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Abstract: Iris localization in non-cooperative environments is challenging and essential for accurate
iris recognition. Motivated by the traditional iris-localization algorithm and the robustness of the
YOLO model, we propose a novel iris-localization algorithm. First, we design a novel iris detector
with a modified you only look once v4 (YOLO v4) model. We can approximate the position of the
pupil center. Then, we use a modified integro-differential operator to precisely locate the iris inner
and outer boundaries. Experiment results show that iris-detection accuracy can reach 99.83% with
this modified YOLO v4 model, which is higher than that of a traditional YOLO v4 model. The
accuracy in locating the inner and outer boundary of the iris without glasses can reach 97.72% at
a short distance and 98.32% at a long distance. The locating accuracy with glasses can obtained at
93.91% and 84%, respectively. It is much higher than the traditional Daugman’s algorithm. Extensive
experiments conducted on multiple datasets demonstrate the effectiveness and robustness of our
method for iris localization in non-cooperative environments.

Keywords: iris localization; iris recognition; radial gradient amplitude; YOLO; modified integro-
differential operator; biometric; Daugman’s operator; MobileNet

1. Introduction

Biometric identification has emerged as a critical method for ensuring information
security [1]. It is a process that uses some inherent and some unique physiological or behav-
ioral features of human beings to determine their identity. The face [2–4], fingerprint [5],
palmprint [6,7], and iris [8–10] are all common biometrics.

The iris is an area of the human eye that is approximately a circle between the sclera
and the pupil. Unlike other biometrics, the iris has unique characteristics, such as a hidden
location, being non-contact, and a rich texture. It is frequently used in identification and
disease diagnoses [11,12]. Typically, iris segmentation and iris recognition are the two
main tasks of the iris recognition system [13,14]. The purpose of iris segmentation is to
distinguish iris and non-iris regions [15–19]. In addition, iris recognition needs to detect the
pupil and iris circles, called iris location [19–21]. Its goal is to normalize the iris region into
rectangles to prepare for iris recognition. Iris recognition and computer-aided eye disease
diagnoses rely on an accurate iris location. The quality of the iris location directly affects
the performance of these algorithms. However, iris-localization tasks are complicated
due to non-cooperative environments, such as glasses reflections, an off-angle iris, long
distances, occlusion by eyelashes or eyelids, being partially recorded, etc., as shown in
Figure 1 [22]. As a result, developing a robust iris-localization algorithm is a challenging
task with significant theoretical and application value, and it is rapidly becoming a hotspot
in iris-recognition research [23–26]. Iris texture information will be lost if the location is
incorrect, reducing the effectiveness of identification or disease diagnosis.
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conventional way does not need to train many neural networks, which is easy to imple-
ment and very fast. The disadvantage is that it is susceptible to noise interference, has 
low accuracy, and has limited application scenarios. Deep-learning-based methods have 
a strong performance against noise interference and they have high precision. Deep 
learning models, however, need a long training period and lots of labeled data. The ex-
pense of labeling data severely limits their applicability to expand into new categories. 

Motivated by the convenience of the traditional iris-localization algorithm and the 
accuracy of deep learning, this paper proposes an iris-localization algorithm based on a 
modified YOLO v4 network and a modified integro-differential operator. The following 
is a summary the main contributions: 

(1) A modified YOLO v4 network is proposed to detect the iris region and locate the 
outer circle of the iris. We use MobileNetV2 as the backbone network in YOLO v4 for 
feature extraction. The modified YOLO v4 model is only 5.8M in size, which is much 
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removing some noise in the image, we can improve the accuracy in locating the inner and 
outer boundary with this modified operator. The experimental data show that the pro-
posed localization algorithm can achieve high accuracy under non-cooperative envi-
ronments. It has good robustness regardless of short-distance and long-distance irises. 

(3) Strong scalability. The iris-localization method proposed in the paper combines 
the benefits of deep learning and machine learning. We can achieve accurate localization 
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Figure 1. Some typical iris images obtained in non-cooperative environments: (a) iris obscured by
eyelids; (b) iris interfered by eyelashes; (c) iris obstruction due to hair; (d) glasses obstructing the iris;
(e,f) off-angle iris; (g,h) iris with specular reflection [22].

At present, there are mainly two types of iris-localization methods. One is the tra-
ditional algorithm based on machine learning. The other one is based on deep learning.
The conventional way does not need to train many neural networks, which is easy to
implement and very fast. The disadvantage is that it is susceptible to noise interference, has
low accuracy, and has limited application scenarios. Deep-learning-based methods have a
strong performance against noise interference and they have high precision. Deep learning
models, however, need a long training period and lots of labeled data. The expense of
labeling data severely limits their applicability to expand into new categories.

Motivated by the convenience of the traditional iris-localization algorithm and the
accuracy of deep learning, this paper proposes an iris-localization algorithm based on a
modified YOLO v4 network and a modified integro-differential operator. The following is
a summary the main contributions:

(1) A modified YOLO v4 network is proposed to detect the iris region and locate the
outer circle of the iris. We use MobileNetV2 as the backbone network in YOLO v4 for feature
extraction. The modified YOLO v4 model is only 5.8 M in size, which is much smaller
than the traditional YOLO v4-tiny model, which is 21.42 M in size. In addition, it also
improves the mAP (mean average precision). It addresses the problem in which traditional
localization algorithms are prone to noise interference and suffer from low accuracy.

(2) A modified integro-differential operator is proposed to precisely locate the inner
and outer boundaries of the iris. The location effect of Daugman’s integro-differential
operator is mostly promising. However, if the image is disturbed, iris localization is prone
to failure. According to the principle of Daugman’s integro-differential operator, this paper
proposes a modified integro-differential operator with better robustness. After removing
some noise in the image, we can improve the accuracy in locating the inner and outer
boundary with this modified operator. The experimental data show that the proposed
localization algorithm can achieve high accuracy under non-cooperative environments. It
has good robustness regardless of short-distance and long-distance irises.

(3) Strong scalability. The iris-localization method proposed in the paper combines
the benefits of deep learning and machine learning. We can achieve accurate localization
of the inner and outer circles of the iris without excessive labeling. For example, we only
label 5% of the CASIA-Iris-Thousand dataset. The experiment shows that we can not only
locate the labeled iris images, but also achieve high location accuracy with the remaining
unlabeled images.

The remaining sections are structured as follows. In Section 2, we examine some
of the literature regarding iris localization. Then, in Section 3, we go over the proposed
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methods in greater detail. The experimental findings in Section 4 show the effectiveness of
the proposed method. Finally, we conclude in Section 5.

2. Related Works

Currently, there are primarily two categories of iris-localization techniques. One is the
conventional machine-learning-based iris-localization algorithm. The alternative approach
relies on deep learning.

2.1. Traditional Iris-Localization Algorithm

Traditional iris-localization algorithms are mainly divided into three categories. The
first method is based on differential and integral operators. In this view, the iris is regarded
as an approximate circle area. The iris location can be simplified by calculating the center
and radius of the inner and outer boundaries. Daugman [27,28] used the integro-differential
operator to search those parameters of the circle. Because this method needs to traverse and
explore all parameter spaces, its computational complexity is relatively high. The second
method is based on the Hough transform. Wildes [29] used the edge-detection operator
to explore the edge points of the binary iris image, and then used the Hough transform
to determine the parameters of the inner and outer boundaries. The third method is the
gray difference method. This method fully uses the gray level changes of the iris image to
locate the iris. Ma Li et al. [30] used gray value mutation to find three points that were not
on the same line, and then combined them into a circle to determine the inner and outer
boundaries of the iris.

2.2. Localization Algorithm Based on Deep Learning

In recent years, deep learning has rapidly developed in the field of target detection.
There are currently two main approaches: one-stage detection and two-stage detection. The
two stages are based on the concept of a target candidate box, generating a series of sample
candidate boxes in advance, and then classifying samples through a convolutional neural
network. The region-based CNN (R-CNN) is one of them. Feng X et al. [19] proposed an
iris R-CNN. It can simultaneously complete the accurate segmentation and localization of
the iris in a non-cooperative environment under visible light. Li Y H et al. [31] designed a
fast R-CNN with only six layers to locate eyes. He used the bounding box found by Faster
R-CNN to locate the pupil area using the Gaussian mixture model. Because R-CNN needs
to select thousands of proposed areas from one picture, the speed is very slow. One-stage
detection is based on regression, and there is no target candidate box. Image features
extracted via the backbone network are returned to the object boundary box directly. It is
faster than R-CNNs, such as YOLO models [32–36]. YOLO has attracted wide attention
since its inception.

Many existing researchers have used the YOLO algorithm to locate the iris. Naran-
panawa D et al. [37] proposed a light and simple object-detection model based on YOLO v3
to detect freckles in the iris. Evair Severo et al. [38] designed an iris target-detector based
on YOLO. This target detector uses a small rectangular box which tightly encloses the iris
region. However, this method cannot determine the position of the inner circle of the iris.
Eduardo et al. [39] implemented a real-time iris-detection and segmentation framework in
video based on Tiny-YOLO. The size of Tiny-YOLO is slightly larger so it is not suitable for
installation in embedded systems.

In addition to the iris-localization algorithm based on YOLO, many deep neural net-
works that integrate the segmentation and location of the iris have emerged in recent years.
Most of them are based on U-Net. Lian S et al. [40] introduced an attention mechanism to
an original U-Net model to separate the iris and non-iris pixels. Wang C et.al [41] presented
a multi-task U-Net called IrisParseNet. It can predict the iris mask, pupil mask, and iris
outer boundary simultaneously. Interleaved Residual U-Net, proposed by Li Y H et al., can
localize the outer and inner boundaries of the iris image [42]. Although the accuracy of
the above methods is quite convincing, they are only used for segmenting and locating the
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iris from images of the eye region. They cannot help with extracting the eye region from
long-distance iris images.

3. Methods

We used MobileNetV2 to improve YOLO v4 and design an iris detector. The detector
employs a small rectangular box that tightly surrounds the iris region. The iris region allows
us to approximate the position of the pupil center. The improved integro-differential opera-
tor was used to precisely locate the inner and outer boundaries of the iris, greatly improving
iris location robustness. Figure 2 depicts the flow chart of the localization algorithm.
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3.1. Dataset

When training the YOLO v4 network, we selected two datasets in this paper. One
is CASIA-Iris-Thousand, and the other is CASIA-Iris-Distance [22]. The two datasets are
briefly introduced below:

The dataset CASIA-Iris-Thousand includes 20,000 pictures of the iris from 1000 people.
These images were collected at a short distance with an IKEMB-100 camera. Each image
has 640 × 480 pixels. Changes in pupil size under different lighting conditions, as well
as specular reflection, are the main causes of intra-class changes in CASIA-Iris-Thousand.
Figure 3a shows a sample of the dataset.
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Thousand; (b,d) Manual label of the outer boundary of the iris; (c) Example image of CASIA-Iris-
distance [22].

The iris images in the CASIA-Iris-Distance dataset were captured by a high-resolution
camera over a long distance. As a result, the image area of interest included both binocular
irises and facial patterns. It contained 142 themes and 2567 pictures. Each image had
2352 × 1728 pixels. Figure 3c is a sample of the dataset. The imaging system of the high-
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resolution camera can actively search for patterns in the field of view, such as the iris and
face, to identify users from a distance of about 3 m.

The number and size of the rectangular boxes manually labeled varied due to different
datasets as shown in Figure 3b,d [22].

3.2. The Modified YOLO v4 Network

Three components make up the structure of the YOLO v4 network: the Backbone; the
Neck; and the Head. CSPDarkNet-53 serves as the backbone of the traditional YOLO v4
network, which uses it to extract features from the input photos. This paper used the
lightweight network MobileNetV2 [43] as the backbone network instead of CSPDarkNet-53.
Its overall network structure is shown in Figure 4 [44].
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3.2.1. The Backbone

MobileNet was proposed by Google in 2017. MobileNetV2 further improves network
performance by using a reverse residual structure [43]. Because MobileNetV2 contains
seven bottleneck modules, we used seven blocks in the backbone shown in Figure 4. The
backbone outputs the feature maps which are fused at the next part, namely the neck.

3.2.2. The Neck

The head and the backbone are joined by the neck. A spatial pyramid pool (SPP)
module and a path aggregation network (PAN) make up the neck. The head receives
feature maps as input from the neck, which connects feature maps from various layers of
the backbone. The SPP module uses kernels of size 1 × 1, 5 × 5, 9 × 9, and 13 × 13 for the
max-pooling operation. The stride value was set to 1. The receptive field of the backbone
features is expanded by concatenating the feature maps, which also improves the ability of
the network to identify small objects.

3.2.3. The Head

The head is responsible for receiving and processing a group of aggregation feature
maps output by the PAN module. It predicts bounding boxes, classification scores, and
objectivity scores. Three detecting heads are present in the head part of the traditional
YOLO v4 network. Each detector head is a YOLO v3 network, and the respective output
size is 19 × 19, 38 × 38 and 76 × 76.
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Figure 3b,d shows that there were no more than two detection objects in a single image.
Therefore, only two detection heads were required for the head. At the same time, because
the size of the dataset was different, two feature maps with different sizes needed to be
used for prediction. We extracted feature maps from the fourth and final bottleneck to
predict small and large irises based on these specific situations. The network outputted
feature maps of size 28 × 28 and 7 × 7.

3.3. Denoising an Iris Image

The rectangular area generated after iris detection can be regarded as the outer circle
boundary of the iris. The center of the outer circle may not equal the actual pupil center,
but it usually falls within the pupil. Removing noise interference without destroying the
original image can provide a solid foundation for subsequent accurate localization.

It can be seen from Figure 3b,d that in the rectangular area, there were primarily two
types of noise: reflective points and eyelashes. For the reflective points, we generated a
mask based on those points. After we filled in regions specified by the mask using inward
interpolation in the image, those reflective points were filtered. For the eyelash noise, it can
be viewed as a dark detail in an image. We used morphological closure to fill the image
and reduce the interference of the eyelashes.

3.4. Precise Localization of Iris Inner and Outer Boundaries Based on Improved Calculus Operator
3.4.1. Daugman’s Integro-Differential Operator

The gray value of the iris image had noticeable changes at the inner and outer bound-
aries. Daugman proposed an integro-differential iris-localization algorithm based on this
feature [26]. The mathematical expression is shown in Formula (1).

max(r,x0,y0)

∣∣∣∣Gσ(r) ∗
∂

∂r

∮
r,x0,y0

I(x, y)
2πr

ds
∣∣∣∣ (1)

where I(x, y) is the gray value of the point (x, y),
∮

r,x0,y0

I(x,y)
2πr ds is the curve integral of the

circle with center (x0, y0) and radius r. The integral path for the inner iris boundary is
the entire circle. The outer boundary of the iris is easily interfered with by eyelashes and
eyelids. The integration path for the outer iris boundary is the region with 90 degrees on
the left and right sides of the iris. Gσ(r) is a Gaussian function with standard deviation σ.
* denotes convolution computation.

3.4.2. The Modified Integro-Differential Operator

We can achieve good results by using Formula (1) to localize the inner and outer
boundary of the iris with accurate pupil center positioning. If the pupil center positioning is
skewed, the effect of iris localization is inferior to ideal. Based on the principle of Daugman’s
integro-differential operator, we propose a modified operator with better robustness, as
shown in Formula (2) [45].

max(x0,y0,r)

n

∑
θ=1

(gθ,r − Cθ,r) (2)

where, the center and radius values of the search starting point are represented by (x0, y0)
and radius r, respectively. n denotes the number of points taken uniformly around the
circle, with (x0, y0) as the center and r as the radius. gθ,r represents the radial gradient of
the θth point on the circle of radius r. Cθ,r is the compensation factor. gθ,r and Cθ,r can be
expressed by Formulas (3) and (4), respectively. Figure 5 depicts their schematic diagram.

gθ,r = Iθ,r+∆r − Iθ,r (3)

Cθ,r =
1
2
[|gθ+1,r − gθ,r|+ |gθ−1,r − gθ,r|] (4)
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In Figure 5, point A represents the θth point on the circle of radius r. Point B represents
the θth point on the circle of radius r + ∆r. Points C and D represent the (θ − 1)th point
and the (θ + 1)th points on the circle of radius r, respectively. The difference of gray value
between point A and point B is gθ,r.

To avoid error localization caused by the excessive radial gradient of an interference
point on the circle, we introduced a compensation factor Cθ,r. If the difference of gray value
between the two adjacent points on the circle was large, this indicated that these points
were likely to be some interference points in the image.

3.4.3. Localization of the Iris Inner Boundary

The center and radius parameters must be continuously varied in order to find the
maximum value when applying Formula (2) to find the inner boundary of the iris. The
initial value of the center (x0, y0) can be determined by the outer circle of the iris detected
by YOLO v4. Because the center obtained by YOLO v4 is very close to the real center of
the pupil, a smaller search field can be set to reduce the number of iterations and to speed
up the localization. The search range of the inner circle radius can be set according to the
prior conditions of the iris image. Because the inner circle of the iris is short, n can be set as
32. When Formula (2) returns the maximum value, we can obtain the center (xp, yp) and
radius rp of the inner boundary of the iris.

3.4.4. Localization of Iris Outer Boundary

The centers of the iris inner and outer boundaries are generally very close. When
locating the outer circle, the search range of the circle center should be limited within a
tiny neighborhood of the inner circle center. The radius search range can be based on the
rectangular box obtained by YOLO v4. Its range is:

1.2rp < r1 < 0.5×max[rows, cols] (5)

where rp is the radius of the iris inner boundary obtained in Section 3.4.3.
r1 is the search range of the radius of the outer boundary. rows, cols represents the

length and width of the rectangular box obtained by YOLO v4 when the iris is detected. n
can be set as 256. When Formula (2) returns the maximum value, we can obtain the center
(xi, yi) and radius ri of the outer boundary.

4. Experimental Results and Analysis
4.1. Iris Images Pre-Processing

To verify the robustness of the method proposed in this paper, some iris images with
poor quality, insufficient clarity, eyelash occlusion, and serious eyeglass reflection were
not deliberately eliminated in the experiment. In the CASIA-Iris-Thousand dataset, we
select 1000 images from the first 50 people. In the CASIA-Iris-Distance dataset, we selected
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1000 images from the first 54 people. Image Labeler provided by Matlab 2022a was used
to label those 2000 images. A total of 3000 rectangular boxes were labeled. Among those
2000 images, 80% were randomly selected as the training set and 20% were selected as the
test set.

Because the input size of MobileNetV2 used in this paper was 224 × 224 × 3, prior to
the experiment, the pre-processing process must uniformly convert the size of these 2000 im-
ages to 224 × 224 × 3. This is not only to meet the input requirements of MobileNetV2, but
also to adapt to color iris images.

4.2. The Experimental Platform and the Evaluation Indicators

The experiment software and hardware platforms used were as follows: 64-bit Win-
dows 10 operating system; Intel Core i7-8700 3.20 GHz dual-core CPU; 16 G running
memory; and NVIDIA™ GeForce RTX 3060 GPU with 12 GB of memory. The software
development environment was Matlab 2022a. The hyperparameters of the training model
were set as follows: the training batch BatchSize = 4; the number of model training epoch
= 5; the learning rate was 0.005; and the Adam algorithm was used for optimization
calculation. All the experiments were run on one GPU card.

We used the average precision (AP) for comparisons in order to quantitatively evaluate
the performance of different iris-detection algorithms. The AP was related to precision and
recall, which can be formulated as [38]:

Recall =TP/(TP + FN) (6)

Precision =TP/(TP + FP) (7)

where the letters TP, FP, and FN stand for the numbers of true positives, false positives, and
false negatives, respectively. TP (true positive) means that prediction is consistent with the
label. FP (false positive) indicates that a negative case is predicted as a positive case, and
FN (false negative) indicates that a positive case is predicted as a negative case. Usually, all
iris region proposals with≥0.5 IoU that overlap with a ground-truth box are considered TP,
while others are considered FP [46]. The mean AP (mAP) function determines the average
AP value across all object categories. The AP and mAP are quantitative indicators used in
object detection. Generally, the higher the AP, the better the detection performance.

4.3. Comparison Experiment with Traditional YOLO v4

There are two types of backbone in the traditional YOLO v4 network: one is csp-
darknet53-coco, and the other one is tiny-yolov4-coco. The COCO dataset was used to
train these two networks. The size of the detection model with csp-darknet53-coco as the
backbone is usually greater than 200 M. Because iris detection is mainly used in mobile
phones or embedded devices, we need a smaller detection model. Although the precision
of YOLO v4-darknet53 is very high, it is not suitable for embedded devices. Therefore, the
comparison experiment here did not include YOLO v4-darknet53.

When the hyperparameters of model training are consistent, the experimental results
show that the size of the YOLO v4-tiny model is 21.42 M, while the YOLO v4-MobileNetV2
model proposed in the paper is only 5.8 M, which is much smaller than the traditional
YOLO v4-tiny model.

Some results of iris localization under non-cooperative environments are shown in
Figure 6. The yellow rectangle represents the iris-localization result. It can be seen that
the iris-detection algorithm proposed in this paper has good anti-interference performance
and strong robustness. We compared the mean average precision (mAP) of the iris under a
different IoU in Table 1.



Sensors 2022, 22, 9913 9 of 13

Sensors 2022, 22, x FOR PEER REVIEW 9 of 14 
 

 

considered TP, while others are considered FP [46]. The mean AP (mAP) function de-
termines the average AP value across all object categories. The AP and mAP are quanti-
tative indicators used in object detection. Generally, the higher the AP, the better the de-
tection performance. 

4.3. Comparison Experiment with Traditional YOLO v4 
There are two types of backbone in the traditional YOLO v4 network: one is 

csp-darknet53-coco, and the other one is tiny-yolov4-coco. The COCO dataset was used 
to train these two networks. The size of the detection model with csp-darknet53-coco as 
the backbone is usually greater than 200M. Because iris detection is mainly used in mo-
bile phones or embedded devices, we need a smaller detection model. Although the pre-
cision of YOLO v4-darknet53 is very high, it is not suitable for embedded devices. 
Therefore, the comparison experiment here did not include YOLO v4-darknet53. 

When the hyperparameters of model training are consistent, the experimental re-
sults show that the size of the YOLO v4-tiny model is 21.42M, while the YOLO 
v4-MobileNetV2 model proposed in the paper is only 5.8M, which is much smaller than 
the traditional YOLO v4-tiny model. 

Some results of iris localization under non-cooperative environments are shown in 
Figure 6. The yellow rectangle represents the iris-localization result. It can be seen that 
the iris-detection algorithm proposed in this paper has good anti-interference perfor-
mance and strong robustness. We compared the mean average precision (mAP) of the iris 
under a different IoU in Table 1. 

 

 
(a) (b) (c) (d) 

 

 

 

 
(e) (f) 

 

 

 

 
(g) (h) 

Figure 6. Some results of typical iris images obtained in non-cooperative environments. (a) 
Off-angle iris; (b) iris obscured by eyelids; (c) iris interfered with by eyelashes; (d,e) iris with spec-
ular reflection; (f) off-angle iris at a long distance; (g) iris obstruction due to hair; (h) glasses ob-
structing the iris [22]. 
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mAP of YOLO v4-tiny (%) 98.66 94.80 86.31 60.44 

mAP of the proposed method (%) 99.83 98.49 90.57 41.50 

Figure 6. Some results of typical iris images obtained in non-cooperative environments. (a) Off-angle
iris; (b) iris obscured by eyelids; (c) iris interfered with by eyelashes; (d,e) iris with specular reflection;
(f) off-angle iris at a long distance; (g) iris obstruction due to hair; (h) glasses obstructing the iris [22].

Table 1. mAP of two detection networks under different IoU.

IoU 0.5 0.6 0.7 0.8

mAP of YOLO v4-tiny (%) 98.66 94.80 86.31 60.44
mAP of the proposed method (%) 99.83 98.49 90.57 41.50

From Table 1, we can see that when IoU was less than or equal to 0.7, the perfor-
mance of the modified YOLO v4 model proposed in this paper was better than that of
the traditional YOLO v4-tiny model. However, when the IoU was equal to 0.8, the mAP
of the modified YOLO v4 model was significantly reduced. However, this had no effect
on subsequent iris inner and outer circle localization. In our experiment, we set the IoU
threshold to 0.5. In this case, the recall curves of the two networks are shown in Figure 7.

From Figure 7, we can see that the mAP of the modified YOLO v4 network was close
to 100% when epoch = 5, and the performance was better than that of the traditional
yolov4-tiny network.

4.4. Experiment with Inner and Outer Iris Circle Localization

To verify the scalability and robustness of the proposed method, the images used in
this section do not intersect with the images used in Section 4.1, which belongs to an open-
set test. For the CASIA-Iris-Thousand dataset, image data were randomly selected from
the last 950 individuals. For the CASIA-Iris-Distance dataset, image data were randomly
selected from the last 88 individuals. The specific composition of the dataset is shown in
Table 2.
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Figure 7. Precision recall curves of the two networks (IoU = 0.5).

Table 2. Dataset Composition.

Dataset Number of Images without Glasses Number of Images with Glasses

CASIA-Iris-Thousand 4000 500
CASIA-Iris-Distance 500 100

The traditional Daugman’s localization algorithm iteratively searches the center and
radius of the circle in the entire iris image, which takes a very long time, even tens of sec-
onds, so it has no practical significance. Based on the above considerations, the comparison
of localization was based on the same size of searching field. Under the same premise,
Daugman’s integro-differential operator was compared with the improved operator pro-
posed in this paper. Tables 3 and 4 show the accuracy of different algorithms in locating
the inner and outer circles at a short distance and long distance, respectively.

Table 3. Comparison results of iris localization at a short distance.

Method
Images without Glasses Images with Glasses

Location Accuracy Time Cost (s) Location Accuracy Time Cost (s)

Daugman’s operator 94.98% 0.215 89.85% 0.216
Proposed method 97.72% 0.227 93.91% 0.196

Table 4. Comparison results of iris localization at a long distance.

Method
Images without Glasses Images with Glasses

Location Accuracy Time Cost (s) Location Accuracy Time Cost (s)

Daugman’s operator 78.46% 2.162 7% N/A
Proposed method 98.32% 2.213 84% 2.248

Tables 3 and 4 demonstrate that the proposed operator in this study had greater
accuracy than Daugman’s algorithm in images with and without glasses, which shows that
the improved operator is effective and improves the accuracy of iris precise localization.
Compared with Daugman’s operator, the modified operator improved the localization
accuracy by 2.74% for short-distance images without glasses and by 4.06% for images with
glasses. Because the compensation factors were calculated in each iteration, the localization
time was a little longer. For the long-distance images, the modified operator located the iris
more accurately than at a short distance, and it was much more accurate than Daugman’s
operator. Especially for the images with glasses, the localization accuracy reached 84%,
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which is much better than Daugman’s algorithm. The success rate of localization using
Daugman’s method is rather low, with only 14 irises successfully located, while no two
eyes were successfully located simultaneously. It does not make sense to consider run time
as a result. The experimental results show that the modified operator proposed in this
paper improves the robustness of iris localization, especially under some non-cooperative
environments, as shown in the Figure 8.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 14 
 

 

Daugman’s operator 94.98% 0.215 89.85% 0.216 
Proposed method 97.72% 0.227 93.91% 0.196 

Table 4. Comparison results of iris localization at a long distance. 

Method 
Images without Glasses Images with Glasses 

Location Accuracy Time Cost (s) Location Accuracy Time Cost (s) 
Daugman’s operator 78.46% 2.162 7% N/A 

Proposed method 98.32% 2.213 84% 2.248 

Table 3 and 4 demonstrate that the proposed operator in this study had greater ac-
curacy than Daugman’s algorithm in images with and without glasses, which shows that 
the improved operator is effective and improves the accuracy of iris precise localization. 
Compared with Daugman’s operator, the modified operator improved the localization 
accuracy by 2.74% for short-distance images without glasses and by 4.06% for images 
with glasses. Because the compensation factors were calculated in each iteration, the lo-
calization time was a little longer. For the long-distance images, the modified operator 
located the iris more accurately than at a short distance, and it was much more accurate 
than Daugman’s operator. Especially for the images with glasses, the localization accu-
racy reached 84%, which is much better than Daugman’s algorithm. The success rate of 
localization using Daugman’s method is rather low, with only 14 irises successfully lo-
cated, while no two eyes were successfully located simultaneously. It does not make 
sense to consider run time as a result. The experimental results show that the modified 
operator proposed in this paper improves the robustness of iris localization, especially 
under some non-cooperative environments, as shown in the Figure 8. 

 
(a) (b) (c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 8. Inner and outer boundaries of iris localization by improved operators under 
non-cooperative environments [22]. (a) Off-angle iris; (b) iris obscured by eyelids; (c) iris interfered 
with by eyelashes; (d,e) iris with specular reflection; (f) off-angle iris at a long distance; (g) iris ob-
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Figure 8. Inner and outer boundaries of iris localization by improved operators under non-
cooperative environments [22]. (a) Off-angle iris; (b) iris obscured by eyelids; (c) iris interfered
with by eyelashes; (d,e) iris with specular reflection; (f) off-angle iris at a long distance; (g) iris
obstruction due to hair; (h) glasses obstructing the iris [22].

5. Conclusions

We propose a novel detection model and a modified integro-differential operator for
accurate and robust iris localization in non-cooperative environments. We first used Mo-
bileNetV2 as the backbone network in YOLO v4 for feature extraction. The modified YOLO
v4 model is only 5.8 M in size, which is significantly smaller than the traditional YOLO
v4-tiny model. Then, a modified integro-differential operator was used to precisely locate
the inner and outer boundaries. Extensive experiments on multiple datasets demonstrated the
effectiveness and robustness of our method for iris localization in non-cooperative environments.

Limited by conditions, we did not find an image dataset of eye diseases. Iris local-
ization for ocular diseases has a low success rate. This will be achieved in future research
work. Furthermore, we are interested in investigating how to accurately localize the iris
in video.
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The following abbreviations are used in this manuscript:

YOLO you only look once
AP average precision
mAP mean AP
TP true positives
FP false positive
FN false negative
IoU intersection over union
CASIA Chinese Academy of Sciences Institute of Automation
CNN convolutional neural network
R-CNN region-based CNN
SPP spatial pyramid pool
PAN path aggregation network
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