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Abstract: Inspired by the observation that pathologists pay more attention to the nuclei regions
when analyzing pathological images, this study utilized soft segmentation to imitate the visual
focus mechanism and proposed a new segmentation–classification joint model to achieve superior
classification performance for breast cancer pathology images. Aiming at the characteristics of
different sizes of nuclei in pathological images, this study developed a new segmentation network
with excellent cross-scale description ability called DIU-Net. To enhance the generalization ability of
the segmentation network, that is, to avoid the segmentation network from learning low-level features,
we proposed the Complementary Color Conversion Scheme in the training phase. In addition, due to
the disparity between the area of the nucleus and the background in the pathology image, there is an
inherent data imbalance phenomenon, dice loss and focal loss were used to overcome this problem.
In order to further strengthen the classification performance of the model, this study adopted a joint
training scheme, so that the output of the classification network can not only be used to optimize the
classification network itself, but also optimize the segmentation network. In addition, this model
can also provide the pathologist model’s attention area, increasing the model’s interpretability. The
classification performance verification of the proposed method was carried out with the BreaKHis
dataset. Our method obtains binary/multi-class classification accuracy 97.24/93.75 and 98.19/94.43
for 200× and 400× images, outperforming existing methods.

Keywords: soft segmentation; DIU-Net; joint training

1. Introduction

Cancer is currently one of the leading causes of human death worldwide, and for
women, breast cancer is the second main cause of cancer death after lung cancer [1].
According to the International Agency for Research on Cancer (IARC), which is part of the
World Health Organization (WHO) [2], the number of deaths caused by cancer is expected
to increase to more than 27 million by 2030 [3]. Commonly used breast cancer clinical
screening methods include mammography [4], breast ultrasound [5], biopsy [6] and other
radiology imaging. Radiology images can help to identify abnormal areas. However, they
cannot be used to determine whether the area is cancerous. The biopsy [6], where tissue
is taken and studied under a microscope to see if cancer is present, is the only diagnostic
procedure that can confirm whether a suspicious area is cancerous. After completing the
biopsy, the diagnosis will be proceeded by the pathologists, who examine the tissue under
a microscope, looking for cancerous cells. Pathologists determine cancerous regions and
malignancy degree [7,8] by visually examining the regularities of cell shapes and tissue
distributions. Microscopic examination of histological slides by a pathologist for diagnosis
is considered the gold standard for making a definite diagnosis [9]. However, traditional
manual diagnosis requires a lot of effort for a pathologist. Whether it is due to insufficient
diagnosis experience or inattention, it is prone to make wrong diagnoses using the manual
way. In contrast, the automatic classification of pathological images using computer-aided
diagnosis (CAD) [10] can not only improve diagnostic efficiency but also provide more
objective and stable diagnostic results.
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In [11], a database of breast cancer histopathology images, called BreaKHis, was
introduced by Spanhol et al. to overcome the problem of small data sets which is the main
obstacle leading to the lack of development of a new analysis method. For texture features,
popular textural descriptors were used, such as Local Binary Patterns (LBP) [12], Completed
LBP (CLBP) [13], Local Phase Quantization (LPQ) [14], Grey-Level Co-occurrence Matrix
(GLCM) [15], Threshold Adjacency Statistics [16], and Oriented fast and Rotated BRIEF
(ORB) [17]. For classification, four different classifiers were used to assess the above feature
sets including a 1-Nearest Neighbor (1-NN), Quadratic Discriminant Analysis (QDA),
Support Vector Machines (SVM), and Random Forests. Chan et al. [18] calculated the
fractal dimension of images of breast cancer slides and then classified them into benign or
malignant images via SVM. Kahya et al. [19] presented an adaptive sparse support vector
machine by combining the support vector machine with the weighted L1-norm to classify
the breast cancer histopathology images. However, the performance of the above methods
is limited due to the manual-based feature design methodology, which can be overcome by
the convolutional neural network (CNN).

In the last decade, the CNN has achieved great success in image and video analysis
and has received the attention of pathology image analysis researchers. Bardou et al. [20]
compared two machine learning schemes for classifying breast cancer pathology images
into benign and malignant. The first scheme is based on the extraction of a set of hand-
crafted features encoded by two coding models, bag of words and locality constrained
linear coding, and trained by support vector machines. The second scheme is based on the
design of CNNs. The experimental results show that CNNs outperformed the handcrafted
feature-based classifier. Motlagh et al. [21] presented Inception and ResNet architectures to
discriminate microscopic cancerous images. They demonstrated an automatic framework
for breast tumor detection and classification of its subtypes. The above two methods
employing the existing CNN models for feature extraction and classification cannot adapt
to the innate characteristics of pathological images; hence, the classification performance is
naturally limited. Jiang et al. [22], considering the characteristics of histopathological im-
ages, designed a new CNN architecture for the classification of breast cancer histopathology
images using the small SE-ResNet module, which is named the breast cancer histopathology
image classification network (BHCNet). This model was used for the automatic classifica-
tion of breast cancer histology images into benign and malignant and eight subtypes. The
study by Filipczuk et al. [23] confirms that nucleus features can effectively classify benign
and malignant breast cancer. Based on this concept, George et al. [24] proposed a nucleus
feature extraction method utilizing a convolutional neural network for automated breast
cancer detection. Non-overlapping nuclei patches are detected from the images first, and
then CNN is employed to extract features. A feature fusion approach with a support vector
machine classifier is used to classify breast tumor images. However, since the detection
of nuclei patches is obtained by traditional image processing methods, the accuracy is not
high enough, and the patch detection errors or locating errors will affect the subsequent
classification performance.

Complex structures of the pathological image and significant variations in the mor-
phology of the same type of nucleus within and across images make pathological image
classification a challenging task. The aforementioned BHCNet [22] can achieve decent
classification results; however, there still exists room for further improvement. A feasible
way to enhance breast tumor classification performance is to drive the CNN model to focus
more on the nucleus regions in which the cancerous characteristics are contained. Based on
this consideration, we proposed a segmentation–classification joint training mechanism to
enhance the BHCNet. The segmentation module is responsible for learning the Nucleus
Focus Map (NFM) in which the nucleus region corresponds to higher weights. The Nucleus
Focus Weighted Image (NFWI) is obtained by multiplying the NFM by the input image,
and then the NFWI is input to BHCNet. In response to the inconsistent size of nuclei in
tissue slice images, we proposed a Dilated Inception U-Net (DIU-Net) model with better
cross-scale description ability, which enhances the performance of nuclei segmentation. To
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adapt to the significant variations in the morphology of the same type of nucleus, this study
proposed a Complementary Color Conversion Scheme (C3S) to enhance the generalization
ability of the segmentation module. Since the area of nuclei in a pathological image is much
smaller than the non-nucleus area, there exists a data imbalance phenomenon. This makes
the trained segmentation module apt to pay more attention to the non-nucleus regions,
resulting in segmentation bias. This study combined dice loss and focal loss to overcome
this problem. The experimental results show that our method can indeed achieve better
performance than the BHCNet [22]. In addition, our model has another advantage, that is,
it can provide visual information of the model to the pathologist so that the pathologist can
understand where the area concerned by the model is, and further enhance the pathologist’s
trust in this model.

In summary, the main contributions of our study are as follows:

(1) A segmentation–classification joint training mechanism was proposed to enhance the
classification performance for breast cancer pathology images.

(2) A Dilated Inception U-Net model with better cross-scale description ability was
proposed to enhance the performance of nuclei segmentation.

(3) A Complementary Color Conversion Scheme was proposed to enhance the general-
ization ability of the nuclei segmentation.

(4) The proposed model can provide visual information of the model to the pathologist
so that the pathologist can understand where the area concerned by the model is.

The rest of the paper is organized as follows: Section 2 is dedicated to the proposed
segmentation–classification joint model and its training. In Sections 3 and 4, the dataset,
the implementation settings, performances and experimental results comparisons are given
and discussed.

2. Method
2.1. System Architecture

The architecture of the proposed method is shown in Figure 1, including two parts: a
segmentation network and a classification network. The architecture can be trained using
the segmentation–classification joint training mechanism to achieve good performance for
breast cancer classification. After the input image is softly segmented by the segmentation
network, NFM is output and Lseg is the corresponding segmentation loss. The NFWI is
obtained by multiplying the NFM by the input image, and then the NFWI is classified
by the classification network and the corresponding classification loss Lc is calculated.
Detailed explanations of the different parts of the proposed network are provided in the
following sections.

2.2. Segmentation Network

The nucleus features can be utilized to effectively classify benign and malignant breast
cancer [23]. Pathologists pay more attention to the nucleus region when analyzing patho-
logical images, so this study uses soft segmentation to imitate the visual focus mechanism
of pathologists. Figure 2 shows the results of hard segmentation and soft segmentation
for a pathological tissue patch exemplar in which the values of Figure 2c indicate the
corresponding visual focus weights. To learn the corresponding NFM the segmentation
network should possess pixel-level discrimination ability. U-net [25] was invented for
semantic segmentation with an architecture that can be viewed as an encoder network
followed by a decoder network. Unlike a classification network where the end result of the
network is the only high-level semantic features, semantic segmentation not only requires
discrimination at the pixel level but also a mechanism to project the discriminative features
learned at different stages of the encoder onto the pixel space. U-Net is well recognized
for its good performance in medical image segmentation tasks. To further enhance the
segmentation performance of U-Net, some new architectures based on U-Net have been
proposed in recent years. The most attractive one is the Attention U-Net [26]. Compared
with R2U-Net [27] and U-Net++ [28], which need to use more parameters to improve
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performance, Attention U-Net can significantly improve performance with relatively fewer
parameters. Therefore, this study uses Attention U-Net as the basic architecture of the
segmentation network.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 1. System architecture of the proposed method. For the binary classification case, the class 
output corresponds to benign/malignant, while for the multi-classification case, the class output 
corresponds to the eight subcategories. 

2.2. Segmentation Network 
The nucleus features can be utilized to effectively classify benign and malignant 

breast cancer [23]. Pathologists pay more attention to the nucleus region when analyzing 
pathological images, so this study uses soft segmentation to imitate the visual focus mech-
anism of pathologists. Figure 2 shows the results of hard segmentation and soft segmen-
tation for a pathological tissue patch exemplar in which the values of Figure 2c indicate 
the corresponding visual focus weights. To learn the corresponding NFM the segmenta-
tion network should possess pixel-level discrimination ability. U-net [25] was invented 
for semantic segmentation with an architecture that can be viewed as an encoder network 
followed by a decoder network. Unlike a classification network where the end result of 
the network is the only high-level semantic features, semantic segmentation not only re-
quires discrimination at the pixel level but also a mechanism to project the discriminative 
features learned at different stages of the encoder onto the pixel space. U-Net is well rec-
ognized for its good performance in medical image segmentation tasks. To further en-
hance the segmentation performance of U-Net, some new architectures based on U-Net 
have been proposed in recent years. The most attractive one is the Attention U-Net [26]. 
Compared with R2U-Net [27] and U-Net++ [28], which need to use more parameters to 
improve performance, Attention U-Net can significantly improve performance with rela-
tively fewer parameters. Therefore, this study uses Attention U-Net as the basic architec-
ture of the segmentation network. 

  

Figure 1. System architecture of the proposed method. For the binary classification case, the class
output corresponds to benign/malignant, while for the multi-classification case, the class output
corresponds to the eight subcategories.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 16 
 

 

   
(a) (b) (c) 

Figure 2. (a) A pathological tissue patch. (b) Hard segmentation result of (a). (c) Soft segmentation 
result of (a). 

In fact, the size of nuclei in pathological images is not uniform, so the segmentation 
network must be able to capture cross-scale features to focus on nuclei of different sizes. 
Experiments have confirmed that the Inception structure has the ability to capture fea-
tures at different scales [29], but unfortunately, the pooling layer in the Inception structure 
weakens this ability of the overall model due to the information loss coming from pooling. 
To overcome this shortcoming, this study replaces the pooling layer of Inception with di-
lated convolution [30], and calls the replaced block, as shown in Figure 3, Dilated Incep-
tion (DI). To further strengthen the cross-scale description capability of the Attention U-
Net, we replace the convolutional layers of the encoder and decoder of the Attention U-
Net with the DI blocks. The adjusted architecture is called DIU-Net as shown in Figure 4. 

 
Figure 3. Dilated Inception block. 

 
Figure 4. The architecture of the DIU-Net, where convolutional layers are replaced by DIs and the 
numbers indicate the number of channels. 

Figure 2. (a) A pathological tissue patch. (b) Hard segmentation result of (a). (c) Soft segmentation
result of (a).

In fact, the size of nuclei in pathological images is not uniform, so the segmentation
network must be able to capture cross-scale features to focus on nuclei of different sizes.
Experiments have confirmed that the Inception structure has the ability to capture features
at different scales [29], but unfortunately, the pooling layer in the Inception structure weak-
ens this ability of the overall model due to the information loss coming from pooling. To
overcome this shortcoming, this study replaces the pooling layer of Inception with dilated
convolution [30], and calls the replaced block, as shown in Figure 3, Dilated Inception
(DI). To further strengthen the cross-scale description capability of the Attention U-Net, we
replace the convolutional layers of the encoder and decoder of the Attention U-Net with
the DI blocks. The adjusted architecture is called DIU-Net as shown in Figure 4.
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To enhance the generalization ability of DIU-Net, it is necessary to avoid the operation
of DIU-Net relying on the color information and relative brightness of the nucleus and the
background which are less reliable. C3S was proposed to achieve this goal. By converting
some training samples to complementary colors, DIU-Net learns to ignore the color and
relative brightness of the nucleus and background and instead learns to use higher-level
texture features for segmentation judgment. Pathological images are inherently character-
ized by the fact that the area of nuclei is much smaller than the background area, which
leads to data imbalance. If an inappropriate loss function is used, it is easy for the trained
segmentation network to pay more attention to the accuracy of non-nucleus regions, re-
sulting in segmentation bias. Dice loss belongs to region-based loss and uses the relative
overlap rate between the prediction result and the ground truth to quantify the loss. It
is not affected by the size of the target object innately, so it is suitable for the loss of the
segmentation network. However, using dice loss alone is prone to instability when the
relative overlap rate between the prediction result and the ground truth is zero during
the training process. To avoid this problem, this study added focal loss which belongs to
distribution-based loss and can also help improve the problem of data imbalance. The dice
loss is defined in Equation (1), where N is the total pixel number in one batch, ŷi and yi
denote the prediction result and the ground truth for pixel i, respectively. The ε term is
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used to ensure the loss function stability by avoiding the numerical issue of dividing by 0.
The focal loss is defined in Equation (3).

Ldice = 1 − ∑N
i=1 yi ŷi + ε

∑N
i=1 yi + ŷ i + ε

−∑N
i=1(1 − yi)(1 − ŷi) + ε

∑N
i=1 2 − yi − ŷi + ε

(1)

ŷi=

{
ŷi

1 − ŷi

i f yi = 1
otherwise

(2)

Lfocal = −∑N
i=1(1 − ŷi)

2 log(ŷi) (3)

2.3. Classification Network

In this study, BHCNet [22], which currently has outstanding breast tumor classification
performance in the public dataset BreaKHis, was used as the classification network, and its
architecture is shown in Figure 5. BHCNet-3 was used for benign and malignant tumor
classification tasks. For the more difficult subtypes classification task, BHCNet-6 was
used. The difference between the two networks is the network depth. Since the subtypes
classification task is more difficult than the binary classification task, a deeper network is
required to cope with it.
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2.4. Training

The loss function of the overall network can be divided into two parts: segmentation
loss Lseg and classification loss Lc. The definition of segmentation loss Lseg is defined in
Equation (4) where λs is the weight of focal loss. Lseg shoulders our expectation for the
output of the segmentation network, that is, to appropriately reflect the degree of attention
to the nucleus in the image. The loss of benign/malignant binary classification is denoted
as Lbce, which is defined in Equation (5), where M is the total image number in one batch
for the binary classification task, ŷk and yk denote the prediction result and the ground
truth for image k, respectively. As for the loss of subcategory classification, it is denoted as
Lmce, which is defined in Equation (6), where K is the total image number in one batch for a
multi-class classification task, ŷm represents the target class prediction result of image m.
The total loss Ltotal is defined in Equation (8) where λc is the weight of classification loss Lc.

The training samples of the overall network in the training phase are partly from the
segmentation training set and partly from the classification training set. The segmentation
network and the classification network are jointly trained by the training samples of the
two training sets. The training sample Is from the segmentation training set is fed into
DIU-Net to obtain NFM. The corresponding Lseg is calculated through the ground truth
of Is, and then the weights of DIU-Net are corrected via Lseg . The training sample Ic from
the classification training set is fed into DIU-Net to obtain NFM. After multiplying NFM
and Ic to obtain NFWI, then input to BHCNet to obtain classification prediction. The
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corresponding loss Lc is calculated through the ground truth of Ic. Correcting the weights
of BHCNet and DIU-Net via Ltotal :

Lseg = Ldice + λsLfocal (4)

Lbce = −∑M
k=1[yk log( ŷk) + (1 − yk) log(1 − ŷk)] (5)

Lmce = −∑K
m=1 log( ŷm) (6)

Lc =

{
Lbce , two classes

Lmce, multi − class
(7)

Ltotal = (1 − λc) ∗ Lseg + λc ∗ Lc (8)

3. Experiments

In this study, accuracy (ACC) and dice coefficient were used as efficacy evaluation
indicators. The segmentation experiment is divided into two parts: the training process
with/without the C3S, in order to understand the benefits of this scheme. As for the
verification method of the classification experiment, the same evaluation methods were
adopted as other studies [20,22,24,31,32] using the BreaKHis dataset.

3.1. Datasets

Since few of the currently public breast cancer image datasets provide both the ground
truth for nucleus segmentation and the ground truth for tumor types, the dataset used in
this study is divided into a segmentation dataset and a classification dataset. The images of
the segmentation dataset were collected from 4 sub-datasets, namely the UCSB dataset [33],
the TNBC dataset [34], the 2018DSB dataset [35] and the MoNuSeg dataset [36]. There
are 58 breast cancer images in the UCSB dataset, the image format is TIF, the resolution is
896 × 768, and the staining colors are relatively consistent. The TNBC dataset has 50 breast
cancer images in PNG format with a resolution of 512 × 512, and their staining colors
are relatively inconsistent. The 2018DSB dataset has 670 images of Spot nuclei, the image
format is TIF, the resolution is 256 × 256 to 1388 × 1040 and the staining colors are also
relatively inconsistent. The MoNuSeg dataset has 30 images. The tissue images are from
patients with breast cancer, liver cancer, kidney cancer, prostate cancer, bladder cancer,
colon cancer and gastric cancer. Since this dataset covers cells of different tissues, and the
cell characteristics are highly variable, it is quite suitable for verifying the generalization
ability of the segmentation network.

In terms of the appearance of staining, the images of the above four sub-datasets can
be divided into two types: cells with a darker color than the background (referred to as the
darker type) and cells with a lighter color than the background (referred to as the lighter
type). Most of the images in the three sub-datasets UCSB, MoNuSeg and TNBC are of the
darker type, while the 2018DSB sub-dataset is of the lighter type. Figure 6 shows sample
images of each sub-dataset. In order to test the generalization ability of the segmentation
network, this study made special arrangements for the training and testing datasets. UCSB
and TNBC were used as segmentation training datasets, while MoNuSeg and 2018DSB
were used as segmentation test datasets. A total of 80% of the data in the segmentation
training dataset is used as training data, and the remaining 20% is used as validation data.
Since the characteristics of the test data are quite different from the training data, if the test
performance is good, it can be confirmed that the segmentation network model proposed
in this study has excellent generalization ability.
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Figure 6. Sample images of four sub-datasets for segmentation: (a) UCSB; (b) TNBC; (c) 2018DSB;
(d) MoNuSeg.

The classification dataset is the BreaKHis dataset, which uses H&E staining, the image
size is 700 × 400, and the image magnifications are 200× and 400×. Each image has a
benign/malignant label and the corresponding subcategory label, for a total of 3833 images.
The subcategories of benign tumors are adenosis (A), fibroadenoma (F), phyllodes tumor
(PT) and tubular adenoma (TA). The malignant tumor subcategories are ductal carcinoma
(DC), lobular carcinoma (LC), mucinous carcinoma (MC) and papillary carcinoma (PC).
There are 2013 200× images, which are called the 200× dataset, and 1820 400× images,
which are called the 400× dataset. Randomly select 70% from the 200× dataset as the 200×
training set and the remaining 30% as the 200× test set. Likewise, randomly select 70% from
the 400× dataset as the 400× training set and the remaining 30% as the 400× test set. The
union of the 200× training set and the 400× training set is called the classification training
set, and the union of the 200× test set and the 400× test set is called the classification
test set.

3.2. Evaluating the Segmentation Performance

U-Net [25] can be regarded as a representative model for medical image segmentation.
In recent years, some improved architectures based on U-Net have been proposed, such
as Attention U-Net (Att-U-Net) [26], R2U-Net [27] and U-Net++ [28]. These models all
have quite good segmentation performance. This experiment compares the segmentation
performance of the proposed DIU-Net with these models under the same training and
testing conditions. Table 1 shows the test results of the training process of each model
without using the C3S for training. The results show that our proposed model outperforms
the other methods on both the validation set and the test set and R2U-Net has the worst
segmentation effect. However, the performance of all models on the test set is not ideal.
The main reason is that these models learn to rely on the color and relative brightness of the
nucleus and background to make judgments during the training process, which reduces
the performance of the test data with different characteristics. Figure 7 shows examples of
the segmentation results of the 2018 DSB sub-dataset. It can be seen that all segmentation
models cannot correctly segment the nucleus region. Table 2 shows the test results of
the training process of each model using the C3S. It can be found that the segmentation
performance of all models is greatly improved, indicating that the C3S can indeed improve
the generalization ability of these models. The experimental results also show that our
proposed model performs better than other methods in both the validation set and test
set, and the segmentation effect of R2U-Net is still the worst. The actual segmentation
performance can refer to the segmentation examples in Figure 8. Compared with Figure 7,
the segmentation performance is indeed significantly improved.

Table 1. The test results of different segmentation models without C3S in the training phase.

U-Net Att-U-Net R2U-Net U-Net++ Ours
Validation Set

Dice Coefficient 0.69 0.68 0.35 0.68 0.70
Test Set

Dice Coefficient 0.39 0.40 0.36 0.36 0.41
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Figure 7. The segmentation results using different models without the C3S for a sample image of the
2018 DSB sub-dataset. The white pixel represents FP (false positive), while the yellow pixel represents
FN (false negative). (a) Image; (b) Ground Truth; (c) U-Net; (d) Att-U-Net; (e) R2U-Net; (f) U-Net++;
(g) Ours.

Table 2. The test results of different segmentation models with C3S in the training phase.

U-Net Att-U-Net R2U-Net U-Net++ Ours
Validation Set

Dice Coefficient 0.84 0.84 0.24 0.85 0.85
Test Set

Dice Coefficient 0.50 0.53 0.33 0.52 0.54
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Figure 8. The segmentation results using different models with the C3S during the training phase for
the same image in Figure 7.

To further understand the impact of different loss and C3S on the performance of
the segmentation network, this part uses the performance of the validation set and the
test set to conduct ablation experiments, and the results are shown in Table 3. It can be
seen from the results that the performance of using only dice loss is worse than that of
using focal loss, while the performance of combining dice loss with focal loss is the best.
Furthermore, no matter what kind of loss is used, as long as the C3S is used in the training
process, better segmentation performance can be obtained. The results show that the
combination of dice loss and focal loss is beneficial to the optimization of the segmentation
network. The C3S used in the training process can improve the generalization ability of the
segmentation network.

Table 3. Ablation experiments on the segmentation network.

Focal Loss Dice Loss Dice Coefficient
(without C3S)

Dice Coefficient
(with C3S)

Validation Set
X × 0.66 0.84

× X 0.66 0.82

X X 0.70 0.85
Test Set

X × 0.41 0.47

× X 0.34 0.44

X X 0.41 0.54
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3.3. Evaluating the Classification Performance

Table 4 shows the results of the dichotomous classification of benign and malig-
nant breast pathological images by various methods. CNN [20] means the binary/multi-
class classification results using the CNN-based method of [20]. ResNet [21] means the
binary/multi-class classification results using Inception and ResNet architectures pro-
posed by [21]. BHCNet [22] is the baseline for classification performance comparison since
our proposed method employs it as a classification module. NucDeep [24] means the
binary/multi-class classification results using the method proposed by [24], in which a
feature fusion approach with a support vector machine is used to classify breast tumor
images. ResHist [31] is a residual learning-based CNN with 152 layers developed for
breast tumor binary classification. myResNet-34 [32] is also a residual learning-based CNN
derived from ResNet-34 via merging shallow features and using Leaky ReLU and Batch
Normalization to enhance the malignancy-and-benign classification performance. The
results show that the model proposed in this study has a higher classification accuracy
than other methods whether in the 200× test set, 400× test set or the overall test set. The
performance of various methods in the classification of benign and malignant subcategories
of breast pathology images is shown in Table 5. The results show that the proposed model
still has higher subcategory classification accuracy than other methods whether it is in
the 200X test set, 400X test set or in the overall test set. This shows that the proposed
strategy combining the degree of nucleus attention can indeed effectively improve classifi-
cation performance. The multi-class confusion matrix of the proposed model is shown in
Figure 9. From the confusion matrix, it can be found that LC is the most difficult category
to be classified.

Table 4. Binary classification accuracy comparison.

Methods 200× 400× Total

CNN [20] 96.36 95.97 96.16

ResNet [21] 93.64 93.16 93.4

BHCNet [22] 97.2 96.96 97.04

NucDeep [24] 96.21 × 96.21

ResHist [31] 91.15 86.27 ×
myResNet-34 [32] 90.47 88.79 ×

Ours 97.24 98.19 97.74

Table 5. Multi-class classification accuracy comparison.

Methods 200× 400× Total

CNN [20] 80.83 81.03 80.93

ResNet [21] 76.54 79.58 78.06

BHCNet [22] 92.27 91.15 91.71

NucDeep [24] 63.3 × 63.3

Ours 93.75 94.43 94.09
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3.4. Ablation Study

In this ablation experiment, we want to understand the impact of several key factors
on classification accuracy. The ablation experimental results are shown in Table 6. Omitting
the C3S, the performance degradation is 0.56 and 1.42 for binary classification and multi-
class classification, respectively. The results reveal that the improvement of segmentation
performance by the C3S also indirectly boosts the classification performance. To understand
the influence level of replacing the pooling layer of Inception with dilated convolution,
the results with and without DI were compared. From Table 6, we can find that using
DI the classification accuracy can be enhanced by 0.55 and 2.38 for binary and multi-
class classification, respectively. This reflects that DI can indeed improve the cross-scale
description ability of Attention U-Net for the nucleus in breast pathology images. To
further understand the impact of the joint training of the segmentation network and
the classification network on the accuracy of the binary classification and multi-class
classification, a control version, the separated training version, was designed to compare
the classification performance of the two. This version trains the segmentation network
and the classification network separately and then concatenates them after the training is
complete. The comparison results are shown in Table 6. The classification performance of
the joint training version outperforms the separated training versions by 6.32 and 18.11 on
the binary and multi-class tasks, respectively. This substantial performance improvement
is due to two factors. One is that the soft segmentation results of the segmentation network
allow the classification network to focus more on the nucleus regions. The other is that the
joint training scheme gives classification results, which can not only be fed back to optimize
the classification network, but also optimize the segmentation network to generate the
corresponding NFM that is more conducive to classification performance.

Table 6. Ablation experiment on classification accuracy.

Methods Binary Classification Multi-Class Classification

Without C3S 97.18 92.67
Without DI 97.04 91.71

Separated training version 91.42 75.98
Ours 97.74 94.09
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In addition to yielding superior classification results, the proposed method has the
side benefit of being able to provide model visualization. That is, the areas concerned
by the model can be displayed to the pathologist for reference (as shown in Figure 10),
thereby enhancing the physician’s confidence in the classification results. It can also be
found from Figure 10 that the segmentation results of the proposed method cover almost
all the nucleus regions. This also shows the effectiveness of the proposed method for
nucleus segmentation. To understand the impact of choosing different λc on the system
performance, tests for different λc were proceeded. Figure 11 shows the test results of the
binary classification task. The results show that when λc is set to 0.99, there is the best
classification performance. As for the test results of the subcategory classification task,
as shown in Figure 12, the results also show that the best classification performance is
obtained when λc is set to 0.99. This means that the hyperparameter λc of the proposed
model is quite stable, whether facing binary or subcategory tasks. This stable property
indirectly reflects the value of the proposed model in clinical applications.
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4. Conclusions

Inspired by pathologists’ interpretation of pathological images, this study proposed an
automatic classification model of breast pathological images that combines a segmentation
network and classification network. The soft segmentation results are generated by the seg-
mentation network to simulate the pathologist’s relative attention to the viewing mode of
the nucleus regions, and then the weighted images are input into the classification network
for classification. Considering the phenomenon of different sizes of nuclei in pathological
images, the DIU-Net proposed in this study has excellent cross-scale description ability, so
that nuclei of different sizes can correspond to higher attention coefficients. In addition,
to make the segmentation network have better generalization ability, C3S was used in the
training phase to guide the segmentation network to avoid learning low-level features such
as color or relative brightness and instead learn higher-level texture features to identify
nuclei. With the background, the generalization ability of the segmentation network has
been successfully improved. Furthermore, dice loss and focal loss were used to successfully
overcome the data imbalance caused by the disparate area ratio of nuclei to the background.
This study utilized a joint training scheme so that the output of the classification network
can not only be used to optimize the classification network itself, but also optimize the
segmentation network to further strengthen the classification performance of the model.
The experimental results show that the model proposed in this study outperforms the
existing classification models for both 200× and 400× pathological images in both binary



Sensors 2022, 22, 9838 14 of 15

and subcategory classification tasks. In addition, the proposed model has the side benefit
of being able to provide the areas concerned by the model. This visualization can enhance
the pathologist’s confidence in the model’s classification results. The greatest contribution
of the model developed in this study is that it can provide pathologists with excellent
classification results and at the same time provide information on the area of interest of
the model, thereby assisting pathologists in making decisions. The main drawback of this
model is that it cannot be applied to small-magnification pathological images because this
model must first softly segment the nucleus area, and small-magnification pathological
images cannot clearly reveal the nucleus.

Author Contributions: Conceptualization, J.-S.L.; Data curation, W.-K.W.; Funding acquisition, J.-
S.L.; Methodology, J.-S.L. and W.-K.W.; Software, W.-K.W.; Supervision, J.-S.L.; Writing—original
draft, W.-K.W.; Writing—review and editing, J.-S.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Ministry of Science and Technology under Grant MOST
108-2221-E-024-011-MY3.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chun, M.C. Breast Cancer: Symptoms, Risk Factors, and Treatment, Medical News Today. 2018. Available online: https:

//www.medicalnewstoday.com/articles/37136.php (accessed on 10 March 2018).
2. World Health Organization. Available online: http://www.who.int/en/ (accessed on 10 March 2018).
3. Boyle, P.; Levin, B. World Cancer Report. 2008. Available online: https://publications.iarc.fr/Non-Series-Publications/World-

Cancer-Reports/World-Cancer-Report-2008 (accessed on 16 October 2022).
4. Lim, C.N.; Suliong, C.; Rao, C.V.; Aung, T.; Sieman, J.; Tin, W. Recent Advances in Breast Cancer Diagnosis Entering an Era of

Precision Medicine. Borneo J. Med. Sci. (BJMS) 2019, 13. [CrossRef]
5. Chen, D.R.; Lin, Y.C.; Huang, Y.L. 3D Contouring for Breast Tumor in Sonography. arXiv 2019, arXiv:190109407.
6. Horvat, J.V.; Keating, D.M.; Rodrigues-Duarte, H.; Morris, E.A.; Mango, V.L. Calcifications at Digital Breast Tomosynthesis:

Imaging Features and Biopsy Techniques. RadioGraphics 2019, 39, 307. [CrossRef] [PubMed]
7. He, L.; Long, L.R.; Antani, S.; Thoma, G. Computer assisted diag nosis in histopathology, Sequence Genome Anal. Methods Appl.

2010, 3, 271–287.
8. He, L.; Long, L.R.; Antani, S.; Thoma, G.R. Histology image analysis for carcinoma detection and grading. Comput. Methods

Programs Biomed. 2012, 107, 538–556. [CrossRef]
9. Das, K.; Conjeti, S.; Roy, A.G.; Chatterjee, J.; Sheet, D. Multiple instance learning of deep convolutional neural networks for breast

histopathology whole slide classification. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging
(ISBI), Washington, DC, USA, 4–7 April 2018; pp. 578–581.

10. Araújo, T.; Aresta, G.; Castro, E.; Rouco, J.; Aguiar, P.; Eloy, C.; Campilho, A. Classification of breast cancer histology images using
convolutional neural networks. PLoS ONE 2017, 12, e0177544. [CrossRef]

11. Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A dataset for breast cancer histopathological image classification. IEEE Trans.
Biomed. Eng. 2016, 63, 1455–1462. [CrossRef]

12. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary
patterns. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE Computer Society: Washington, DC, USA, 2002;
Volume 24, pp. 971–987.

13. Guo, Z.; Zhang, L.; Zhang, D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image
Process. 2010, 19, 1657–1663.

14. Ojansivu, V.; Heikkilä, J. Blur insensitive texture classification using local phase quantization. In Proceedings of the 3rd
International Conference on Image and Signal Processing (ICISP), Cherbourg-Octeville, France, 1–3 July 2008; Volume 5099,
pp. 236–243.

15. Haralick, R.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621.
[CrossRef]

16. Hamilton, N.A.; Pantelic, R.S.; Hanson, K.; Teasdale, R.D. Fast automated cell phenotype image classification. BMC Bioinform.
2007, 8, 110. [CrossRef]

17. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571.

18. Chan, A.; Tuszynski, J.A. Automatic prediction of tumour malignancy in breast cancer with fractal dimension. Open Sci. 2016,
3, 160558. [CrossRef] [PubMed]

https://www.medicalnewstoday.com/articles/37136.php
https://www.medicalnewstoday.com/articles/37136.php
http://www.who.int/en/
https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2008
https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2008
http://doi.org/10.51200/bjms.v13i1.1178
http://doi.org/10.1148/rg.2019180124
http://www.ncbi.nlm.nih.gov/pubmed/30681901
http://doi.org/10.1016/j.cmpb.2011.12.007
http://doi.org/10.1371/journal.pone.0177544
http://doi.org/10.1109/TBME.2015.2496264
http://doi.org/10.1109/TSMC.1973.4309314
http://doi.org/10.1186/1471-2105-8-110
http://doi.org/10.1098/rsos.160558
http://www.ncbi.nlm.nih.gov/pubmed/28083100


Sensors 2022, 22, 9838 15 of 15

19. Kahya, M.A.; Al-Hayani, W.; Algamal, Z.Y. Classification of breast cancer histopathology images based on adaptive sparse
support vector machine. J. Appl. Math. Bioinform. 2017, 7, 49.

20. Bardou, D.; Zhang, K.; Ahmad, S.M. Classification of Breast Cancer Based on Histology Images Using Convolutional Neural
Networks. IEEE Access 2018, 6, 24680–24693. [CrossRef]

21. Jannesari, M.; Habibzadeh, M.; Aboulkheyr, H.; Khosravi, P.; Elemento, O.; Totonchi, M.; Hajirasouliha, I. Breast Cancer
Histopathological Image Classification: A Deep Learning Approach. In Proceedings of the 2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 2405–2412.

22. Jiang, Y.; Chen, L.; Zhang, H.; Xiao, X. Breast cancer histopathological image classification using convolutional neural networks
with small SE-ResNet module. PLoS ONE 2019, 14, e0214587. [CrossRef] [PubMed]

23. Adeshina, S.A.; Adedigba, A.P.; Adeniyi, A.A.; Aibinu, A.M. Breast cancer histopathology image classification with deep convo-
lutional neural networks. In Proceedings of the 2018 14th International Conference on Electronics Computer and Computation
(ICECCO), Kaskelen, Kazakhstan, 29 November–1 December 2018; pp. 206–212.

24. George, K.; Sankaran, P.; Joseph, K. Computer assisted recognition of breast cancer in biopsy images via fusion of nucleus-guided
deep convolutional features. Comput. Methods Programs Biomed. 2020, 194, 105531. [CrossRef]

25. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In 2015 International
Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241.

26. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Rueckert, D. Attention U-Net: Learning where to look for
the pancreas. arXiv 2018, arXiv:1804.03999.

27. Alom, M.Z.; Hasan, M.; Yakopcic, C.; Taha, T.M.; Asari, V.K. Recurrent Residual Convolutional Neural Network based on U-Net
(R2U-Net) for Medical Image Segmentation. arXiv 2018, arXiv:1802.06955.

28. Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation.
In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 3–11.

29. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Rabinovich, A. Going deeper with convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

30. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. In Proceedings of the 4th International Conference on
Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

31. Gour, M.; Jain, S.; Kumar, T.S. Residual learning based CNN for breast cancer histopathological image classification. Int. J. Imaging
Syst. Technol. 2020, 30, 621–635. [CrossRef]

32. Hu, C.; Sun, X.; Yuan, Z.; Wu, Y. Classification of breast cancer histopathological image with deep residual learning. Int. J. Imaging
Syst. Technol. 2021, 31, 1583–1594. [CrossRef]

33. Gelasca, E.D.; Byun, J.; Obara, B.; Manjunath, B.S. Evaluation and benchmark for biological image segmentation. In Proceedings
of the 2008 15th IEEE International Conference on Image Processing, San Diego, CA, USA, 12–15 October 2008.

34. Naylor, P.; Lae, M.; Reyal, F.; Walter, T. Segmentation of nuclei in histopathology images by deep regression of the distance map.
IEEE Trans. Med. Imaging 2018, 38, 448–459. [CrossRef]

35. Booz Allen Hamilton. 2018 Data Science Bowl. Kaggle. Available online: https://www.kaggle.com/c/data-science-bowl-2018
(accessed on 16 October 2022).

36. Kumar, N.; Verma, R.; Sharma, S.; Bhargava, S.; Vahadane, A.; Sethi, A. A Dataset and a Technique for Generalized Nuclear
Segmentation for Computational Pathology. IEEE Trans. Med. Imaging 2017, 36, 1550–1560. [CrossRef] [PubMed]

http://doi.org/10.1109/ACCESS.2018.2831280
http://doi.org/10.1371/journal.pone.0214587
http://www.ncbi.nlm.nih.gov/pubmed/30925170
http://doi.org/10.1016/j.cmpb.2020.105531
http://doi.org/10.1002/ima.22403
http://doi.org/10.1002/ima.22548
http://doi.org/10.1109/TMI.2018.2865709
https://www.kaggle.com/c/data-science-bowl-2018
http://doi.org/10.1109/TMI.2017.2677499
http://www.ncbi.nlm.nih.gov/pubmed/28287963

	Introduction 
	Method 
	System Architecture 
	Segmentation Network 
	Classification Network 
	Training 

	Experiments 
	Datasets 
	Evaluating the Segmentation Performance 
	Evaluating the Classification Performance 
	Ablation Study 

	Conclusions 
	References

