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Abstract: This paper presents an interactive lane keeping model for an advanced driver assistant
system and autonomous vehicle. The proposed model considers not only the lane markers but also
the interaction with surrounding vehicles in determining steering inputs. The proposed algorithm is
designed based on the Recurrent Neural Network (RNN) with long short-term memory cells, which
are configured by the collected driving data. A data collection vehicle is equipped with a front camera,
LiDAR, and DGPS. The input features of the RNN consist of lane information, surrounding targets,
and ego vehicle states. The output feature is the steering wheel angle to keep the lane. The proposed
algorithm is evaluated through similarity analysis and a case study with driving data. The proposed
algorithm shows accurate results compared to the conventional algorithm, which only considers the
lane markers. In addition, the proposed algorithm effectively responds to the surrounding targets by
considering the interaction with the ego vehicle.

Keywords: autonomous vehicle; decision making; lane keeping; long short-term memory; machine
learning; recurrent neural network

1. Introduction

The advancement of an active safety system improves road safety by preventing
accidents caused by driver carelessness. At the beginning of active safety, a camera sensor is
used to provide input for the Lane Departure Warning System (LDWS) [1]. The information
from the various environment sensors is used to implement the Forward Collision Warning
System (FCWS) [2]. A corner radar and ultrasonic sensor are used for Blind Spot Warning
(BSW). Based on the success of the active safety system, the Advanced Driver Assistant
System (ADAS) was introduced to provide convenience [3]. The functions of the ADAS
can be classified into two categories, parking and driving assistance. The parking assist
system provides steering control for parallel and vertical parking using an ultrasonic
sensor [4]. Rear Autonomous Emergency Braking (AEB) provides emergency braking in a
case where there is a risk of collision between surrounding objects and the vehicle moving
backward [5]. The driving assist functions are classified into two categories, longitudinal
and lateral controls. AEB was developed to mitigate or avoid collision with a front target,
such as a vehicle, pedestrian, or cyclist [6]. To improve convenience, adaptive cruise control
was developed to decide the desired longitudinal acceleration to maintain safety clearance
with a preceding target [7,8]. For lateral control, the Lane Keeping Assist System (LKAS)
overlays an assist torque on the steering system to prevent lane departure due to the driver’s
careless driving [9]. So, an early version of the LKAS only assists when the vehicle is about
to depart the lane. Recently, highway driving assist is introduced by integrating the ADAS
functions for longitudinal and lateral controls [10]. The success of the ADAS led to research
on autonomous driving. The ADAS has provided many conveniences and contributed to
improving road safety. However, many drivers feel discomfort due to the different driving
patterns of the ADAS. In particular, more issues have been raised for the lateral functions,
because the control margin is quietly smaller than the longitudinal one [11,12].
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Many kinds of research have been conducted to develop the LKAS and Lane Following
Assist (LFA) algorithm to improve the lane keeping performance. For the convenience
of description, LKAS and LFA are collectively referred to as LKAS. The methodology
for LKAS can be classified into model-based and learning-based methods. For a model-
based controller, a PID controller was used to determine the steering input based on the
error between the vehicle yaw rate and reference [13,14]. A fuzzy logic-based algorithm
was designed to model the nonlinear steering response to the lateral offset [15,16]. The
Takagi–Sugeno–Kang (TSK) fuzzy extension controller was utilized to improve the control
performance when switching controllers [16]. To manage the control authority problem,
shared control was proposed [17–19]. In addition, mode switching strategy was utilized for
the transition between LKAS and waypoint tracking [20]. An adaptive controller was used
to configure a self-tuning regulator for LKAS [21]. In addition, a Sliding Mode Control
(SMC) was applied to LKAS. Quasi-continuous SMC was introduced to reduce lateral and
heading errors with the driving lane [22–24]. To find the optimal control inputs, Model
Predictive Control (MPC) was utilized [25–27]. A potential field was introduced to provide
the steering assist without tracking the desired path [28].

The model-based approach requires a precise model to achieve the LKAS performance.
Learning-based approaches have been applied to design the LKAS algorithm to overcome
the modeling error. Initially, a shared steering controller was designed by using online
learning [29]. To improve the LKAS intervention timing, a Gaussian Mixture Model (GMM)
was trained to establish the relationships between the variables related to lane keeping. A
Hidden Markov Model (HMM) used GMM to estimate the future lateral position of the
vehicle to warn of lane departure [30]. HMM and Gaussian Mixture Regression (GMR)
provided the most likely inputs of the driver, which were used as the reference state for
MPC [31] Since the LKAS relies on lane measurement from the front camera, an end-to-end
approach is utilized to decide the steering input directly from the image [32–37]. Since the
behavior of the vehicle is governed by the dynamic equation, a Recurrent Neural Network
(RNN) was introduced to learn the temporal dependency of the LKAS [34]. To improve
the performance of lane keeping, the driving data were classified into three categories,
going straight, turning right, and turning left. Convolutional Neural Networks (CNN)
were generally used to generate the road model for LKAS from the image [38]. In addition,
the steering angle can be determined directly using a CNN. The three 3D CNN with Long
Short-Term Memory (LSTM) were trained for each data to realize the end-to-end LKAS
method [35]. Similarly, a CNN-based end-to-end LKAS algorithm was proposed to directly
use the image for steering angle decisions [36]. Imitation learning was introduced to train
the policy based on CNN [37].

To overcome the difficulty in collecting and labeling the training data samples, Rein-
forcement Learning (RL) is utilized to determine the steering angle from interaction with
driving environments. Q-learning was used to design the end-to-end LKAS without a
model. The reward function was designed to regulate the lateral and heading deviations
from the road center [39]. The integration of the model-free RL and direct yaw moment
control was proposed to negotiate lane keeping and lateral stability [40]. To enhance the
performance of the Q-learning, Deep Q-Network (DQN) with discrete action space was
used to improve the Q-function by introducing a deep neural network [41]. Since the
steering input is continuous, it is necessary to perform RL based on the continuous action
space. Therefore, Deep Deterministic Policy Gradient (DDPG) was used to design reinforce-
ment learning-based LKAS [41,42]. Similarly, the deep deterministic actor–critic algorithm
is used to configure the LKAS [32]. Since the LKAS only relied on the camera, the road
over the detection range can be considered uncertain. To be aware of the uncertainty, the
convolutional mixture density network was designed to estimate the future lateral and
heading error [43]. For the performance enhancement of RL, a Monte Carlo tree search was
applied to improve the convergence of RL [44].

From a careful review of the previous studies, various kinds of methods have been
introduced to design the LKAS. The early LKAS had an issue regarding switching control
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with drivers. Therefore, studies on shared control were conducted. Then, the operating
conditions of the LKAS were extended from lane departure prevention to actively following
the center of the road. To improve the performance of the LKAS, a robust controller is
used to achieve the lane keeping performance in various driving conditions. Since the
steering system and lateral vehicle dynamics are nonlinear, adaptive control and SMC
are introduced to design the LKAS algorithm. Recently, learning-based approaches were
introduced to overcome the limitations of the model-based approach. However, the research
on LKAS focused on lane keeping only considering the shape of the lane and road. This
means that the effect of the surrounding vehicles is not reflected in the steering angle
decision. Figure 1 shows the concept of the conventional and proposed LKAS. As shown in
Figure 1a, the conventional approaches determine the steering angle based on the detected
lane markers. However, the driver considers the surrounding targets when determining
the steering input for lane keeping. Therefore, LKAS should consider the surrounding
targets to improve driver acceptance and lane keeping performance.

Figure 1. Concept of the lane keeping assistant system: (a) conventional lane keeping assistant system
and (b) interactive lane keeping assistant system.

The contributions of this paper are summarized as follows:

1. The proposed algorithm reflects the driver’s consideration for the surrounding targets
when determining the steering wheel angle input to follow the lane.

2. The proposed algorithm is designed in consideration for changes in the length of the
input data so that it can respond to changes in the number of surrounding vehicles.

3. Information on surrounding vehicles was accumulated with lane markers for a specific
time and used as input to consider the interaction between vehicles.

This study presents an interactive LKAS for the Autonomous Vehicle (AV) with a
learning-based approach, which uses RNN with LSTM cells. The goal of this study is to
improve the driver’s acceptance of the lane keeping by learning the driver’s characteristics.
Thus, the proposed LKAS is designed to reflect the interaction between the AV and the
surrounding vehicles. As shown in Figure 1b, the nearest target on the front left and right,
which are highlighted as red boxes, are considered with lane information. To train the pro-
posed interactive LKAS algorithm, driving data were collected by a Data Collection Vehicle
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(DCV). Three drivers drove the DCV on a highway in South Korea to avoid overfitting the
driving pattern of the specific driver. The driving data-based analysis and case study is
conducted to evaluate the effectiveness of the proposed algorithm.

2. Data Collection

The learning-based approach requires quality data samples to achieve the desired
performance. In many studies, open datasets have been frequently used to provide the
basis for the decision-making and motion planning for ADAS and AVs. Typical examples of
an open dataset are NGSIM, KITTI, and Argoverse. Using open datasets has the advantage
of saving time and cost for data collection and comparing them to other studies using the
same data. However, if the data obtained from the target system are different from the open
dataset, it is difficult to directly use the algorithm based on the open datasets. For example,
NGSIM datasets were collected by a surveillance camera. Therefore, it contains a variety
of data that are difficult to recognize with sensors mounted on the vehicle. In this study,
driving data were collected by a DCV. It means that the algorithm using the collected data
can be directly applied to the AVs. In other words, training and validation were conducted
using measurable data from the sensors mounted on the AV. Since information, which is
obtained from the environment and the chassis sensors, are synchronized and stored, the
collected datasets include interaction between the AV and the surrounding targets. The
details of the DCV, data collection road, and data sample generation are described in the
following sections.

2.1. Vehicle Configuration

DCV was designed for autonomous driving in various environments. The configu-
ration of the DCV is shown in Figure 2. Six LiDAR and a dedicated processor are used
to detect the objects around the DCV. In this study, IBEO LUX and HAD Feature Fusion
System are utilized to achieve all-around object detection in the Local Coordinate System
(LCS) of the DCV. The object information includes relative position, heading, and velocity
in LCS. The origin of the LCS is located at the center of the rear axle. The LCS, which is the
right-handed coordinate system, has the x-axis in the direction where the DCV travels. In
addition, the object information includes the class of the target. Considering the vehicle,
the class is composed of passenger cars, heavy vehicles, and unknown moving objects. In
this study, the objects classified as passenger cars and heavy vehicles are used to define the
targets in the left and right lanes, which are shown in Figure 1. The front camera is used to
detect the lane markers. Mobileye Q3 is adopted as the front camera. This camera module
provides the shape of the lane markers as a second-order polynomial with detection ranges.
In addition, the quality of lane detection is evaluated from zero to three. Since the front
camera can detect the vehicle, the object information from the front camera is also used to
supplement an object classification by fusing with the LiDAR detection results. The Field
of View (FOV) of the DCV is described in Figure 3. As shown in Figure 3, the environment
sensors cover the all-around FOV around the DCV. The chassis sensors are used to measure
the dynamic states of the DCV. The chassis sensors for Steering Wheel Angle (SWA), wheel
speed, and yaw rate are used to measure the dynamic states of the DCV. To accumulate the
data in the global coordinate system, a Differential Global Positioning System (DGPS) is
used. OxTS RT3002 is used as the DGPS for the DCV, which measures the global position
with a Circular Error Probability (CEP) of 0.02 m. The measured longitude and latitude are
converted to the Universal Transverse Mercator (UTM) coordinate system.

Additional equipment is used to collect and save the data from the sensors. All data
from each sensor are collected and stored by an industrial PC. Therefore, each datum is
synchronized. In addition, a global timestamp is assigned for each sampling time using the
time information of the DGPS. The global timestamp is used to reconstruct the driving data
for data sample generation. The interface between the PC and Controller Area Network
(CAN) is built using a CAN-USB interface device. A gateway Electronic Control Unit (ECU)
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selects only the corresponding information in the chassis CAN and outputs it through a
separate CAN, which is connected to the CAN-USB interface device.

Figure 2. Configuration of the data collection vehicle. Adapted from ref. [45].

Figure 3. Field of view of sensors mounted on the data collection vehicle. Adapted from ref. [45].

2.2. Data Collection Road

The driving data are collected by driving on various highways in South Korea. Figure 4
shows the data collection road, which is indicated on a satellite map. To acquire the
various lane keeping driving data, the data collection road is composed of the following six
expressways: Seohaean, Second Gyeongin, Third Gyeongin, Pyeongtaek Siheung, capital
region first ring, and Gangnamsunhwan-ro. Therefore, the data collection road covers a
various number of lanes and a range of traffic. For example, the capital region first ring
expressway consists of four lanes in one way and passes through major residential cities
of Gyeonggi-do, South Korea. Therefore, this expressway has a lot of traffic and a high
proportion of passenger cars. In contrast, Pyeongtaek Siheung expressway is composed of
two or three lanes in one direction and connects industrial areas. Therefore, the proportion
of heavy vehicles is relatively higher than other expressways. Figure 5 shows the example
trajectories of the DCV in the UTM coordinate system with different colors.
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Figure 4. Data collection road indicated on a satellite map.

Figure 5. Collected driving trajectory in the UTM coordinate system.

2.3. Data Sample Generation

The collected driving data should be processed to generate the training, validation,
and test data samples. Each data sample is composed of input and output sequences.
Lane markers and the position of the target vehicles are transformed into UTM coordinate
system by using the position information acquired by DGPS. This allows for generating
input and output sequences in a continuous trajectory at a specific moment. As mentioned
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in the introduction, the proposed interactive LKAS algorithm considers not only the lane
makers but also the surrounding targets when determining the SWA. Figure 6 shows
examples of the input sequences, which are reconstructed from the collected driving data.
Figure 7 shows the dashcam logs at the same time as Figure 6. In Figure 6, the DCV and
the surrounding targets are depicted as black and blue vehicles, respectively. The dotted
blue and red lines represent the left and right-lane markers. The accumulated histories of
the surrounding targets are marked as green vehicles. The point clouds from the LiDAR
are depicted as green dots. Since the points from the ground are rejected by the perception
algorithm, only points from vehicles and guardrails are marked.

Figure 6. Example of the input sequences for training, validation, and testing: (a) a case of not being
affected by the surrounding vehicle; (b) a case of being affected by the vehicle in the left lane; and
(c) a case of being affected by the vehicle in the right lane.
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Figure 7. Dashcam logs: (a) a case of not being affected by the surrounding vehicle; (b) a case of being
affected by the vehicle in the left lane; and (c) a case of being affected by the vehicle in the right lane.

The collected driving data are composed of 116 logs, each log is on average 5 min
long. Therefore, the collected data total is about 580 min long. In this study, lane detection
quality is used to select the appropriate data to generate the data samples. Data with
the lane detection quality for both lanes falling below 3 were excluded. This is because
the LKAS system can be activated when one of both lane markers is normally detected.
After processing the collected driving data, 46,355 data samples were generated. These
data samples were divided into 70% for training, 20% for validation, and 10% for testing.
Therefore, 32,449; 9281; and 4635 data samples are used for training, validation, and testing
for the proposed interactive LKAS algorithm.
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3. Driving Characteristics Analysis

The objective of the proposed algorithm is to reflect the lane keeping characteristics
in the LKAS when there are surrounding vehicles. In other words, the proposed LKAS
considers not only the lane measurement but also the left- and right-lane targets. Figure 6
also shows the driving characteristics of the driver who considers the surrounding vehicles
in lane keeping situations. As shown in Figure 6a, the driver followed the center of the
lane because there is no adjacent target around the DCV. In contrast, in the case where a
vehicle on the left or right lane was close to the DCV, the driver tried to reduce the risk by
following the lane biased in the opposite direction. For example, as shown in Figure 6b,
the DCV was biased to the right-lane marker to secure a sufficient level of lateral clearance
with the left-lane target. Similarly, the driver drove the vehicle close to the left-lane marker
to increase the lateral clearance with the right-lane target, as shown in Figure 6c.

To analyze the driver’s consideration of the surrounding vehicles when lane keeping,
the collected driving data were divided into three cases, the case with left-lane target,
right-lane target, and without any target. First, the distribution of the relative x position
of the left-lane target and left-lane offset of the DCV is depicted in Figure 8a. As shown
in Figure 8a, the driver tried to maintain the left-lane offset as 1.6 m when the left-lane
target was far enough away. In contrast, as the left-lane vehicle approaches the DCV,
the distribution of the left-lane offset gradually widens to a value larger than 1.6 m. A
histogram of the left-lane offset is shown in Figure 8b. When there is a left-lane target, it
can be seen that the distribution of around 1.8 m increased compared to the case without
a target. In contrast, the distribution around 1.4 m decreased. A similar phenomenon
is shown when a right-lane target exists. As shown in Figure 9, the distribution of the
right-lane offset is shifted farther away from the right-lane target. In South Korea, the
driver’s seat is on the left. This means that there are more blind spots on the right side
of the vehicle. The distribution of right-lane offset is biased toward keeping a distance
more than the case of left-lane offset. Since the right side has more lateral clearance to the
right-lane marker even in normal driving, the effect of the surrounding vehicles is greater
than the case of the left-lane target.

Figure 8. Cont.



Sensors 2022, 22, 9889 10 of 21

Figure 8. Lane keeping characteristics when left-lane target exists: (a) distribution of left-lane offset
and relative x position when left-lane target exists and (b) histogram of left-lane offset depending on
the presence of left-lane target.

Figure 9. Lane keeping characteristics when right-lane target exists: (a) distribution of right-lane
offset and relative x position when right-lane target exists and (b) histogram of right-lane offset
depending on the presence of right-lane target.
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4. Interactive LKAS Algorithm

This study proposed the interactive LKAS algorithm based on the LSTM-RNN. Since
the interactive LKAS algorithm considers the lane shape and the surrounding targets,
appropriate input features and preprocessing should be defined first. If an appropriate
input feature is not selected, the neural network cannot sufficiently reflect the driver’s
driving characteristics. In addition, an excessive number of input features increase the
computational burden, making it difficult to use in real-time applications. Furthermore,
the scale of each input feature is quietly different because the proposed algorithm uses the
information from the various sensors. Therefore, it is necessary to adjust the range of each
feature similarly in order to improve learning performance.

4.1. Features and Preprocessing

The first step of the learning-based approach is defining the input and output features
of the neural network. Since the goal of this study is to design the LKAS algorithm, the
output feature is the SWA. However, determining the input feature requires consideration
of various information such as the state of vehicles and lane markers. For vehicle ego
states, SWA, steering angle speed, longitudinal velocity, yaw rate, and longitudinal and
lateral accelerations are the input feature candidates. Among this information, steering
angle speed and acceleration are excluded due to measurement noise. Therefore, SWA,
longitudinal velocity, and yaw rate were used as input features to express the state of the
ego vehicle. For surrounding vehicles, the x-position, y-position, heading angle, and speed
of the surrounding vehicles with respect to the LCS are used as input features. In the case of
lane information, lane markers were used as input features. The camera provides the lane
marker in the form of second-order polynomials. In other words, lateral offset, heading
angle, and curvature of each lane maker are considered.

There is a large difference in the scale of the input features. For example, the scale of
the longitudinal velocity ranges from 10 to 102, and the curvature is about 10−4. If a neural
network is trained with data composed of features on different scales, features with small
scales are not properly learned. In this study, if the collected driving data is learned as it is,
the curvature, heading angle, and yaw rate will be ignored. In this study, standardization
is used to convert the mean and standard deviation of each input feature to zero and one.
The standardization is performed as follows:

xk,n =
xk,n − µn

σn
(1)

where xk,n is the n-th input feature at k-th time stamp, and µn is the mean and σn is the
standard deviation of the n-th input feature. In this study, the collected driving data were
classified into three categories: training, validation, and testing. µn and σn are derived from
the training data samples. These µn and σn are saved and reused to process the validation
and test data samples. Since the neural network is trained by standardized data samples,
the output of the neural network is converted to physical quantities as follows:

xk,n = σn · xk,n + µn (2)

The same µn and σn in (1) are used to convert the output of the neural network to
physical scale values.

4.2. Neural Network Design

The lane keeping characteristics of the driver has a temporal dependency. For example,
if the driver observes the left-lane target approaching the ego vehicle, the driver tries to
move closer to the right-lane marker to secure sufficient lateral clearance with the left-lane
target. In addition, the vehicle motion is governed by the dynamic equation, so the behavior
of the vehicle has a temporal dependency. Therefore, the interactive LKAS algorithm is
designed based on the RNN, which is suitable for modeling temporal dynamic behavior. In



Sensors 2022, 22, 9889 12 of 21

addition, since the RNN is a feed-forward neural network, the RNN allows for processing
the variable length inputs and reducing the number of parameters, which are the weights
and biases of the neural network. These characteristics make the RNN applicable to natural
language recognition, such as speech or handwriting [46].

However, if the length of the data is prolonged, gradient vanishing or exploding
problems may occur during the learning process. The small gradient for specific features
becomes smaller when the depth of the back-propagation is deeper. In contrast, the large
gradient becomes larger as it passes through the network layer. To prevent the gradient
vanishing and exploding problems, the LSTM cell is applied to the RNN. LSTM cells
memorize the activations over arbitrary time intervals [47]. An input, output, and forget
gate manages the activations and prevents the vanishing problem. Gated Recurrent Unit
(GRU), Vector Autoregressive model (VAR), and ARIMA are frequently used for time
series modeling. Since GRU only uses two gates, GRU has fewer parameters than LSTM.
Thus, GRU can be trained by using a small set of data. However, if a sufficient dataset is
available, it is appropriate to use LSTM. Similarly, it is difficult for VAR to perform long-
term prediction on data having a more nonlinear relationship. ARIMA requires stationarity
of the time series, which is not an appropriate assumption for vehicle motion modeling.
Therefore, RNN with LSTM is used to learn the lane keeping characteristics of the driver.

Figure 10 shows a schematic diagram of the proposed interactive LKAS algorithm. The
input and output features with hyperparameters of LSTM-RNN are given in Figure 10.
The input sequence consists of ego vehicle states, lane polynomials, and target vehi-
cle states; k and h are the time index and observation horizon of the RNN. Therefore,
x(k − (h − 1), k) means the accumulated input features from k − (h − 1) to k-th time
index. The proposed model uses the input sequence, x(k − (h − 1), k) to predict the output
sequence y(k − (h − 2), k + 1). The last value of the output sequence is used to control the
vehicle to follow the lane. In this study, 20 steps with a sampling time of 100 ms are used to
define the input sequences. In other words, the length of the observation is 2 s.

Figure 10. Schematic diagram of the proposed LSTM-RNN-based interactive LKAS model. Adapted
from ref. [45].

The hyperparameter of the proposed algorithm is determined by comparing the
accuracy of the candidate networks. In this study, 40 network candidates are used to find
the optimal hyperparameter for the interactive LKAS algorithm. Various combinations of
the Fully Connected (FC) layer and LSTM layer are used to define the network candidates.
In addition, the number of hidden units of each layer also varies. All network candidates
were trained by the same training data samples. The evaluation results of SWA prediction
are summarized in Figure 11. Figure 11 shows the error bar of the SWA. The network
candidates are sorted according to the number of weights and biases. In other words,
candidate #1 uses the smallest number of parameters, and candidate #40 uses the most
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parameters. Candidate #17 has the smallest standard deviation and a mean close to zero.
Therefore, candidate #17 is used to configure the interactive LKAS algorithm, and the
architecture of the selected network is depicted in Figure 12.

Figure 11. Comparison of the steering wheel angle prediction for the hyperparameter decision.

Figure 12. The network configuration with the number of hidden units.

4.3. Network Training

The proposed neural network with an observation horizon of 20 steps was trained
and validated by using training and validation data samples. Generally, SGDM (Stochastic
Gradient Descent with Momentum) [48], RMSProp, and Adam [49] are representative
methods to train neural networks. These methods belong to the stochastic gradient descent
method, which replaces the actual gradient with an estimated one. The gradient estimate
is calculated from a mini-batch of the training data sample. The mini-batch is randomly
selected from the entire data sample. Even if the stochastic gradient descent method is used,
there is a possibility of oscillation during the training process. To reduce the oscillation, a
momentum term is introduced to the parameter update. In addition, RMSProp automati-
cally adjusts the learning rates for each parameter to improve the training performance.
Furthermore, Adam considers the parameter gradients with squared values of gradients to
prevent oscillation. In this study, Adam is used to train the proposed neural network. For
the training parameters of Adam, the gradient decay factor and the squared gradient decay
factor are set as 0.9 and 0.999. An initial learning rate, a learning rate drop factor, and a
learning rate drop period are set as 0.005, 0.2, and 125, respectively. A batch size of 256 is
used to define the training configuration.

5. Results

The proposed interactive LKAS was evaluated by the simulation study based on the
collected driving data to analyze the similarity of the SWA decision with human drivers.
To show the effectiveness of the proposed algorithm, three base algorithms are used. Base
#1 is the integrated algorithm of lane center estimation and path tracking. The lane center
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estimator is designed based on the extended Kalman filter. The details of the lane center
estimator are described in [50]. After estimating the center of the driving lane, a path
tracker is used to follow the lane center. The path tracker is designed based on a model-free
approach, which does not utilize the vehicle model. The model-free path tracker decided
the desired yaw rate by using the relative position between the lane center and the ego
vehicle. The steering input is determined to generate the desired yaw rate. The details of
the model-free path tracker are described in [51].

The LSTM-based RNN is used to configure Base #2. Unlike the proposed interactive
LKAS algorithm, Base #2 used only lane information and states of the ego vehicle for
learning. In other words, Base #2 used the same information as conventional LKAS.
However, the data-based approach is introduced to consider the characteristics of the
driver. Base #3 was designed based on GRU, which replaces the LSTM of the proposed
algorithm. The same training, validation, and test data samples are used for Base #2 and
Base #3.

5.1. Statistical Analysis

The prediction error of the SWA is summarized in Figure 13. The error of Figure 13 is
evaluated using the test data samples, which are not used for the training of the proposed
LKAS algorithm. As shown in Figure 13a the mean and standard deviation of the SWA
prediction error is −0.01 and 0.12 deg, respectively. The Root Mean Square Error (RMSE)
is 0.1189 deg. In addition, the distribution is similar to the normal distribution. This
means that the proposed algorithm learns the different responses to left and right targets.
Additionally, Figure 13b shows the error histogram of the conventional approaches, Base
#2, which only considers the lane information and the ego vehicle states. As shown in
Figure 13b, the error distribution of Base #2 is also unbiased because the number of data
samples with left and right-lane targets was similarly adjusted. However, the standard
deviation is 0.31, which is almost triple from 0.12 of the proposed LKAS algorithm. This
is because Base #2 cannot reflect the effect of the surrounding vehicle on SWA decisions.
In addition, the RMSE of the Base #2 is 0.2626 deg, which is more than twice that of the
proposed algorithm. Therefore, the proposed algorithm reflects the driver’s characteristics
into LKAS and shows more precise prediction results than conventional approaches.

Figure 13. Cont.
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Figure 13. Error histogram: (a) interactive lane keeping model and (b) conventional lane keeping
model, Base #2.

5.2. Driving Data-Based Simulation

The results for the simulation case of no target vehicle, and left, right, and both lane
targets are summarized in Figures 14–17. The results shown in this section are representative
cases selected from the test data samples, which means that the unseen data were used to
evaluate the proposed algorithm. First, Figure 14 shows the simulation results of the simple
lane keeping scenarios. This means that there is no target vehicle, which can affect the lane
keeping of the ego vehicle. As shown in Figure 14, the SWA of the proposed interactive
LKAS algorithm is depicted as a red solid line. A blue dashed line, a green dash–dot line,
and a magenta dotted line show the results of Base #1, #2, and #3, respectively. The recorded
SWA of the human driver is depicted as a black dotted line. Since the lane markers and
vehicle states are the only consideration of the SWA decision, the driver, proposed, Base
#1, #2, and #3 show similar results. In other words, the extended input features for the
proposed algorithm did not cause other problems such as performance degradation in the
simple lane keeping scenarios.

Figure 14. Simulation result comparison when there is no target vehicle around the ego vehicle.

The simulation results of the left-lane target case are shown in Figure 15. Figure 15a,b
show the longitudinal and lateral position of the left-lane target vehicle with respect to the
LCS of the ego vehicle. The left-lane target drove close to the ego vehicle, so the longitudinal
position was maintained within about 10 m. Since the origin of the LCS is located at the
center of the rear axle, the actual longitudinal clearance with the left-lane target is within
8 m. In this case, the left-lane target gradually approaches the driver’s blind spot, which
makes the driver feel anxious. In particular, the relative position of the left-lane target is
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quietly small, between 15 to 25 s. Since the road curves to the right, more steering input is
required to bias the ego vehicle toward the right-lane markers. At this moment, the driver
applied more steering inputs to maintain the lateral clearance with the left-lane target. In
contrast, since Base #1 is designed to follow the lane center, additional steering inputs
are not generated. Therefore, the steering input of base #1 rarely matches the driver’s
driving history. This phenomenon also occurred in the results of Base #2. Although Base
#2 is an LKAS algorithm constructed by learning based on the same driving data as the
proposed algorithm, surrounding vehicles are not considered in determining the steering
angle. Therefore, Base #2 shows similar results to Base #1. Base #3 shows more similar
results than Base #1 and #2. However, the similarity with the driver of Base #3 is lower
than that of the proposed algorithm due to the limitation of the GRU.

Figure 15. Simulation result comparison when left-lane target exists: (a) longitudinal position of the
left-lane target; (b) lateral position of the left-lane target; and (c) steering wheel angle.

The next simulation result considered a situation in which the right-lane targets were
overtaken by the ego vehicle. This situation occurs when the speed of the lane in which the
ego vehicle drives is high, but congestion occurs in the right lane. The simulation results
are summarized in Figure 16. In this case, four right-lane targets were detected. Therefore,
four discrete trajectories are shown in Figure 16a,b. In this case, the road curves slightly to
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the right between 17 to 21 s. The steering input was applied to follow the right curving
road. The driver uses less steering input to secure clearance with the vehicle in the slow
right lane. The proposed algorithm learned this characteristic and generated an SWA input
similar to that of the driver, as shown in Figure 16c. In addition, as given in Figure 16b,
when the lateral distance from the right-lane target is close, the effect of the surrounding
vehicle is large, which is similar to that of the driver. In contrast, Base #1 and Base #2 tried
to follow the lane center and generated larger steering input. Base #3 reflected the influence
of surrounding vehicles, but showed lower performance than the proposed algorithm.

Figure 16. Simulation result comparison when right-lane target exists: (a) longitudinal position of
the right-lane target; (b) lateral position of the right-lane target; and (c) steering wheel angle.

Finally, the simulation results with both lane targets are summarized in Figure 17.
Before 20 s, the lateral position of the left and right-lane target is about 4 m, as shown in
Figure 17b,d. This lateral position is enough lateral clearance to pass by. Even though
the longitudinal position is different, as shown in Figure 17a,c, the SWA of the driver and
the interactive LKAS algorithms were almost the same, as given in Figure 17e. However,
the lateral position of the third left target is about 3 m. Since the nominal width of the
passenger vehicle is 1.8 m, the lateral clearance is less than 1.2 m. After 25 s, the driver and
proposed algorithm consider the left-lane target and reduce the steering input to increase
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the lateral clearance. On the contrary, the base algorithms showed the same tendency as
in other cases. Therefore, the proposed algorithm provides similar steering inputs to the
drivers, who consider the surrounding targets to determine the SWA.

Figure 17. Cont.
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Figure 17. Simulation result comparison when both lane targets exist: (a) longitudinal position of the
left-lane target; (b) lateral position of the left-lane target; (c) longitudinal position of the right-lane
target; (d) lateral position of the right-lane target; and (e) steering wheel angle.

6. Conclusions

An interactive lane keeping algorithm is designed by applying a Long Short-Term
Memory (LSTM)-based Recurrent Neural Network (RNN) and evaluated through a sim-
ulation study using collected driving data. The proposed algorithm considered the lane
measurements, ego, and target vehicle states to decide the desired steering wheel angle to
reflect the characteristics of the driver. The driving data were collected by the front camera,
LiDAR, and chassis sensors. After processing the collected driving data, 46,355 data sam-
ples were generated. The proposed algorithm used 32,449; 9281; and 4635 data samples for
training, validation, and testing. The statistical analysis results revealed that the steering
decision considering the surrounding targets showed results most similar to that of the
driver. The mean, standard deviation, and root mean square of the prediction error were
−0.01, 0.12, and 0.1189 deg, respectively. Through the case study, the proposed algorithm
showed improved lane keeping for each of three cases: no surrounding vehicle, a vehicle
on the left, and a vehicle on the right.

Future work on the lane keeping system can be summarized in three aspects: (1) The
first is to expand the number of surrounding vehicles to be considered. This study considers
the closest two targets on the front left and right. If the increase in computation time is
regulated, there is a possibility to improve the lane keeping performance. (2) The second
is integration with longitudinal control. The proposed algorithm considers the history of
the ego vehicle. In other words, the intention of the longitudinal motion is reflected to
determine the steering angle. Recently, the ADAS for longitudinal motion is equipped
with lateral motion assistance. Therefore, not only the history of longitudinal behavior
but also future inputs can be considered in the LKAS module. (3) Finally, the performance
of the proposed learning-based approach can be improved by integration with attention
mechanism, convolutional neural network, or reinforcement learning.
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