extracts the value
from the received message and displays it on the LCD screen. In the case of a read message,
the value displayed on the LCD is transferred to the sender (main application). When the
button is pressed on the PTL module, the algorithm decrements the displayed value by
one, and when the value equals 0, the LCD turns off.

The PTL modules implement OTA (Over-The-Air) technology. OTA allows the wireless
transfer of new firmware to the selected PTL module. Using OTA, it is not necessary to
connect the PTL module physically to a USB cable to update the firmware, but the update
can be performed wirelessly using a Wi-Fi network. The new firmware can be downloaded
using the development environment or an internet browser. The advantage of the latter
approach is that the update can be performed even from a device that does not have the
development environment installed. However, in the case of a firmware upgrade using
the development environment, all PTL modules located on the local network appear in the
development environment. The developer thus selects the desired PTL module and loads
the new firmware on it.

3.3.4. Object Detection

Object detection is a category of Computer Vision that deals with the recognition and
location of objects in images. Object detection is divided based on the approach used:
(1) machine learning approach or (2) deep learning approach. Machine learning mainly
identifies certain features such as edges, colours, etc. These are then fed into a regression
model that estimates the label and location of the object. In deep learning, however, the
model itself learns what it is looking for. In our case, the latter approach has been used.

Deep learning-based object detection consists of two parts. The first part is the encoder,
which runs the input image through several blocks and layers. These learn to extract
statistical features used to find and label objects. The outputs from the encoder are then
passed to the decoder, which predicts the “bounding boxes” and assigns to each of these
a label of the class to which it estimates that the labelled object belongs (person, car,
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cyclist, etc.). Detection time is crucial when using object detection algorithms. The time
depends mainly on the complexity and the computation the computer has to perform to
get the desired result. Consequently, various algorithms have evolved that try to speed up
the detection process as much as possible. Among the more well-known algorithms are
(1) R-CNN (Region Convolutional Neural Network), (2) Fast R-CNN, (3) Faster R-CNN,
(4) CenterNet, (5) YOLO (You Only Look Once), etc. YOLO algorithm has been used
in presented project. YOLO is one of the market’s fastest and most widely used object
detection algorithms, suitable for real-time object detection. The detection speed varies
depending on the hardware and input data size (e.g., on graphics cards, object detection is
10+ times faster than on computer processors).
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Neural network learning requires a set of input data. Roughly speaking, the more
inputs a network has, the better it learns. In the presented solution, the hardware equipment
was not state-of-the-art; therefore, we used relatively small amounts of data, but enough to
make the learned network usable. A neural network needs a “ground truth” to recognize
which features it needs to learn. Ground truth is given as bounding boxes on the input
images using two approaches. The most accurate is the manual labelling process, as this
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gives direct control over the accuracy of the frames. The other way is using roughly trained
algorithms to recognize features and predict what is in the image based on what we have
chosen to label. The labelling process is much faster but usually less accurate in this case.
There is no guarantee that the algorithm will find all the objects in the image, and the
frames are approximate in many cases. We took the first approach and manually labelled
all the images using the “LabelImg” tool (Figure 8). For each object, about 500 images
were captured from different angles, with different objects in the background, partially
overlapped by other objects, etc. Each image was manually labelled with the objects to be
searched and assigned with the appropriate identification number (ID).
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The labelled images were then fed into a neural network that learned to recognize the
objects it was looking for. A cloud service, “Google Colab”, was used for this purpose.

The image capture and object detection algorithm using a neural network are im-
plemented in Python, using the neural network weights obtained from Google Colab.
Communication with the main application is implemented as master/slave using TCP/IP
protocol. The main application sends the ID of the object it wants to detect. The detection
algorithm decodes the information accordingly, captures the image using a USB camera, per-
forms the part detection and sends the detection result to the main application: (1) value 0
if the wrong object is detected or (2) the object ID if the correct object is detected. Dur-
ing the detection phase, the main application periodically sends object check requests
until the correct object is detected or the user cancels the object detection in the main
application GUI.

4. Results

The system was tested using Gillux-Puzzle (Figure 9) mind game. Gillux-Puzzle is a
mind game that includes 16 wooden parts (Figure 10) and a baseboard with 49 fields. The
parts must be stacked on the base board in two levels so that one field (between 1 and 49)
remains visible. There are 49 different possible solutions. Without graphical instructions,
this mind game is quite challenging to assemble.
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Figure 9. Gillux-Puzzle.
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Figure 10. Gillux-Puzzle basic parts.

Although the presented system is designed for the guided assembly of industrial
products, the test users were not assembling an industrial product but a mind game. The
assembly process of a mind game does not require specific personal skills and tools, as is
usually the case with industrial products; therefore, results between the test users are more
comparable. We tested the presented system to identify differences in assembly times using
original instructions and a guided system with and without Pick-to-Light technology. The
test users were not professional assemblers but students at our faculty. They represent a
novice assembler who has not yet acquired specific assembly skills.

Figure 11 shows the process of solving the Gillux-Puzzle for field 18. The new part is
displayed in green in each assembly step, while all previous ones are in orange. The green
part is the one the assembler must take out of the corresponding bin in each assembly step
and place correctly on the baseboard.

Figure 12 shows the GUI seen by the assembler during the assembly of the Gillux-
Puzzle. Step number 14 (out of 17) is shown. The “Part” field shows the part needed by
the assembler in the current step. If the option “Pick To Light module” is enabled, then
the main application sends the information to the corresponding PTL module (in this case,
PTL module number 4), and the LCD of this module displays the value 1 (Figure 13). The
user has to remove one part from the associated bin and confirm the removal by pressing a
button on the PTL module. The part detection process is then started (if the “Part detection”
option is enabled). The main application enables the Next (Previous) button when the
correct part is detected (Figure 14), allowing the assembler to move to the next (previous)
assembly step. In the presented example, part number 4 was detected (Figure 14) during
the detection phase.
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Table 3 shows the content of the Excel document file located in the folder with the
images of the assembly steps (Figure 11). The document links the individual assembly
steps with PTL modules.
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Table 3. The content of Instructions.xlsx document for assembly of Gillux-Puzzle (solution field 18).

Step Number PTL Module Number Number of Parts

0 0 0
1 16 1
2 5 1
3 18 1
4 9 1
5 14 1
6 6 1
7 12 1
8 7 1
9 11 1
10 1 1
11 10 1
12 3 1
13 13 1
14 4 1
15 15 1
16 2 1
17 0 0

4.1. Assembly Approaches

Eighteen volunteer assemblers (students) have tested the system. Each assembler
carried out the following three assembly approaches:

1. The assembler has been issued the original instructions from the Gillux-Puzzle manu-
facturer. In this case, only the correct arrangement of parts in the 1st and 2nd levels
is provided (Figure 15). The order of assembly in each level is not predefined and is,
therefore, up to each user.

2. The assembler has been issued the guided instructions on the touchscreen monitor,
but the PTL modules remain disabled. The assembly sequence is determined.

3. The assembler has been issued the guided instructions, shown on the touchscreen
monitor, along with the PTL modules.
Each assembler performed three repetitions of the stated assembly approaches.
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Figure 15. Original instructions for solution filed 18 (left—1st level, right—2nd level).

4.2. Results Using Original Instructions (OI)

On average, the assemblers required 149 s on the first trial, 137 s on the second trial
and 117 s on the third one (Table 4). The average assembly time was 134 s. The average
assembly time was reduced by about 22 % from the first to the third attempt. The highest
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measured assembly time was 253 s, and the lowest was 80 s. On the third trial, the average
assembly time was 117 s, the maximum 212 s and the minimum 80 s (Figure 16).

Table 4. Assembly time using original instructions.

Assembler 1st Trial [s] 2nd Trial [s] 3rd Trial [s] Average Time [s]

1 142 139 157 146.0
2 152 150 136 146.0
3 181 114 106 133.7
4 152 138 131 140.3
5 109 105 110 108.0
6 108 97 84 96.3
7 203 151 133 162.3
8 136 153 87 125.3
9 100 105 103 102.7

10 153 104 85 114.0
11 160 157 118 145.0
12 124 122 119 121.7
13 155 99 95 116.3
14 253 240 212 235.0
15 173 208 180 187.0
16 120 109 80 103.0
17 159 169 84 137.3
18 98 101 81 93.3Sensors 2022, 22, x FOR PEER REVIEW 19 of 25 
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4.3. Results Using Guided Instructions without P2L Modules (P2L w/o P2L)

Using the guided instructions without P2L modules, the average assembly time in the
first trial was 106 s, in the second one 97 s and in the third one 98 s (Table 5). The average
assembly time was 100 s. The assembly time decreased by approximately 7% from the first
to the third trial. In the last trial, the maximum assembly time was 140 s, the minimum
was 74 s, and the average was 98 s (Figure 17). Compared to the original instructions, the
average assembly time was about 25% shorter, while the assembly time in the third (last)
experiment was about 16% shorter.

Table 5. Assembly time using guided instructions without PTL modules.

Assembler 1st Trial [s] 2nd Trial [s] 3rd Trial [s] Average Time [s]

1 110 112 113 111.7
2 115 111 110 112.0
3 96 90 74 86.7
4 143 122 138 134.3
5 96 97 101 98.0
6 103 88 90 93.7
7 95 101 96 97.3
8 98 89 92 93.0
9 87 81 77 81.7

10 91 80 91 87.3
11 127 89 89 101.7
12 91 87 81 86.3
13 118 100 96 104.7
14 120 150 123 131.0
15 127 115 140 127.3
16 100 73 80 84.3
17 108 96 88 97.3
18 79 72 86 79.0
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4.4. Results Using Guided Instructions with P2L Modules (GI w/P2L)

Using the guided instructions with P2L modules, the average assembly time for the
first trial was 107 s, for the second trial 92 s and for the third trial 88 s (Table 6). The average
assembly time was 96 s. The assembly time decreased by about 18% from the first to the
third trial. The maximum assembly time was 115 s, and the minimum was 81 s (Figure 18).
Compared to the original instructions, the average time is shorter by about 29%, while
the assembly time in the third (last) trial is shorter by about 25%. Compared to guided
instructions without P2L modules, the average assembly time is shorter by about 5%, while
the assembly time in the third trial is shorter by approximately 10%.

Table 6. Assembly time using guided instructions with P2L modules.

Assembler 1st Trial [s] 2nd Trial [s] 3rd Trial [s] Average Time [s]

1 119 92 112 107.7
2 121 113 109 114.0
3 106 93 100 99.7
4 116 92 84 97.3
5 96 86 86 89.3
6 120 120 106 115.3
7 116 96 85 99.0
8 88 86 70 81.3
9 100 80 70 83.3
10 99 84 87 90.0
11 106 92 88 95.3
12 91 81 77 83.0
13 103 86 85 91.3
14 123 100 92 105.0
15 141 104 101 115.3
16 101 77 76 84.7
17 95 82 84 87.0
18 88 86 73 82.3
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4.5. Comparison of Average Assembly Times

The average assembly times using the described methods are presented in Figure 19.
The average time using the first method (OI) is 134 s, using the second one (GI w/o P2L) is
100 s and using the third one (GI w/o P2L) is 96 s. The results show that the lowest product
assembly times were achieved using P2L modules. Most assemblers achieve a much shorter
assembly time using the P2L method than using original instructions. Using the P2L
modules, the assembly time was up to 30% shorter than using the original instructions and
up to 10% shorter than using the guided instructions without the P2L modules.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 25 
 

 

 
Figure 19. Average assembly time. 

The results show that, in general, the assembly time decreases with repetition. With 
each attempt, the user acquires specific skills, which are put into practice in the next at-
tempt. In most cases, the average assembly time using the third procedure is shorter than 
the second one. 

The assemblers reported that they felt uncomfortable using the first method and felt 
time pressure to assemble the product as quickly as possible. In addition, the users tried 
to assemble the puzzle in different ways, as reflected by the different assembly times. Due 
to the similarity between objects, the workers sometimes took out the wrong pieces, which 
generated additional time delays. 

Similar issues were not detected by using the guided assembly workstation, which is 
designed to prevent such events. The workers felt more secure and self-confident, and 
their stress levels were much lower due to reassurance during the assembly process. Alt-
hough the assembly sequence is well-defined, there are delays in finding the parts. How-
ever, the time to find parts is reduced by repetition, as users eventually remember where 
each assembly part is located. 

The third procedure is the fastest, although there is no significant time difference 
compared to the second procedure. The system directs the assembler to find the required 
assembly part quickly. However, the assemblers reported that the assembly time in-
creased as they often forgot to confirm the removal of the part on the PTL module. They 
realized this when they wanted to move to the next assembly step, which was impossible 
since the Next button was disabled. 

  

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

As
se

m
bl

y 
tim

e 
[s

]

Assembler (ASM)

OI GI w/o P2L GI w/ P2L

Figure 19. Average assembly time.

The results show that, in general, the assembly time decreases with repetition. With
each attempt, the user acquires specific skills, which are put into practice in the next attempt.
In most cases, the average assembly time using the third procedure is shorter than the
second one.

The assemblers reported that they felt uncomfortable using the first method and felt
time pressure to assemble the product as quickly as possible. In addition, the users tried to
assemble the puzzle in different ways, as reflected by the different assembly times. Due to
the similarity between objects, the workers sometimes took out the wrong pieces, which
generated additional time delays.

Similar issues were not detected by using the guided assembly workstation, which is
designed to prevent such events. The workers felt more secure and self-confident, and their
stress levels were much lower due to reassurance during the assembly process. Although
the assembly sequence is well-defined, there are delays in finding the parts. However,
the time to find parts is reduced by repetition, as users eventually remember where each
assembly part is located.
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The third procedure is the fastest, although there is no significant time difference
compared to the second procedure. The system directs the assembler to find the required
assembly part quickly. However, the assemblers reported that the assembly time increased
as they often forgot to confirm the removal of the part on the PTL module. They realized
this when they wanted to move to the next assembly step, which was impossible since the
Next button was disabled.

5. Conclusions

This paper presents a prototyping system that enables guided assembly of new prod-
ucts using pick-to-light technology. The presented solution demonstrates that the tech-
nology, used primarily in warehouse systems, can also be applied usefully in the product
assembly process. The presented system is useful in the case of the assembly process of
complex products containing a large number of components. Although only 16 modules
were used in the presented example, the system is scalable, and can easily be upgraded
to a larger number of modules. Although the example presented does not illustrate the
process of assembling an industrial product, the mind game is an excellent example of a
product that is difficult to assemble without graphical instructions or prior practice. The
main application is designed to be universal. In the case of another product assembly, the
application does not need to be modified; just a few files and images have to be added to
the appropriate folder. This is only the case when computer vision is not used. However,
if computer vision is used, the process is much more complex, as many images have to
be captured for each part, then the parts have to be manually labelled in the images, and
finally, the neural network has to be trained.

The Assembly process using PTL modules is faster than the conventional approach
since PTL modules direct the user quickly to the bin where the necessary components are
placed. Part detection is useful in the first assembly of a product to check if the correct
parts are placed into the bins; however, it is slightly less useful later in the assembly process
since it slows down the assembly process and can therefore be skipped. Parts detection is
much more useful in the inverse process, i.e., in a product’s disassembly process and filling
the bins with parts. This part has not yet been implemented but is planned for the near
future. During the system testing phase, we realized that the assembly procedure using
PTL technology, but without removal confirmation, would be beneficial. We will add this
option in an updated version of the main application.

In addition, the firmware of the PTL modules is planned to be modified. In the current
version, the Wi-Fi network to which the PTL module connects is fixed in advance. In the
upgraded version, the Wi-Fi network will be configurable using the web interface. Each
PTL module will create an access point and web page through which it will be possible to
select the network to which the PTL module should connect and set a password to access
the selected network.
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