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Abstract: In the paper, a finite-capacity queueing model is considered in which jobs arrive according
to a Poisson process and are being served according to hyper-exponential service times. A system
of equations for the time-sensitive queue-size distribution is established by applying the paradigm
of embedded Markov chain and total probability law. The solution of the corresponding system
written for Laplace transforms is obtained via an algebraic approach in a compact form. Numerical
illustration results are attached as well.
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1. Introduction

Current companies support the circular economy strategy by adapting the life-cycle
models of their products to the circular one [1]. Enterprises deal with the recovery of materi-
als, especially valuable and limited natural resources of the Earth. The list of regulations on
prevention and protection of the earth’s environment can be found in [2]. The directive also
sets a minimum level for material recovery and recycling [3]. In a closed product cycle, raw
materials or semi-finished products are obtained through recycling, disassembly, sorting
and re-engineering. The recovered raw material or semi-finished product is transferred to
producers, steel mills and foundries for further processing.

Proper balancing, line sequencing [4], as well as consideration of planning and schedul-
ing disassembly tasks are essential for effective use of the disassembly system. In the
disassembly line balancing problem, operations (tasks) are distributed evenly between
the disassembly line stations, so that the idle time at the stations is as short as possible.
Before balancing the disassembly line, the following must be known [5]: disassembly
operation times, sequence relationships between operations and the size of the production
cycle or the number of stations. The balancing result is the determination of the smallest
number of stations in a given cycle time or the determination of the lowest cycle value for a
given number of disassembly stations. The problem of estimating the times of disassembly
operations was considered in [6]. In order to establish a sequential relationship between
operations, it is necessary to predict the frequency of product arrival and its quality.

Uncertainty management is a priority in disassembly due to uncertain quality, quantity
and return timing of an end-of-line product [7]. A product often breaks down at the end of
its life cycle, components are missing and worn connections can be difficult to disconnect
over time due to wear, rust, or deformation. Disassembly lines balancing problems are
hampered by possible differences in the duration of the disassembly task (related to joint
condition), as well as in the destination node representing the target component for re-
manufacturing, reusing, or recycling. In the disassembly process, both the wear, quality,
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and return frequency of the disassembled product should be taken into account. Thanks to
reliable predictions of machine occupancy and buffer saturation with three types of target
component, it is possible to carry out a balance of tasks along with production capacities
and to predict the start and execution times of orders. These activities are aimed at fully
utilizing constrained production capacity of the disassembly system.

The problems are to design an effective disassembly line and provide an efficient
approach to solve the disassembly line balancing problem with a high degree of disassembly
uncertainty [8]. Due to unknown quality, quantity and frequency of a product inflow, the
primary objective of this paper is to estimate the inter-arrival time of the product with the
target component for re-manufacturing, reusing or recycling received from the reverse
logistics network. The second objective is to compute the probability of occupancy and
release of the disassembly system for given inter-arrival times, disassembly times and the
size of the entering buffer. Estimating both inter-arrival times and disassembly times based
on a product quality gains value, rather than deriving mean times without learning from
the past.

The rest of the paper is organized as follows: the literature review is presented
in Section 1.1. A model of a product disassembly sequencing line with three possible
variants: re-manufacturing, reusing or recycling is presented in Section 2. The method of
estimating the probability of disassembly system occupancy for three disassembly product
variants is presented in Sections 3–6. Comparison of sequences obtained by means of
computer simulations for the estimated inter-arrival times and disassembly times, together
with necessary analysis, is presented in Section 7. A brief summary of the results and future
research objectives are presented in Section 8.

1.1. Literature Review

The literature on the subject identifies the problems of planning the disassembly se-
quence for production lines dedicated to a single product [1,9–11], mixed products [12–14],
and multiple products [15–17]. In this paper, a single product with possible variants
of disassembly for recycling, reusing, and re-engineering depending on historical infor-
mation about the inter-arrival times of possible variants. The presented model can be
adopted to mixed-product problems when a product variant is assigned to a disassembly
system with a certain probability. Additionally, the presented model can be adopted to
multi-product problems when precedence relationships of each product are presented in
a combined precedence graph with the number of possible alternatives depending on a
certain probability.

Disassembly tree, directed graph (network) [7], AND/OR graph [11,18,19], hierarchi-
cal tree diagram or disassembly precedence diagram can be used to describe a disassembly
line sequencing problem. The advantage of the AND/OR graph is a clear presentation of
disassembly relationships between joints, especially in the case of reuse or recycling [11].
In the AND/OR graph a node represents a part/sub-assembly (a disassembly task) of a
product [19]. The disassembly task with the highest priority is assigned to the disassembly
station under the condition that the cycle time is not exceeded. A disassembly sequence is
the only decision in the selective case until the target components are achieved in the case
of repairing defective components or reusing valuable components [20].

The state-based approach including multiple possible disassembly paths in an AND/OR
graph for a product with different components and sub-assemblies is considered in [12].
For the stochastic disassembly balancing problem, only one general disassembly path
is chosen for all product variants. An example of a single precedence graph based on
different end-of-life states of a product is presented in [13]. In the precedence graph, a node
represents a disassembly task for each product component. Boysen et al. [14] reduced the
mixed-model balancing problem to a single-product case. Models represent all variations of
the same base product that differ in specific custom product attributes. The joint precedence
graph is formed based on the models of product variants using pairs of triangular XOR
nodes that express that the connected options are mutually exclusive. “Xor” means that
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only one of the disassembly options should be selected. The estimated joint disassembly
times are based on the probability of product version and task times. Different products
reach the disassembly system at an average rate in [17]. The precedence relationships of
each product are presented in a combined precedence graph with no model relationships
to increase the number of possible alternatives. A task is assigned to a disassembly station
with a certain probability. If the probability is lower than the threshold set for assigning the
task to the disassembly station, the task is assigned to the corresponding station.

Usually in the field of engineering, inter-arrival times [18], connection states [19], dis-
assembly times [13] are previously assumed. Related literature deals with uncertainty
by estimating the disassembly time using correction factors for disassembly tools based
on a data mining process of product geometric features [10]. In addition, the param-
eters that best describe the element disassembly operation are force, tools, disassembly
mechanism, part repeatability, joint recognition, product structure, accessibility, positioning
and basic time. The operation time is estimated by summing these values, expressed in
time measurement units (TMUs) [21]. The task disassembly time can also be estimated
as 10 × MU × 0.036, where 0.036 is the standard conversion value from task TMUs
to seconds [22,23]. It is also assumed that disassembly times are described either by
normal [13,24] and exponential [25] distributions, or observed standard average times [15,26].

The disassembly line balancing problem with fuzzy processing times is presented
in [27]. Bentaha et al. [28] developed the Monte-Carlo method for modeling product
task times as a random variable with a given probability distribution. The problem of
disassembly sequence planning, taking into account the fuzzy quality of the element
affecting the time and cost of operation, is presented in [29,30]. Rickli and Camelio [7]
developed an approach to uncertainty management basing on the assumption that the
age distribution of the end-of-life product is known and related to product quality. The
product value curve (life-cycle value) of the end-of life product is described by a negative
exponential distribution. Reveliotis [31] introduced reinforcement learning to update
quality distribution information on a product quality uncertainty. Gao et al. [32] modelled
uncertainty using fuzzy logic to update status of end-of-life product quality after each
inspection operation.

The AND/OR graph is the most popular approach for multiple possible disassembly
paths [12] different end-of-life states of a product [13] probable product version [14]. The
most similar approach, where the graph is adapted to the possible variants of the product for
reuse or recycling [11] and for repairing defective components or reusing is presented in [20].
The greatest advantage and the most distinguishing feature of our approach is (1) a possible
product variant with a target component for regeneration, reuse or recycling according to
the Poisson distribution and (2) processed in the time described by the hyper-exponential
distribution obtained from historical data on disassembly times. (3) The time-sensitive
queue-size distribution is established for the disassembly system by applying the paradigm
of embedded Markov chain and total probability law. The compact algebraic approach
enables the disassembly system to be represented in its digital twin.

1.2. Goals and Approaches

The highlight of this paper is listed as follows:

- The problem of sequencing a single-product line with three possible cases of a target
component is investigated: recycling, reuse, or regeneration (remanufacturing). The
presented method of estimating the disassembly sequence is important for the research
development and results from an urgent need [33].

- A finite-capacity queueing disassembly model is considered in which jobs arrive
according to a Poisson process and are being served according to hyper-exponential
service times. A system of equations for the time-sensitive queue-size distribution is
established by applying the paradigm of embedded Markov chain and total probability
law. The solution of the corresponding system written for Laplace transforms is
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obtained via algebraic approach in a compact form what is important in building a
digital twin of the disassembly system.

- A method of estimation inter-arrival time and disassembly time of the end-of-life
product with various quality based on historical information is proposed. The objective
is to maximize the throughput of the disassembly system with the predicted sequence.

2. Queueing Model

In the article, we consider a queueing model with the arrival stream governed by a
Poisson process with rate λ and a finite capacity of an accumulating buffer. Namely, the
maximum system state equals B, so we have a buffer with B− 1 places and one place at the
service station. An arriving job that finds the system in state B (so the buffer being saturated
and the service station busy with processing) is lost and leaves the system without service,

The processing of arriving jobs is organized according to the FIFO service discipline,
and the service time is hyper-exponentially distributed with the cumulative distribution
function (CDF) of the form

F(t)
de f
=

k

∑
i=1

pi
(
1− e−µit

)
(1)

The probability density function (PDF) is given as

f (t)
de f
=

k

∑
i=1

piµie−µit, (2)

where t > 0, pi > 0, µi > 0 (for i = 1, . . . , k), ∑k
i=1 pi = 1 and k ∈ N is predefined.

In consequence, with probability pi the service time has exponential distribution with
mean µ−1

i , where i = 1, . . . , k.
Let us denote

Qn(t, m)
de f
= P{X(t) = m |X0 = n}, (3)

where X(t) stands for the number of jobs present in the system at time t.
In summary, in this section, a precise mathematical description of the considered

queueing model was presented. In particular, the information about the arrival process of
incoming jobs, the service process, and the system size was given, as well as the notation
which will be used in the next sections.

3. Time-Dependent Equations for System Behavior

Assume that the system is empty at the opening (at time t = 0).
We have the following equation:

Q0(t, m) = λ
∫ t

0
e−λxQ1(t− x, m)dx + I(m = 0)e−λt, (4)

where I(A) denotes the indicator of the random event A.
Similarly, if the system starts its evolution with n jobs present in the accumulating

buffer, where n ∈ {1, . . . , B}, we have the following representation:

Qn(t, m) =
B−n−1

∑
j=0

∫ t

0
Qn+j−1(t− x)

(λx)j

j!
e−λx

k

∑
i=1

piµie−µixdx

+
∞

∑
j=B−n

∫ t

0
QB−1(t− x)

(λx)j

j!
e−λx

k

∑
i=1

piµie−µixdx + γn(t), (5)
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where

γn(t)
de f
= e−λt

(
1−

k

∑
i=1

pi
(
1− e−µit

))

·
(
I(n ≤ m ≤ B− 1)

(λt)m−n

(m− n)!
+ I(n = B)

∞

∑
j=B−n

(λt)j

j!

)
. (6)

In this section, a system of integral Volterra-type equations for time-dependent (tran-
sient) queue-size distribution conditioned by the initial buffer state was established. In the
case of the buffer being non-empty at the starting moment, the formula of total probability
with respect to the first departure moment after t > 0 was used.

4. Governing Equations in Terms of Laplace Transforms

Introduce Laplace transforms of conditional distributions Qn(t, m), n ∈ {0, . . . , B} in
the following way:

qn(s, m)
de f
=
∫ ∞

0
e−stQn(t, m)dt, s > 0. (7)

Observe that, utilizing Fubini’s theorem and changing the order of integration, we
have for fixed i, j, and r

∫ ∞

t=0
e−stdt

∫ t

x=0
Qi(t− x, m)

(λx)j

j!
e−λx prµre−µr xdx

= prµr

∫ ∞

x=0
e−(λ+µr+s)x (λx)j

j!
dx
∫ ∞

t=x
e−s(t−x)Qi(t− x, m)dt (8)

=
λj prµr

(λ + µr + s)j+1

∫ ∞

x=0

(λ + µr + s)j+1

j!
xje−(λ+µr+s)xdx

∫ ∞

y=0
e−syQi(y, m)dy

=
λj prµr

(λ + µr + s)j+1 qi(s, m).

Similarly, we get for fixed i and j

∫ ∞

0
e−st pi(1− e−µit)e−λt (λt)j

j!
dt

= pi
λj

(λ + s)j+1

∫ ∞

0

(λ + s)j+1

j!
tje−(λ+s)tdt (9)

− pi
λj

(λ + µi + s)j+1

∫ ∞

0

(λ + µi + s)j+1

j!
tje−(λ+µi+s)tdt

= piλ
j
(

1
(λ + s)j+1 −

1
(λ + µi + s)j+1

)
.

Observe that, denoting

γ̂n(s)
de f
=
∫ ∞

0
e−stγn(t)dt, (10)

The Formula (9) leads to the following representation:

γ̂n(s) =


λm−n ∑k

i=1 pi

(
1

(λ+s)m−n+1 − 1
(λ+µi+s)m−n+1

)
, if 1 ≤ n ≤ m ≤ B− 1,

∑k
i=1 pi ∑∞

j=B−n λj
(

1
(λ+s)j+1 − 1

(λ+µi+s)j+1

)
, if n = B,

0, otherwise for n ≥ 1.

(11)
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Applying Laplace transforms to both sides of Formulae (4) and (5) and referring to
(7) and (8), we obtain the following system of equations written for Laplace transforms of
conditional queue-size distribution in the considered model:

q0(s, m) =
λ

λ + s
q1(s, m) +

δm,0

λ + s
(12)

and

qn(s, m) =
B−n−1

∑
j=0

k

∑
i=1

λj piµi

(λ + µi + s)j+1 qn+j−1(s, m) (13)

+ qB−1(s, m)
∞

∑
j=B−n

k

∑
i=1

λj piµi

(λ + µi + s)j+1 + γ̂n(s),

where n ∈ {1, . . . , B}.
Taking, additionally,

aj(s)
de f
=

k

∑
i=1

λj piµi

(λ + µi + s)j+1 , (14)

We can simplify (13) as follows:

qn(s, m) =
B−n−1

∑
j=0

aj(s)qn+j−1(s, m) + qB−1(s, m)
∞

∑
j=B−n

aj(s) + γ̂n(s), (15)

where n ∈ {1, . . . , B}.
In summary, in this section, a system of integral equations obtained in Section 3 was

rewritten as a linear system in terms of Laplace transforms. Moreover, it was simplified to
a form that is more convenient for using the matrix notation.

5. Matrix Form and the Solution

Let us supplement the definition of the functional sequence (γ̂n(s)) (see (10)) by taking

γ̂0(s)
de f
=

δm,0

λ + s
. (16)

Next, introduce (B× B)-size functional matrix Ã(s) =
(
ãi,j(s)

)
in the following way:

ãi,i(s) =


1, i = 0,

1− a1(s), 1 ≤ i ≤ B− 1,
1−∑∞

j=1 aj(s), i = B,
1 i = B + 1,

(17)

For 1 ≤ i ≤

ãi,j(s) =


−a0(s), 1 ≤ i ≤ B, j = i− 1,

−∑∞
j=0 aj(s), i = B + 1, j = B,

−aj−i+1(s), 0 ≤ i + 1 ≤ j ≤ B− 1,
−∑∞

r=B−i ar(s), 1 ≤ i ≤ B, j = B,
0, otherwise,

(18)

So
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Ã(s)
de f
=



1 − λ
λ+s 0 0 . . . 0 0 0

−a0(s) 1− a1(s) −a2(s) −a3(s) . . . −aB−2(s) −∑∞
B−1 aj(s) 0

0 −a0(s) 1− a1(s) −a2(s) . . . −aB−3(s) −∑∞
B−2 aj(s) 0

0 0 −a0(s) 1− a1(s) . . . −aB−4(s) −∑∞
B−3 aj(s) 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . −a0(s) 1−∑∞
j=1 aj(s) 0

0 0 0 0 . . . 0 −∑∞
j=0 aj(s) 1


. (19)

Putting now

Q(s)
de f
= [q0(s), . . . , qB(s)]

T (20)

and
Γ(s)

de f
= [γ̂0(s), . . . , γ̂B(s)]

T , (21)

We can rewrite the Equations (12) and (15) as a matrix-form system as follows:

Ã(s)Q(s) = Γ(s). (22)

Due to the fact that (22) is a Cramer’s system and has exactly one solution given by
the formula

Q(s) =
(

Ã(s)
)−1

Γ(s). (23)

In this section, a system of linear equations found for Laplace transforms of conditional
queue-size distribution was written applying matrix notation. In addition, a formula for a
general-type solution of the system was given.

6. Special Case-A System without Accumulating Buffer

A special case of the considered queuing model is a system without accumulating
buffer in which B = 1. In this case we have

Ã(s) =

[
1 − λ

λ+s
−∑∞

j=0 aj(s) 1

]
(24)

and
Q(s)

de f
= [q0(s), q1(s)]

T , Γ(s)
de f
= [γ̂0(s), γ̂1(s)]

T . (25)

Because
det Ã(s) =

1
1− λ

λ+s ∑∞
j=0 aj(s)

, (26)

The solution can be written explicitly by the following formula:

Q̃(s) =
1

1− λ
λ+s ∑∞

j=0 aj(s)

[
1 λ

λ+s
∑∞

j=0 aj(s) 1

][
δm,0
λ+s

γ̂1(s)

]
. (27)

In summary, in this section, a special case of the considered queueing model was
studied, in that there is no possibility of waiting for incoming jobs (no buffer). In this case it
is possible to write the solution in the explicit form and the appropriate formula was given.

7. Numerical Study

In this section, we investigate numerically the impact of main “input” parameters
of the disassembly system (such as arrival intensity, disassembly rate, traffic load for
successive scenarios for different quality of disassembled products, or mean vacation
duration) on the queue-size distribution. Matlab is used to obtain the transient queue-size
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distribution from the Formula (25) for individual system parameters. In the we are dealing
with a model described as follows:

• Poisson arrivals of products with rate λ;
• CDF of the disassembly time of arriving jobs is a mixture of three exponential distribu-

tions (one for regeneration, reuse or recycling) and is defined as (1) with mean µ−1
1 ,

µ−1
2 , µ−1

3 and given probability for disassembly variant (quality) p1, p2, p3.

A hyper-exponential distribution of disassembly time is used to model the type of
service: regeneration, reuse or recycling, for which the average disassembly times vary
significantly. The value of parameter pi indicates the version/quality of an upcoming task,
which takes an average of µ−1

i time units.

7.1. Impact of Buffer State

First, let us investigate the effect of the initial state B of the input buffer on the transient
queue-size distribution. Consider the scenario where λ = 1, which corresponds to the rate
of arrival of a product of unknown quality every 60 s: regeneration, reuse, or recycling.
The DCF parameters of the disassembly time is µ1 = 4, µ2 = 3, and µ3 = 2, which gives
the average disassembly speed of 15, 20, and 30 s, respectively, for regeneration, reuse,
or recycling. The traffic load values for the successive scenarios are 20%, 30%, and 50%
for regeneration, reuse, or recycling, respectively. Taking pi = {0.2, 0.3, 0.5} and a special
case of the queueing model where capacity of the accumulating buffer B = 1, in Figure 1
probabilities that we have no job, m = 0 in the disassembly system at the time t and at the
beginning there is no job, n = 0 in the input buffer, P{X(t) = 0 |X0 = 0} are presented.

0 5 10 15 20 25 30

t

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Q
(t

)

Queue in the disassembly system for m = 0, n = 0

Figure 1. Impact of buffer state on probability P{X(t) = m = 0 |X(0) = n = 0}.

Observe that the probability P{X(t) = 0 |X0 = 0} increases shortly after opening
the disassembly system to 2.2 s (Figure 1). After reaching the peak, the probability of no
job after 2.2 s decreases. Similarly, the probability P{X(t) = 0 |X0 = 1} is greatest in
the 2.3 s of the simulation (Figure 2). The probability of no job drops to zero after 14 s of
the simulation.
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0 5 10 15 20 25 30

t

0

0.05

0.1

0.15

0.2

0.25

0.3

Q
(t

)

Queue in the disassembly system for m = 0, n = 1

Figure 2. Impact of buffer state on probability P{X(t) = m = 0 |X(0) = n = 1}.

Note that the probability P{X(t) = 1 |X0 = 0} is highest right after the system is
opened (Figure 3). This is due to the fact that the system starts disassembly as soon as it is
opened. The disassembly system immediately goes into the vacation mode due to lack of
disassembly tasks. After 2.2 s, the probability of a job, P{X(t) = 1 |X0 = 1} drops to zero
after 14 seconds of simulation (Figure 4).

0 5 10 15 20 25

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Q
(t

)

Queue in the disassembly system for m = 1 and n = 0

Figure 3. Impact of buffer state on probability P{X(t) = 1 |X(0) = 0}.
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0 5 10 15 20 25 30

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Q
(t

)

Queue in the disassembly system for m = 1, n = 1

Figure 4. Impact of buffer state on probability P{X(t) = 1 |X(0) = 1}.

Summarizing the considered probabilities for two cases: at the beginning there is no
job n = 0 or is only one job n = 1 in the input buffer, we can conclude that: the probability of
one job, m = 1 in the disassembly system at time t is greater than the probability of no job,
m = 0 at time t for both cases n = 0 and n = 1.

7.2. Impact of Buffer Capacity

Now observe the transient behavior of the considered probabilities, where capacity of
the accumulating buffer B = 2. Average disassembling and traffic load rates for subsequent
scenarios remain the same for regeneration, reuse, or recycling as in previous simulations.
In Figure 5, probabilities of two jobs, m = 2 in the system at time t and two jobs, n = 2
in the input buffer at the beginning, PX(t) = 2|X(0) = 2 are presented. The probability
PX(t) = 2 | X(0) = 2 increases as soon as the system is opened (Figure 5) and reaches its
highest value after 4 s of the disassembly process. After 20 s of simulation, the disassembly
system goes into the vacation mode. The same phenomenon is noticeable for probability
PX(t) = 3 | X(0) = 3 where capacity of the accumulation buffer B = 3 (Figure 6).

0 2 4 6 8 10 12 14 16 18 20
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Figure 5. Impact of buffer capacity on probability P{X(t) = 2 |X(0) = 2}.
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Figure 6. Impact of buffer capacity on probability P{X(t) = 3 |X(0) = 3}.

In the case of probability PX(t) = 2 | X(0) = 3 and the capacity of the accumulating
buffer B = 3, the transient behavior of the considered probabilities goes into the vacation
mode much earlier than in the previous cases (Figure 7). Once the peak is reached, the
probability of having jobs drops to zero within 8 s. Summarizing the effect of buffer capacity,
the busy time of the disassembly system increases with capacity. Knowing the time of
transition to vacation mode is crucial to balancing tasks with production capacity.
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10-6 Queue in the disassembly system for m = 2, n = 3

Figure 7. Impact of buffer capacity on probability P{X(t) = 2 |X(0) = 3}.

7.3. Impact of Arrival Rate

Let us investigate the impact of the arrival rate λ on the transient queue-size distribu-
tion. Consider four scenarios where the inter-arrival rate described by λ = 1, 2, 3, which
corresponds to inter-arrival rate of 60, 30, 20, and 30 for a product. The CDF parameter
describing the disassembly time is µ1 = 4, µ2 = 3 and µ3 = 2 for regeneration, reuse,
and recycling, respectively. The traffic load value is 20%, 30%, and 50% for regeneration,
reuse, and recycling, respectively. Considering the special case of the queuing model where
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capacity of the accumulating buffer B = 1, Figure 8 presents the probabilities of no job, m =
0 in the disassembly system at time t and of no job n = 0 in the input buffer at the beginning,
P{X(t) = 0 |X0 = 0} with changing arrival rates for products with unknown quality.
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Figure 8. Impact of arrival rate on probability P{X(t) = m = 0 |X(0) = n = 0}.

Observe probabilities P{X(t) = 0 |X0 = 0} (Figure 8) and P{X(t) = 0 |X0 = 1}
(Figure 9), the transient conditional distributions increase as inter-arrival rates decrease
λ = 1,λ = 2, λ = 3, and lambda = 4. The transient conditional distributions increase
shortly after the opening of the disassembly system for inter-arrival rates λ = 1, λ = 2,
(Figures 8 and 9). The transient conditional distributions decrease constantly after opening
the disassembly system for inter-arrival rates λ = 3, λ = 2, starting from the peak at the
beginning of the simulation (Figures 8 and 9).
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Figure 9. Impact of arrival rate on probability P{X(t) = m = 0 |X(0) = n = 1}.

Observe probabilities P{X(t) = 1 |X0 = 0} (Figure 10) and P{X(t) = 1 |X0 = 1}
(Figure 11), the transient conditional distributions increase with decreasing inter-arrival
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rates λ = 1, λ = 2, λ = 3, and λ = 4. The transient conditional distributions increase
shortly after opening the disassembly system only for inter-arrival rate λ = 1. The transient
conditional distributions decrease after opening the disassembly system for inter-arrival
rates λ = 2, λ = 3, λ = 4 starting from the peak at the beginning of simulation for both
probabilities Figures 10 and 11).
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Figure 10. Impact of arrival rate on probability P{X(t) = 1 |X(0) = 0}.
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Figure 11. Impact of arrival rate on probability P{X(t) = 1 |X(0) = 1}.

In summary, considering the scenarios where the capacity of the accumulating buffer
B = 1 and the probabilities of m = 0 or m = 1 and n = 0 or n = 1, the following conclusions
can be drawn:

Inter-arrival rate has a strong influence on the probabilities. The effect of the inter-
arrival time is clearly visible and the differences between corresponding probabilities are
relatively large.

The transient conditional distributions increase as λ increases.
The transient conditional distributions increase shortly after opening the disassembly

system as λi decreases and m increases.

7.4. Impact of Disassembly Rate

Now analyze the impact of disassembly rates. Consider three scenarios where
the parameters of the CDF describing disassembly times are µ1 = 4, µ2 = 3 and µ3 = 2



Sensors 2022, 22, 9909 14 of 21

and are increased by /1/, 2/, 3/, and 4. The arrival rate is constant λ = 4 task/min
for the product. The traffic load and capacity of the accumulating buffer are as in
the previous subsection. We have the capacity (traffic load) of the system, that is the
transient conditional distributions P{X(t) = 0 |X(0) = 0} for increasing disassembly
times visualized in Figure 12.

Observe that the probabilities P{X(t) = 0 |X(0) = 0}, P{X(t) = 0 |X(0) = 1}
and P{X(t) = 1 |X(0) = 0}, P{X(t) = 1 |X(0) = 1} decrease shortly after opening the
disassembly system, down to 5 s (Figures 12–15). The probabilities peak just after opening
the disassembly system.

Considering the scenarios in the disassembly system where the buffer capacity, B = 1
and there is no job or only one job at the beginning, the probabilities of no job m = 0 at
time t is slightly higher than the probabilities of one job m = 1.
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Figure 12. Impact of disassembly rate on probability P{X(t) = m = 0 |X(0) = n = 0} for λ = 4.
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Figure 13. Impact of disassembly rate on probability P{X(t) = m = 0 |X(0) = n = 1} for λ = 4.
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Figure 14. Impact of disassembly rate on probability P{X(t) = 1 |X(0) = 0} for λ = 4.
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Figure 15. Impact of disassembly rate on probability P{X(t) = 1 |X(0) = 1} for λ = 4.

To support the conclusion that the disassembly rate has very little impact on the proba-
bilities, we also simulate the probabilities P{X(t) = 0 |X(0) = 0}, P{X(t) = 0 |X(0) = 1}
and P{X(t) = 1 |X(0) = 1} where the arrival intensity, λ = 1 task/min and traffic
loads pi = {0.2, 0.3, 0.5} are constant. The conclusion is correct except for the probability
P{X(t) = 0 |X(0) = 0} (compare Figures 16–18).

The following conclusions are given:
The disassembly rates have little (Figure 16) or very little impact on the probabilities

(Figures 12–15, 17 and 18).
The four probabilities are highest just after opening the system (Figures 12–15), which

means that the system starts the disassembly process right after opening. The disassembly
system immediately goes into the vacation mode due to the lack of disassembly tasks.
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Figure 16. Impact of disassembly rate on probability P{X(t) = m = 0 |X(0) = n = 0} for λ = 1.
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Figure 17. Impact of disassembly rate on probability P{X(t) = m = 0 |X(0) = n = 1} for λ = 1.
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Figure 18. Impact of disassembly rate on probability P{X(t) = 1 |X(0) = 0} for λ = 1.
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7.5. Impact of Traffic Load on a Product with a Given Quality

Finally, let us check the response of the transient queue-size distribution to changes
in the traffic load of a product of different quality classified for regeneration, reuse, or
recycling. There are three traffic load scenarios: 20%, 30%, and 50% for regeneration, reuse,
or recycling, pi = {0.2, 0.6, 0.2} and pi = {0.5, 0.3, 0.2}, where capacity of the accumulating
butter B = 1. The parameters of the CDF describing the disassembly time are µ1 = 2,
µ2 = 4, and µ3 = 6 for regeneration, reuse, or recycling, respectively. Keeping the arrival
intensity constant λ = 4 task/min for the product.

Consider the scenario where the traffic load pi = {0.2, 0.3, 0.5}, the probabilities
that of one job, m = 1 at time t and one job at the beginning, n = 1 in the input buffer,
P{X(t) = 1|X(0) = 1} are presented in Figure 19. The probability is highest right after opening
the system, then drops to 0 after about 4 s. A similar phenomenon is observed for the
traffic load pi = {0.2, 0.6, 0.2}, the probability of one job, m = 1 at time t and of one job,
n = 1 at the beginning in the input buffer (Figure 20). The probabilities of one job, m = 1 at
time t and one job, n = 1 at the beginning in the input buffer are higher for the traffic load
pi = {0.5, 0.3, 0.2} (Figure 21) than for the loads presented in Figures 19 and 20.
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Figure 19. Impact of traffic load described by pi = {0.2, 0.3, 0.5} on P{X(t) = m = 1 |X(0) = n = 1}
for λ = 4.
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Figure 20. Impact of traffic load described by pi = {0.2, 0.6, 0.2} on P{X(t) = m = 1 |X(0) = n = 1}
for λ = 4.
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Figure 21. Impact of traffic load described by pi = {0.5, 0.3, 0.2} on P{X(t) = m = 1 |X(0) = n = 1}
for λ = 4.

Let us briefly comment on the recent results. The higher the probability of the
product classified for regeneration the higher probability P{X(t) = 1 |X(0) = 1}. The
higher probabilities of the product for reuse or recycling the lower impact on probability
P{X(t) = 1 |X(0) = 1}. The same conclusion can be drawn for the probabilities and
constant λ = 1 (Figures 22–24).

In order to support the conclusion that the disassembly rate has very little impact on
the probabilities, observe probability P{X(t) = 1 |X(0) = 1} where the arrival intensity
of the product is constant, λ = 1 and the traffic load is variable. The conclusion is correct
except for the traffic load pi = {0.5, 0.3, 0.2} (compare Figures 22–24).

The disassembly rate has very little impact on the probabilities when the traffic load is
light. The greater the proportion of a job with a longer disassembly time, the greater the
impact of disassembly time on the probability P{X(t) = 1 |X(0) = 1} (Figures 22–24).
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Figure 22. Impact of traffic load described by pi = {0.2, 0.3, 0.5} on P{X(t) = m = 1 |X(0) = n = 1}
for λ = 1.
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Figure 23. Impact of traffic load described by pi = {0.2, 0.6, 0.2} on P{X(t) = m = 1 |X(0) = n = 1}
for λ = 1.
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Figure 24. Impact of traffic load described by pi = {0.5, 0.3, 0.2} on P{X(t) = m = 1 |X(0) = n = 1}
for λ = 1.

8. Conclusions

The problem of sequencing a single-product line with three possible cases of a target
component was investigated: recycling, reuse, or regeneration (re-manufacturing). Due to
the unknown quality, quantity, and frequency of product returns, the method for estimating
the time between the arrival of the product with the target component for re-manufacturing,
reusing, or recycling received from the reverse logistics network was presented. A system
of equations for the time-sensitive queue-size distribution was established by applying
the paradigm of the embedded Markov chain and the total probability law. The presented
approach estimates the effect of the initial buffer state, initial buffer capacity, product arrival
intensity, product disassembly rate, and traffic load on the probability of one job at time t.
The presented approach computes the transient queue-size distribution for the digital twin
of the disassembly system.

Thanks to reliable predictions of the disassembly system occupancy, it is possible to
better plan the disassembly tasks along with limited production capacities. Better use of
the disassembly system improves performance indicators.

The most important conclusions were drawn:



Sensors 2022, 22, 9909 20 of 21

Given the effect of the initial buffer state on the transient queue-size distribution, the
probabilities of one job at time t were higher than the probabilities of no job regardless of
the initial buffer state.

Taking into account the impact of the arrival rate on the transient queue-size distri-
bution, the following conclusion was given: the arrival rate had a large impact on the
probabilities. The effect of the time between arrivals was clearly visible, and the differences
between corresponding probabilities were relatively large. The transient conditional distri-
butions increased with the increase in the intensity of arrivals. The transient conditional
distributions increased shortly after the opening of the disassembly system for less and less
intensity of arrivals and a single job in the input buffer.

The impact of disassembly rates on the transient queue-size distribution was very
small at the beginning of our simulations. Finally, we refined our conclusion that the
disassembly rates had very little effect on the probabilities when the traffic load is light.
The greater the proportion of tasks with longer disassembly times, the greater the impact
of disassembly time on the probability of one job at time t, where there was one job at
the beginning.

The probabilities were highest right after the system was opened, which means that the
system started the disassembly process right after the system was opened. The disassembly
system immediately went into the vacation mode due to a lack of disassembly tasks.

In the traffic load, the product qualified for regeneration had the greatest impact on
the size distribution of the transition queue.
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