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Abstract: The accurate detection of insulators is an important prerequisite for insulator fault di-
agnosis. To solve the problem of background interference and overlap caused by the axis-aligned
bounding boxes in the tilting insulator detection tasks, we construct an improved detection archi-
tecture according to the scale and tilt features of the insulators from several perspectives, such as
bounding box representation, loss function, and anchor box construction. A new orientation detection
method for tilting insulators based on angle regression and priori constraints is put forward in this
paper. Ablation tests and comparative validation tests were conducted on a self-built aerial insulator
image dataset. The results show that the detection accuracy of our model was increased by 7.98%
compared with that of the baseline, and the overall detection accuracy reached 82.33%. Moreover,
the detection effect of our method was better than that of the YOLOv5 detection model and other
orientation detection models. Our model provides a new idea for the accurate orientation detection
of insulators.

Keywords: tilting insulator; orientation detection; angle regression; prior constraint

1. Introduction

As an essential component of transmission lines, insulators undertake the functions of
electrical insulation and structural support [1]. Under multiple impacts of high voltage,
mechanical stress, and harsh environment, insulators are prone to defects such as fouling,
flashing, breakage, and string dropping. In this case, the fast and accurate detection of
insulators and their defects has become an essential task to ensure the safety of transmission
lines [2,3]. Many relevant studies focused on the accuracy and speed of detection [4,5],
but an equally important issue, how to accurately recognize those tilting insulators, still
needs exploring.

Insulator detection methods [6–11] can be roughly classified into two categories:
digital-image-processing-based methods and deep-learning-based methods. The insulator
contamination detection method proposed by Xun et al. [6] is a typical method using
digital-image processing technology. It improves the watershed algorithm by similar-
region fusion and minimization segmentation and effectively avoids the over-segmentation
phenomenon. Zhai et al. [7] introduced airspace morphological consistency features to
obtain high-accuracy insulator pinpointing in the insulator detection task. Zhang et al. [8]
generated feature sequences by various texture extraction methods and achieved good
insulator-defect detection results. In the absence of background interference, insulator
detection methods based on digital-image processing have high detection accuracy, but
they rely too much on artificially designed features and have poor robustness, which makes
them struggle to handle aerial images taken by unmanned aerial vehicles (UAV) with
complex background environments and small insulator targets. With the development of
UAV image-acquisition technology and object detection technology in electric power field,
deep learning based insulator and defect detection methods have been widely investigated.
For example, Wang et al. [9] combined a two-stage insulation anomaly detection model
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with a few-sample learning method to achieve high-precision defect detection. Following
the two-stage detection idea of combining the target detection task with the semantic
segmentation task, Ling et al. [10] proposed a lightweight and high-precision insulator
detection method. Li et al. [11] applied the YOLOv5 series model to the insulator detection
task and achieved a detection accuracy of up to 96% and a detection speed of 42 images per
second on the self-built insulator detection dataset, proving the superiority of the YOLOv5
series model.

Currently, great breakthroughs have been made in the study on the insulator detection
of aerial insulator images. However, most of the methods are the simple migration of
generic object detection to insulator detection. In some complex conditions such as dense
mutual occlusion and dense distribution, which often result in unnecessary background
noise and overlap, the insulator detection effect is not ideal, and sometimes there even
exists a phenomenon of missing detection [12]. In aerial images shot by UAVs, insulators
appear with different aspect ratios and tilt angles, while the general object detection models
cannot fully utilize the scale and tilt features. When detecting insulator overlap, if the
axis-aligned bounding boxes are too close to each other, the non-maximum suppression
algorithm often fails, resulting in missing detection.

In this paper, we apply the YOLOv5 model to the insulator detection field and propose
a tilting-insulator detection model based on angle regression and prior constraint of scale
(RAPC-YOLO). In particular, we firstly introduce the angle regression loss in the loss
function and combine the oriented bounding box with the YOLOv5 object detection model,
thus effectively improving the tilting-insulator detection effect. Then, the anchor box
parameters of the detection model are analyzed and optimized by the clustering algorithm
according to the scale features of the insulators. Last but not least, we introduce a rotational
uncertainty function to guide the learning of the angle regression loss according to the
angle distribution of the insulator’s oriented bounding box, so as to improve the robustness
of the model to the tilting angle.

2. Materials and Methods

In this section, an overview of our proposed method is given. The architecture of
the tilting insulator detection model is shown in Figure 1. The detailed optimization
adjustments on the YOLOv5 network is given in Section 2.1. After that, a specific method
to implement the scale priori constraint is presented in Section 2.2. Finally, the influence
of the tilting angle is analyzed, and a method to obtain the angle priori constraints is put
forward in Section 2.3.
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Figure 1. Architecture of RAPC-YOLO. 

  

Figure 1. Architecture of RAPC-YOLO.

2.1. YOLOv5-Orientation Model

YOLOv5 is the fifth generation of the You Only Look Once (YOLO) series of single-
stage detection models, and it has become one of the most popular baseline models in the
field of target detection. To obtain the reliable detection of tilting insulators, we introduce
the angle parameter to the axis-aligned bounding box to form an oriented bounding box
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adapted to the tilt characteristics of insulators. Then an angle regression loss is introduced
into the loss function, so as to obtain a new YOLOv5-Orientation model adapted to the
tilting-insulator detection task using loss descent learning.

The oriented bounding box parameter of the YOLOv5-Orientation model is defined as
[x, y, w, h, θ], where (x, y) is the normalized centroid coordinates, w is the normalized short
edge length, h is the normalized long edge length, and θ is the normalized tilt angle. The
normalized tilt angle θ is derived from Equation (1).

θ =
Q
90

(1)

where Q is the tilt angle.
As shown in Figure 2, Q is the minimum angle required for the long side w of the

rectangular box to coincide with the x-axis. If the rotation is clockwise, the tilt angle is
positive; otherwise the tilt angle is negative. Thus, the value range of Q is [−90◦, 90◦].
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An angle regression loss based on the localization loss of the YOLOv5 model is
introduced, consisting of the generalized intersection over union (GIOU) [13] loss and the
smoothing loss [14], as expressed by Equation (2).

Lreg(o, l, g) = ∑
i

∑
m∈S

oijSLGIOU(lm
i − g∆m

j ) + ∑
i

oijθL1(lθ
i − g∆θ

j ) (2)

where o denotes the label, l denotes the predicted oriented bounding box, g denotes the real
oriented bounding box, oij is a binary variable and denotes the degree of matching between
the label of the i-th default box and the label of the j-th real box, S is the set of parameters
{x,y,w,h}, g∆m

j is the offset of parameters {x,y,w,h}, g∆θ
j is the introduced angle offset, and the

offset calculation formula is shown in Equation (3).

g∆x
j = (gx

j − dx
i )/dw

i

g∆w
j = lg(

gw
j

dw
i
)

g∆y
j = (gy

j − dy
i )/dh

i

g∆h
j = lg(

gh
j

dh
i
)

g∆θ
j = (gθ

j − dθ
i )

(3)
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The center coordinate offset (g ∆x
j , g∆y

j

)
is the normalized value of the difference be-

tween the center coordinates of the real rectangular box g and the default rectangular box d.
The long side offset g∆w

j and the short side offset g∆h
j are the logarithm of the corresponding

side-length ratio between the real rectangular box g and the default rectangular box d. The
above four offsets are regressed by GIOU loss, and the formula is shown in Equation (4).
The angle offset g∆θ

j is the difference between the tilt angle gθ
j of the real rectangular box g

and the tilt angle dθ
j of the default rectangular box d, and it is regressed by L1-smoothing

loss. The formula is shown in Equation (5).

LGIOU = 1− GIOU (4)

smoothL1(m) =

{
0.5 m2 i f |m|< 1
|m|−0.5 otherwise

(5)

2.2. Scale Priori Constraints

Motivated by the optimization need of the initial anchor-box aspect ratio and number,
the scale priori constraints are put forward. The preset parameters of the anchor boxes
of the YOLOv5-Orientation model are extracted from the public dataset, and they do not
match the insulator scale features. Therefore, in this paper, the K-means [15] clustering
algorithm is used to cluster and analyze the scale parameters of each labeled oriented
bounding box in the insulator dataset. The width–height ratio, size, and number of the
optimized anchor box are used as the new anchor-box preset parameters. The specific
implementation process is shown in Algorithm 1.

Algorithm 1 Overall process of anchor-box scale clustering

Input:
The scale parameters of labeling box in the dataset, the maximum number of iterations I

Processing:
for m = 1; m ≤ I; m++ do

1. The set of parameter samples obtained from the dataset T = {t i|t i ∈ Rv , i = 1, 2, 3, . . . M},
ti is a single sample, M is the number of labeled boxes, v = 2 is the parameter dimension,
which is the width and height parameter, respectively.

2. Randomly initialize K samples as clustering centers to form the set of clustering centers
C(I)= {c j|cj ∈ Rv}, cj is a single clustering center, I is the number of iterations, and its
initial value is 1.

3. Calculate the distance between each sample ti of the sample set T and each cluster center

cj in C(I) according to the Euclidean distance formula d(ti, cj) =
√
(ti − cj)

2 and merge
each sample ti into the cluster center cj with the smallest Euclidean distance by the size
of the Euclidean distance, i.e.,Tj= {t i|t i ⊆ cj}.

4. For each cluster Tj take the sample ti belonging to it and calculate the new cluster center
c̃j according to Equation c̃j = ∑ti∈Tj

ti/n, and form the set of cluster centers C(I + 1)
from the new cluster centers c̃j.

if C(I + 1) = C(I) :
end for

Output:
The width, height, and number parameters obtained by clustering

As an important hyperparameter of the K-means algorithm, K directly affects the
clustering quality. In order to obtain the clustering results with high intra-cluster similarity
and low inter-cluster similarity, CH is selected to measure the effects of different K-values
on clustering quality, so as to obtain the best anchor-box preset parameters, calculated by
Equation (6).
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CH(K) =
traceB/(K− 1)

traceW/(N − K)
(6)

where, traceB denotes the trace of the inter-cluster dispersion matrix, K denotes the num-
ber of clustering centers, traceW denotes the trace of the intra-cluster dispersion matrix,
N denotes the total number of records, and CH is proportional to the clustering quality.

2.3. Angle Priori Constraint

Studies [16–18] have shown that balanced sample distribution has a significant impact
on detection performance. Therefore, the analysis of the insulator-tilting-angle samples
is necessary, and the optimization of the unbalanced sample distribution can improve the
robustness of the model to the tilt angle. Figure 3 shows the frequency distribution and
probability density distribution of the tilt angle of the annotated boxes in the insulator
dataset. The light blue histogram is the angular frequency, and the red curve is the fitted
probability density.
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It can be found that the overall distribution of the tilt angles is uneven. A large number
of the tilt angles of these samples are concentrated around −60◦ and 30◦. To reduce the
effect of the uneven distribution of the tilt angle on the angle regression, we introduce a
rotational uncertainty function [16] as a threshold function to control the regression loss, so
as to obtain the angle prior constraint.

The formula of the rotational uncertainty function D(θ) is shown in Equation (7),
where θ is the tilt angle, and δ is the angular hyperparameter when D(θ) = 0.5. The
visualization graph of the rotational uncertainty function is shown in Figure 4.

D(θ) = max(0.5, 1 +
1− cos(4θ)

2 cos(4δ)− 2
) (7)

This function maps the tilt angle θ to the GIOU threshold and then controls the
regression loss calculation by the GIOU threshold. In this way, the semantic features
learned by the model in the interval with more distribution of tilt-angle samples can be
migrated to the interval with less distribution of tilt-angle samples, so as to assist their
detection. Herein, the GIOU threshold is set to 0.5 in reference to the threshold of anchor
matching in the standard object-detection architecture.
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3. Test Results & Analysis
3.1. Test Data and Parameter Settings

The test dataset consists of insulator images taken by UAVs, including 1754 aerial
images of insulators. Most images contain tilting insulators. About 1404 aerial-insulator
images were randomly selected from the dataset to form a training set, while the remaining
for a test set, and the ratio of the training set to the test set was 4:1.

In this paper, average precision (AP) is chosen as the test evaluation metric. It can
reflect the comprehensive accuracy of each category and is derived by integrating the P–R
curves constructed from recall and precision, as shown in Equation (8).

APm = ∑
m

∫ 1

0
P(r)d(r) (8)

where P(r) is the curve with recall as the independent variable and precision as the depen-
dent variable; m is the GIOU threshold. Precision is the proportion of correctly predicted
boxes, and recall is the proportion of predicted boxes among all of the real boxes. As shown
in Equations (9) and (10), TP denotes the number of correctly detected targets, FP denotes
the number of incorrectly detected targets, and FN denotes the number of unpredicted
real boxes.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

To verify the effectiveness of our proposed method for the tilting-insulator detection
task, we adopt AP50 as the basic evaluation index and also select AP50~95 as another
evaluation index, which is more demanding for inspection.

The tests were conducted on an Ubuntu 18.04 operating system. The memory is 32GB;
the graphics card is Nvidia GeForce RTX2080Ti, and the processor model Intel Core i9
10850K. Our building and training test work is conducted under Pytorch 1.8, CUDA 11.0.
The initial learning rate used in the model is 0.01; the learning-rate decay strategy is
exponential decay; the weight decay is set to 0.0005; the number of training rounds is set to
100, and the batch parameters is set to 8.

3.2. Scale Priori Constraint Analysis

In this test, the width–height ratios of 2211 insulator annotation boxes were extracted
from 1404 training sets of aerial images of insulators and were used as input. The annotation
boxes were clustered and analyzed by controlling the cluster center number to search for
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the optimal width–height ratio, size, and number of anchor boxes. The width–height ratio
clustering results are shown in Figure 5, where the horizontal and vertical coordinates
represent the normalized width and normalized height of the insulator annotation boxes,
respectively. The cross symbols in the figure represent the clustering centroids, and different
clusters are distinguished by different colors. It can be seen from Figure 5 that the insulator
dataset has a wide range of width–height ratio distribution, obvious differences in the
width–height ratio between samples, and a large-scale span, etc. From the clustering results,
it can be seen that the width–height ratio of the insulator dataset clustering center is roughly
in the range of [0.3, 3].
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Under the condition of different clustering center numbers, the clustering results of
normalized width and normalized height were used as input to calculate the corresponding
CHs, and the results are listed in Table 1.

Table 1. Clustering results under different cluster centers.

K Center Coordinates CH

2 [80, 134] [342, 134] 5545.599
3 [81, 90] [90, 225] [347, 133] 6018.386
4 [71, 92] [88, 226] [277, 108] [430, 167] 6624.259
5 [67, 70] [430, 167] [266, 102] [100, 282] [415, 163] 6363.596
6 [65, 68] [76, 155] [89, 272] [246, 103] [391, 130] [447, 354] 6544.842
7 [56, 70] [66, 161] [173, 97] [96, 275] [302, 117] [431, 136] [445, 375] 6325.461
8 [59, 56] [57, 126] [82, 200] [177, 95] [94, 305] [302, 118] [431, 136] [445, 375] 6313.174
9 [51, 69] [63, 156] [158, 73] [75, 278] [293, 88] [171, 184] [442, 123] [340, 179] [461, 389] 6183.416

From Table 1, it can be seen that CH corresponding to the number of clustering centers
of four is the largest, i.e., the best clustering effect. At this time, the width–height ratio
interval of [0.38, 2.52] derived from clustering is obviously beyond the preset anchor-box
width–height ratio interval of [0.5, 2]. Therefore, the initial anchor-box aspect ratio is set
to (1:3, 1:1, 3:1), and its corresponding aspect ratio interval [0.33, 3.0] covers the insulator
aspect-ratio interval derived from the clustering, which is a good fit for the insulator size
c features. Meanwhile, the center point size can be deduced from the coordinates of the
center of clustering in an interval of 802–682. In order to match the insulator annotation-box
size distribution, the anchor-box size is set to [2, 4, 8, 16, 32]. It can thus cover the original
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image size of 162–2562 in the case of the minimum perceptual field and the original image
size of 642–10242 in the case of the maximum perceptual field that contains the insulator
annotation-box size distribution in different perceptual fields.

3.3. Ablation Test and Comparison Test

In order to evaluate the performance of the improved method, ablation tests were
conducted, and the results are shown in Table 2. The YOLOv5-Orientation model was
selected as the baseline model; the YOLOv5- Orientation model with the introduction of
the scale priori constraints is Improved Model 1; the YOLOv5-Orientation model with the
introduction of the angle priori constraints is Improved Model 2, and the RAPC-YOLO is
the model proposed in this paper.

Table 2. Ablation test result.

Scale Constraints Angle Constraint AP50 AP50–95

Baseline 74.35% 34.21%
Improved Model 1

√
77.92% 39.74%

Improved Model 2
√

79.23% 43.39%
RCPA-YOLO

√ √
82.33% 51.51%

As can be seen from Table 2, when GIOU was taken as 50%, the AP value of the
baseline model on the tilting insulator dataset was only 74.35%. Compared to the baseline,
the detection accuracies of Improved Model 1, Improved Model 2, and the RCPA-YOLO
model were increased by 4.88%, 3.57%, and 7.98%, respectively. When GIOU was in the
range of 50% to 95%, the AP value of the baseline model in the tilting-insulator dataset was
only 34.21%. Compared with the baseline, the detection accuracy of Improved Model 1
was increased by 9.18%, and that of Improved Model 2 was increased by 5.53%. For the
RCPA-YOLO model, the accuracy reached 51.51%, an increment of 17.3% compared with
the baseline, a quite significant improvement.

The ablation tests show that both the scale priori constraints and the angle priori
constraints can effectively improve the detection accuracy of the baseline. The priori
constraint method is more effective at high GIOU thresholds, indicating that the priori
constraint method can help to accurately position the tilting insulators.

The insulator detection results of the three models are demonstrated in Figure 6,
where rows 1, 2, and 3 are the visualized detection results of the YOLOv5 model, the
YOLOv5-Orientation model, and the RAPC-YOLO model, respectively. It can be seen from
the figure that the YOLOv5 model has problems such as the misdetection of obscured
insulators and the incomplete overlapping of detection bounding boxes. Besides, its
detection bounding boxes are positive rectangles containing a large amount of complex
background information. Although the YOLOv5-Orientation model can detect some tilting
insulators, there still exist some problems such as misdetection or false detection for
insulators with wide tilt angles. In contrast, our RAPC-YOLO model achieves a better
detection effect for tilting insulators. The additional priori constraint module makes the
oriented bounding box accurately surround the tilting insulators and realizes positioning
with better precision.

Xue et al. proposed an oriented object detection model R3Det [19], based on a feature
pyramid network (FPN). X. Yang et al. proposed another oriented object detection model
SCRDet [20] for remotely sensed small-target object detection. These two models can be
used to detect objects with arbitrary angles. In order to verify the effectiveness of the
tilting-insulator detection model RAPC-YOLO, a detection performance comparison of
several oriented object detection models and the RAPC-YOLO model was made in this
paper under the same test conditions. The results are shown in Table 3. As can be seen,
the detection accuracy of the RAPC-YOLO model in the tilting-insulator detection task is
superior over other oriented object detection models. Moreover, the detection performance
of the RAPC-YOLO model is more remarkable with higher intersection-over-union (IOU)
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thresholds, which further verifies that the priori constraint method helps to improve the
detection accuracy of the model.
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Table 3. Performance comparison of different detection models.

Model AP50 AP50–95

R3Det 54.29% 14.68%
SCRDet 71.64% 35.54%

SCRDet++ [21] 73.7% 40.83%
RAPC-YOLO 82.33% 51.51%

In addition, we selectthe SCRDet++ model with the highest accuracy to carry out a
visual comparative analysis with the model proposed in this paper. The results are shown
in Figure 7. It can be seen from the figure that the SCRDet++ model has the problem of
misdetection, especially for the shading insulator and the insulators that are relatively
close to each other. In contrast, these problems are better solved in the model proposed in
this paper.
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4. Conclusions

In this paper, we propose a RAPC-YOLO model, a new orientation detection method
for tilting insulators by fusing angle regression with prior constraints. We used an oriented
bounding box, angle regression loss, and rotational uncertainty function to learn the tilting
features of insulators. Furthermore, we applied a clustering algorithm to learn the insulator
aspect ratio and size distribution. Ablation tests and comparison tests show that our
RAPC-YOLO model is an effective architecture for tilting-insulator detection tasks. In our
RAPC-YOLO model, the oriented bounding box fitting the insulator edges are generated,
and thus the detection effect is significantly improved compared to the baseline model,
especially in the aspects of false detection and anchor-box mismatch. In addition, the results
show that RAPC-YOLO is superior over other models in detection accuracy. In the future,
research such as insulator-defect detection will be further carried out on the basis of the
proposed RAPC-YOLO.
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